
Thread Migration in a Replicated-kernel OS

David Katz
Johns Hopkins University Applied Physics Laboratory

david.katz@jhuapl.edu

Antonio Barbalace, Saif Ansary,
Akshay Ravichandran and Binoy Ravindran

ECE Department, Virginia Tech
{antoniob, bmsaif86, akshay87, binoy}@vt.edu

Abstract—Chip manufacturers continue to increase the num-
ber of cores per chip while balancing requirements for low power
consumption. This drives a need for simpler cores and hardware
caches. Because of these trends, the scalability of existing shared
memory system software is in question. Traditional operating
systems (OS) for multiprocessors are based on shared memory
communication between cores and are symmetric (SMP). Con-
tention in SMP OSes over shared data structures is increasingly
significant in newer generations of many-core processors. We
propose the use of the replicated-kernel OS design to improve
scalability over the traditional SMP OS. Our replicated-kernel
design is an extension of the concept of the multikernel. While
a multikernel appears to application software as a distributed
network of cooperating microkernels, we provide the appearance
of a monolithic, single-system image, task-based OS in which
application software is unaware of the distributed nature of the
underlying OS. In this paper we tackle the problem of thread
migration between kernels in a replicated-kernel OS. We focus
on distributed thread group creation, context migration, and
address space consistency for threads that execute on different
kernels, but belong to the same distributed thread group. This
concept is embodied in our prototype OS, called Popcorn Linux,
which runs on multicore x86 machines and presents a Linux-like
interface to application software that is indistinguishable from the
SMP Linux interface. By doing this, we are able to leverage the
wealth of existing Linux software for use on our platform while
demonstrating the characteristics of the underlying replicated-
kernel OS. We show that a replicated-kernel OS scales as well
as a multikernel OS by removing the contention on shared data
structures. Popcorn, Barrelfish, and SMP Linux are compared
on selected benchmarks. Popcorn is shown to be competitive to
SMP Linux, and up to 40% faster.

Keywords—replicated-kernel OS; Linux; thread migration;

I. INTRODUCTION

As chip manufacturers continue to grow the number of
cores per chip to fulfill the demand in computational capacity
that the market has come to expect, researchers are questioning
the scalability of traditional SMP operating systems [1], [2],
[3]. These scalability issues are caused, mostly, by cache
coherence protocols. Coherency is not easy to scale in high
core-count processors [4], so researchers are investigating new
solutions [5]. This scalability problem is exacerbated by the
fact that we are close to hitting the power wall [6]. Per-chip
power dissipation is now limiting the complexity of cores and
the on-chip interconnect that can be deployed. This limitation
necessitates the use of simpler cores and low-power intra-chip
interconnects.

The computing landscape is in a transition phase. Silicon
photonics is a promising solution for most of these prob-
lems [5] but is not yet viable, whereas cache coherent many-
core processors with hundreds of cores are already commodity

hardware, e.g., Tilera TileGx [7], Intel Xeon Phi [8]. Results
on such processors show that cache coherency can be made
to scale – but not as well as on low core-count multicore
processors (see Figure 1).

The question of which operating system design scales
better on emerging high core-count hardware has many an-
swers. Despite the undisputed success of the monolithic task-
based SMP operating system design, which is utilized by most
traditional OSes (such as Linux, UNIX, Solaris, Windows,
etc.), researchers argue that new operating system models that
deviate from that design are needed [9]. Examples of these
new designs include Barrelfish [2], FOS [3], Corey [1] and
K42 [10]. Corey and K42 question the internal organization of
traditional OSes for SMP, proposing a from-scratch implemen-
tation. Some of the ideas that they propose, like per-core data
structures, have been successfully implemented in traditional
OSes. More recently, Linux, as a representative of the SMP
OS class, has been demonstrated to scale on multicores to
a bounded number of CPUs through the use of expedients
like RCU, Sloppy Counters [11], scalable locks [12], and
BonsaiVM [13]. These efforts have provided hope that the use
of the traditional SMP OS paradigm, to which programmers
are accustomed, does not have to be disrupted in favor of a
vastly different system.

Scalability problems are also evident at low core counts.
Figure 2 reports how the Linux memory subsystem fails to
scale when running a real-world benchmark, NPB IS [14],
because of contention on shared data structures. Much of
the work that addresses the problem of making Linux scale
better on shared memory platforms focuses on how to reduce
contention on shared data structures. However, other problems
also affect OS scalability such as TLB shootdown [3], [1] and
non uniform memory access.

Unlike point-wise research on SMP OS scalability, pre-
vious research on multikernel OSes shows that most of the
scalability problems can be addressed by alterations to the
systems model itself. In this paper we propose extending the
multikernel OS principles from a multiserver-microkernel OS
model to a monolithic task-based OS model. We augment
the multiserver-multikernel OS model with distributed OS
concepts and introduce the replicated-kernel OS design. Our
replicated-kernel OS design presents the exact same program-
ming interface to the user as a traditional SMP OS. In our
replicated-kernel Linux realization, common Linux applica-
tions can be made to run without any modifications. Within
the kernel-layer, however, operating system functionality is
distributed across kernel instances transparently to user-space
applications. Our replicated-kernel OS is a multikernel OS
implemented with traditional SMP OSes as the kernel building
block. Each kernel instance is a self-standing SMP Linux OS

running on a subset of the available cores in a many-core
processor, is given exclusive access to a region of memory, and
interacts with other kernel instances cooperatively. Through
cooperation, the kernel instances together form a single con-
sistent operating environment in which user-space applications
run. Leveraging message passing, many distributed OS features
such as a distributed namespace [15] and distributed virtual
shared memory [16] are implemented.

In this paper we present the replicated-kernel OS model and
tackle the problem of thread migration between kernels in a
replicated-kernel OS. Thread migration enables mulithreaded
applications to run their threads in parallel and on different
kernels in a replicated-kernel OS. We focus on distributed
thread group creation, context migration, address space consis-
tency and synchronization for threads that execute on different
kernels but belong to the same distributed thread group. The
problems of thread migration and address space consistency,
in the context of a distributed OS, have never been considered
together before [17], [16]. Moreover, these problems were not
considered by the multikernel OS research providing remote
thread creation as an alternative to thread migration [2], or
by research considering client-server communication as the
ultimate solution [3]. With this paper we answer the question
of whether it is possible to extend the multikernel model to
monolithic OSes and if such an extension scales as well as
multikernels and SMP OSes on multicore processors. Results
show that it is possible, but scalability is application dependent.
A comparison of Popcorn, Barrelfish and SMP Linux on
selected benchmarks demonstrates that Popcorn is competitive
with Linux, and up to 40% faster. Popcorn is additionally faster
than Barrelfish for two out of three cases, providing speedups
of up to 17x.

We have realized a prototype of this design, called Popcorn
Linux, which runs on SMP multicore x86 machines. We
believe that because this model has been successfully applied
to Linux, it can also be applied to other OSes. Popcorn
is the first in this category that uses an SMP OS as the
base for a multikernel, marrying concepts from distributed
OS literature to feature-rich, well supported and ubiquitous
SMP OSes. By implementing inter-kernel thread migration
in Popcorn Linux, we demonstrate that thread migration can
be achieved seamlessly in a non-SMP OS while continuing
to provide the benefits of the idioms user-space program-
mers have come to enjoy. Popcorn Linux is the result of a
significant re-engineering effort and is publicly available at
http://www.popcornlinux.org.

In Section II we present related works. In Section III we
introduce some basic OS definitions and summarize Linux’s
task and memory management subsystems. In Section IV we
describe the replicated-kernel OS model and we present an
overview of Popcorn Linux. Section V presents the thread
migration, the address space consistency, and the user-space
synchronization mechanisms. Section VI and Section VII
presents the experimental setup and the results of the experi-
ments and related discussion. We conclude in Section VIII.

II. RELATED WORK

OS Clustering [18] is the most similar work to Popcorn
Linux. It strives to investigate a “middle ground” between
the multikernel OS design and a scalable monolithic OS for
emerging high core-count multiprocessors. Like Popcorn, OS
Clustering is implemented within the Linux environment, and

 0

 2

 4

 6

 8

 10

2 8 24 48 64 128 228

T
im

e
s
 s

lo
w

e
r

th
a

n
 1

 t
h

re
a

d

Threads

XeonPhi

Xeon

Fig. 1. Overhead to access a shared
data structure with increasing num-
ber of threads using shared memory
on different processors. Run on Intel
Xeon and Intel Xeon Phi.

1

4

8

12

16

20

24

28

32

0.00E+00 2.00E+09 4.00E+09 6.00E+09 8.00E+09

Other pagevec_lru_move_fn

handle_pte_fault clear_page_c

____pagevec_lru_add_fn __alloc_pages_nodemask

up_read T.1128

page_fault down_read_trylock

Samples

C
P
U
s

Fig. 2. SMP Linux kernel overhead
(NPB IS OpenMP) traced with the
Linux perf utility on the main thread.
Run on AMD Opteron machine pre-
sented in Section VI.

its goal is to provide the familiar POSIX programming inter-
face and shared-memory programming model. However, OS
Clustering makes use of a virtual machine monitor (VMM) to
make multiple kernels coexist on the same multicore hardware,
and coordinate system services among different kernels, e.g.,
address space consistency. In Popcorn there is no VMM.
Following the multikernel OS design we did not add any piece
of software between the hardware and the OS. The risk with
a VMM is that it relies on shared memory variables for inter-
core communications, re-inserting the contention on shared
data structures at another software level. Before OS Clustering,
Hive [19] implemented the idea of partitioning cores of a
multiprocessor to different OS kernels. This work was based
on IRIX UNIX, and was implemented on research hardware.
Each group of cores that loads a single kernel is referred to as a
Cell. Kernels strictly communicate with remote procedure calls
(RPC)s. User-space applications are able to spawn on varying
kernels and exploit hardware shared memory. Popcorn, as well
as Hive, exploits a UNIX-like operating system as the base for
a replicated-kernel OS. However, Popcorn targets commodity
hardware.

Barrelfish [2] introduced the multikernel OS design based
on the microkernel OS model. In this design each multi-
processor core executes a microkernel and its application
stack. Microkernels communicate by message passing, rather
than exploiting the abundant shared memory available on
commodity multiprocessors. This is called a shared-nothing
approach between kernels. The multikernel OS re-applies the
microkernel principle of splitting the kernel, but splits the
microkernel objects between cores. Like Barrelfish, Popcorn
runs multiple instances of the same kernel on a multicore.
However Popcorn is different in that it is based on a monolithic
kernel. Instances communicate strictly via message passing.
FOS [3] is another multikernel OS specifically designed to
run on thousands of cores. It factors operating system func-
tionality into a number of services and focuses on their
spatial subdivision within a thousand-core processor. It applies
distributed system principles to the multikernel, multiserver-
microkernel OS design. Kernel services and applications run
on different cores. Kernel services are replicated throughout
the processor on different cores to allow application processing

cores to make use of services provided by the “closest” OS
service cores. Routing to spatially local service cores is central
to FOS. Task-to-task and kernel-to-kernel communication is
entirely based upon messages. In Popcorn, kernel-to-kernel
communication is also message based, but task-to-task is not
implemented since Popcorn facilitates memory sharing for
user-space components. Kernel services in Popcorn normally
run on the same core as the calling task.

Plan 9 [15] is a distributed OS that introduces a single exe-
cution environment across a network of computers. Sprite [20],
MOSIX [21] and more recently Kerrighed [17], enable a
single execution environment over a network of computers
with process migration. All of them are UNIX-like solutions
– there is a MOSIX port for Linux and Kerrighed is based
on Linux. All of these address a network of computers and
exclusively consider process migration. Popcorn implements
a single execution environment among different kernels on a
single multiprocessor machine allowing for process and thread
migration.

III. BACKGROUND

Linux1 is a UNIX-like operating system that evolved from
an OS for single processor systems to an OS for multipro-
cessors. Because of its open-source nature, and the world-
wide popularity it has gained, it has been the target of many
works that have addressed scalability on multiprocessors [11],
[12], [13]. Linux is a multitasking, monolithic OS based
on shared memory. Both kernel space and user space tasks
communicate through shared memory, and Linux extensively
exploits hardware-provided cache-coherent shared memory.

In this work we refer to tasks in the Linux terminology. A
task is a kernel scheduler entity that is described by a struct
task_struct data structure. A task can be a user-space
thread or a kernel-space thread, kthread. A process in Linux
terminology is a group of threads, called a thread group. In
a Linux thread group, tasks share the same address space:
they share memory, and therefore the same address space
descriptor, struct mm_struct. All kernel threads share
the address space descriptor of the kernel, init_mm. A thread
group’s tasks do not only share the same address space but also
file descriptors, user privileges, namespaces, signals, locking
constructs, etc.

Linux is a task-based (or process model [22]) monolithic
OS. Task identity and attributes (such as its process iden-
tifier, scheduling priority, address space descriptor, etc.) are
maintained when its execution switches between user-space
and kernel-space. However, there is a separate task execution
context, i.e., CPU registers and stack, per privilege level (user
and kernel). The kernel-level task stack is maintained for the
lifetime of a syscall, while the user level stack is maintained for
the lifetime of the task. When the task issues a synchronous
call to the kernel, a kernel execution context is created and
its user context is saved in its struct task_struct. The
user execution context is restored when execution returns to
user-space.

In Linux, tasks are able to migrate between CPUs. This
helps to maximize hardware utilization. Migration is eased by
shared memory. A single address space descriptor is pointed to
by all cores on which the application is running. Cores access
this data structure, synchronized by a lock.

1All references to Linux in this paper pertain to Linux kernel 3.2.14

A. Linux Task Management
Task creation and deletion are managed by the OS, and the

OS scheduler decides when each task is run. The schedulability
of a task depends on the state in which it resides. The task state
can be either running (eligible for execution), interruptible (not
eligible but can be awoken by a signal), uninterruptible (not
eligible and cannot be awoken by signals), stopped or traced
(it is being debugged).

All tasks in Linux belong to a hierarchy. All tasks are
children of some other task except two. The init task is the
parent of all user-space tasks. The kthreadd task is the parent
of all kernel-space tasks. A new task in Linux is created by
forking from the parent task. A fork operation consists of
creating a duplicate of the calling task. Once the new task
is created, it can execute independently of the parent task or
in the same thread group, depending on the options used when
calling fork. A user-space task forks by calling the fork syscall.
Alternatively, a kernel-mode task calls the kernel_thread
function to create a new kernel task. Regardless of user-space
or kernel-space invocation, task creation is handled through
do_fork, which implements the fork operation. When the
caller is a user-space task, the child process begins execution
at the point after the fork syscall was invoked. When the
caller is a kernel-space task, the child begins execution from a
function that is passed to kernel_thread. The do_fork
function clones all of the parent task’s data structures for use
in the child’s newly created task_struct object. The items
that are optionally shared with the parent task include locks
held, file descriptors, signal handlers, its memory map, the
namespaces to which it belongs, its IO, etc. Reference counting
is used to account for these shared objects.

A task exits when it receives a signal to exit, experiences an
error such as a segmentation fault, or when the task invokes
the exit system call. When one of these events occurs, the
kernel responds by invoking the do_exit function from the
task’s context. This function arranges for the removal of kernel
objects associated with the exiting task. Reference counters
associated with the tasks shared objects are decremented and
those objects are destroyed if the count reaches zero.

B. Linux Futex
User-space synchronization mechanisms that exclusively

use shared memory by spinlocking, are not efficient. This is
because a spinlock starves other tasks of valuable processing
time. Therefore the Linux community introduced the futex, a
fast user-kernel space mutex [23]. Futexes perform wait and
wake operations involving the OS in the slow path only. The
OS can then schedule other threads during the wait. When the
thread performs a wait operation, Linux atomically enqueues
it in a per futex queue, which contains all of the waiters for
that futex. When the current futex owner releases it, the next
thread in the queue takes ownership and resumes execution.

C. Linux Memory Management
We refer to an address space as a memory map combined

with that memory’s contents. Linux is a virtual memory OS.
Hardware paging is exploited to allow any process to see
the entire address range (with the exception that user-space
cannot access the kernel-space range). The hardware MMU
translation mechanism issues a page fault when a virtual
address is accessed that does not have a physical address
associated with it. This triggers Linux’s page fault handler,

do_page_fault. The virtual-to-physical address translation
is saved in hierarchical page tables. The processor can point to
one table at the time, which Linux saves in the pgd field of the
currently active mm_struct. When a task switch occurs on a
CPU, the MMU is updated to point to the page table associated
with the new task, changing the active virtual address space.
Each page table entry (PTE), which indexes a single virtual
page, contains information about how that memory can be
used. This is how caching behavior and access permissions
are specified for a given virtual page.

To efficiently exploit memory resources, Linux implements
on-demand paging. When an application maps a new region
of memory into its address space, the physical pages backing
the new virtual memory area are not allocated immediately.
Rather, the kernel creates a record of the fact that it owes
that process memory in a data structure called struct
vm_area_struct (VMA) and enqueues it in the process’s
VMAs list. When the application first accesses that memory it
causes a page fault that triggers the kernel to select a physical
page for the faulting virtual page, and update the page tables
accordingly. To select the physical page, the kernel consults the
list of VMAs for that task. A VMA can span multiple pages
and can either refer to bare memory (anonymous-mapping),
or can be file backed. During the virtual to physical mapping
of a file-backed page, the content is fetched from the file and
written to the selected page in memory. In order to further
optimize the usage of the memory, Linux also implements copy
on write (COW). When a process is forked, writable pages in
the parents address space are shared with the child, but are
write protected. When the child attempts to write to such a
page, a page fault occurs due to the write protection, and that
page is copied to a newly selected page. The virtual to physical
mapping is also updated such that the child’s page now refers
to the new page, the page is marked writable, and the child can
now write to that page. COW pages and zero pages (malloc)
are called special pages.

In Linux, a process’s memory layout can be manipu-
lated through the use of various APIs, including mmap,
munmap, mprotect, and mremap. All of these mod-
ify shared data structures (e.g., struct mm_struct and
struct vm_area_struct). mmap, munmap and remap
allow for adding, removing, modifying an area of memory in
the task’s address space, respectively. mprotect allows for
changing a memory area’s protection flags.

IV. REPLICATED-KERNEL OS
The replicated-kernel OS design merges ideas from both

multikernel OSes and distributed OSes. The replicated-kernel
OS strives to provide a single system image, typical of SMP
and distributed OS, on top of an operating system made up of
multiple kernels. Figure 3 shows this design. On multiproces-
sor hardware, kernels run on a single CPU or on a group of
CPUs, and each kernel instance is given a partition of the hard-
ware resources (e.g., RAM and cores). Kernel instances do not
share memory (they must stay within their memory partition),
but communicate exclusively and explicitly by messages, as
in a multikernel OS. This messaging is used to stitch together
a single-system image to host user applications. The fact that
applications run on a replicated-kernel layer is transparent to
the application, as work is done at the kernel layer to emulate
an interface that matches the traditional Linux environment.
Kernels constituting a replicated-kernel OS are not exact

MSG

Kernel 0 Kernel 1

CPU0 CPU1

Kernel 2

CPU2

SingleSystemImage

MultithreadedApplication

MessagingLayerO
p
e
ra
ti
n
g
Sy
st
e
m

H
ar
d
w
ar
e

SharedMemory

Fig. 3. Replicated-kernel OS design. Hardware resources are partitioned
among kernels. Multithreaded applications transparently run among different
kernels, and therefore different hardware partitions.

replicas of one another. Rather, the kernel state is only partially
replicated: each kernel manages the resources that are allocated
to it. Total replication is unnecessary, and in fact undesirable
from a performance perspective. The overhead of replicating
data structures is not negligible and the replicated-kernel OS
must replicate only what is absolutely necessary while also
maintaining logical consistency across kernel instances. One
example of this concept is the page-tables associated with a
process with threads executing on disparate kernel instances.
The mechanism required to maintain exact and complete
replicas of a process’s page table would be prohibitively high
overhead, without providing any benefit (since not all threads
need the entire address space). In most cases, it is sufficient
to implement a partial replication. In the future we envision
this model being applied not only to symmetric multiprocessor
platforms but also to emerging heterogeneous platforms, where
cache coherency among processors is an option.

A. Popcorn Linux
Popcorn Linux implements the replicated-kernel OS de-

sign [24]. The replicated-kernel OS mechanisms deployed in
Popcorn are completely transparent to user applications. They
give an application the illusion of running in an SMP Linux
environment.

1) Boot and Resource Partitioning: Popcorn Linux boots
one Linux kernel per core or per group of cores on mul-
ticore Intel x86 machines. Popcorn required a non trivial
re-engineering of the Linux kernel and allows for multiple
Linux kernel instances to share hardware resources of a single
machine without virtualization. Kernels are peers. Each kernel
instance has full control of a set of CPUs, a part of physical
memory, and a subset of the available peripherals. Kernels have
a unique identifier, and boot sequentially. When a kernel joins
the replicated-kernel it broadcasts information describing its
resources to all other kernels. This allows those resources to
be shown in /dev and /proc on all kernels, if the resources
are devices, CPU or memory. This functionality is part of the
single system image. The kernel identifier that is chosen for a
kernel instance is the smallest logical ID of the CPUs assigned
to that kernel.

2) Messaging: Linux is not a message-passing OS, though
task-to-task messaging is implicitly possible using shared
memory (POSIX message queues). However, there is no con-
cept of message-passing in kernel-space. Because a replicated-
kernel OS relies on message passing as its fundamental coor-

dination building block, it was necessary to extend Linux with
a messaging capability. Popcorn introduced an inter-kernel and
intra-kernel task-to-task kernel-space messaging layer.

Messages in Popcorn Linux are comprised of structured
data that is recovered intact by the recipient. Message passing
is implemented on top of shared memory, and is one of
the only places Popcorn must break the no-sharing invariant.
Notification of message availability is accomplished through
the use of interprocessor interrupts (IPI). As in [2], we combine
IPI with polling to reduce IPI overhead.

To solve the problem of task addressing, each kernel
instance is given a non-overlapping range of TIDs to assign
to tasks upon creation. When a task migrates to a different
kernel instance, its TID migrates with it, and the task’s home
kernel instance is notified of the migration. To find the current
location of a task for message addressing, the target task’s TID
is first consulted to determine that task’s home kernel instance.
The home kernel instance is then asked for the task’s current
kernel of execution.

3) Single-System Image: On top of kernel space lives a
single operating environment for user-space applications. All
of the separate kernel instances work together to present an
interface that behaves exactly like Linux. Applications are
unable to tell the difference between an SMP Linux and
Popcorn Linux system. Because of this, Popcorn is able to
leverage the extensive available library of robust and mature
Linux applications. The single-system image allows for not
only static resource enumeration (e.g., /proc/cpuinfo enu-
meration of all the CPUs in the system) but also for dynamic
usage of resources (e.g., enumeration of the current running
tasks in the system). All kernels are aware of all tasks that
exist in the system and what they are doing. This allows
any kernel to send signals to any task on any other kernel.
Inter-process communication is possible between processes
and threads that exist on different kernels as well. Popcorn
facilitates the use of shared memory, semaphores, message
queues, mutexes and futexes across kernel-instance boundaries.
Popcorn Linux works to support those constructs regardless of
where they are originally instantiated or used. In Popcorn each
kernel owns a partition of the available machine’s resources.
In a multicore machine, resource partitioning can be changed
at runtime. This allows for flexibility in handling resource-
specific operations. For example, an application that needs
to access the CDROM can either be migrated to the kernel
that owns that device or it can request that kernel control of
that resource be transferred to its current kernel. Unlike in a
distributed setup, the device driver can be migrated. Popcorn
also allows proxying of device access (e.g., APIC device [24]).

Popcorn does not currently implement a distributed sched-
uler. Each kernel schedules its own tasks independently.

V. THREAD MIGRATION

A thread migration involves the coordination of two kernel
instances to transfer a thread and its state from one instance
to the other. The thread that is migrated ceases to execute
on the originating kernel instance, and resumes execution on
the receiving one. Thread migration targets user-space tasks
exclusively, i.e., kernel threads do not migrate. Once migration
occurs, work must be done to support its continued execution
on the new kernel instance. This work includes the migration of
resources that the thread has already allocated. These resource

migrations can occur either at the time of the initial migration
(e.g., register values) or on-demand (e.g., page table entries).
Additionally, replicated data structures must be maintained as
they evolve, because many of these resources (e.g., page tables)
are shared between multiple threads through replication and
available simultaneously on different kernel instances for use.
A number of distributed algorithms, some custom and some
well established, were employed to replicate and maintain con-
sistent shared data structures across kernel instance boundaries.
Some of those mechanisms will be discussed below, including
address space migration and futexes. Initial thread migration
and thread life-cycle maintenance will also be described.

We propose a thread migration mechanism in which a
thread’s resources are migrated on demand. However, a bulk
migration implementation has also been developed for com-
pleteness, and can be enabled at compile-time.
A. Migration Mechanism

The thread migration mechanism implemented in Popcorn
Linux supports explicit application-controlled migration only.
The application invokes the POSIX sched_setaffinity
syscall to request a migration. When a thread migrates away
from a kernel instance, the data structures that represent it
on the originating kernel instance are not destroyed. Rather,
the thread on that kernel instance remains dormant and is
considered a shadow task. Shadow tasks serve a number of
purposes. They are custodians of the resources allocated by
the thread (such as memory) while it executed on that kernel.
Those resources can be migrated or otherwise used at some
later point. The presence of shadow tasks associated with their
resources keeps reference counting resource deallocation from
occurring in many cases. Another use of a shadow task is to
remove the necessity to recreate the thread’s data structure in
the event that the thread migrates back to that kernel instance.
When that occurs, the thread can simply re-claim its shadow
task, instantly gaining access to all of the resources that the
shadow task was maintaining on its behalf.

1) Distributed Thread Group: When the first thread of a
process leaves a kernel, the thread group is mutated into a
distributed thread group (dtgroup), and a distributed thread
group identifier is added in the struct task_struct.
This distributed thread group identifier is used to track which
threads are members of a given distributed thread group.
All thread migrations are initiated by the originating kernel
instance. A subset of the thread state data is communicated
to the receiving kernel instance, which includes user-space
memory layout, execution context (i.e., user-space CPU reg-
ister values), task identifiers, user credentials, scheduling and
priority information, and the distributed thread group identifier.
The user-space memory layout information that is transferred
includes the address ranges of the stack, heap, environment
variables, program arguments, and data segments. When a
thread is migrated to a kernel on which it has never executed
before, the receiving kernel does not have an existing shadow
task to host the received thread. In that case, a new task is
created to host the migrated thread’s state. In order to create the
new task, a new kernel thread is first created. That new kernel
thread is then evolved into a user-space thread, and the thread
state that was transferred is installed in it. If the receiving
kernel instance hosts other threads in the migrating thread’s
distributed thread group, the newly migrated thread must be
placed in the same local thread group as those other threads.

Because threads that belong to the same thread group share
many OS resources, including their signal handlers, memory
map, and file descriptors, the newly migrated thread is set up
to share them. If there are no existing thread group members
on the receiving kernel instance but previously there were,
a dangling memory mapping struct mm_struct is still
present on that kernel and will be installed in the thread. This is
discussed in more detail later. When a thread is migrated back
to a kernel instance on which it has previously executed, the
hosting thread already exists in the form of a shadow task. That
shadow task is also already part of the correct thread group,
and shares signals, signal handlers, and open file descriptors
with the rest of its thread group. These objects do not need to
be altered in this case but the thread’s current state information,
which was sent from the originating kernel instance, must be
installed into the shadow task.

2) Exit: A thread can migrate any number of times, and
can therefore have a shadow task on any kernel instance of
the replicated-kernel OS in addition to the kernel on which is
currently running. When that thread exits, every shadow tasks
must also exit. Popcorn notifies all kernels when a thread of a
distributed thread group has exited. When shadow tasks receive
an exit message, they execute do_exit.

When threads of a distributed thread group exit, they do
not always free their resources, because it is possible that these
resources will be needed again when another thread migrates
to that kernel instance. Resources that are reference counted
have their reference counts artificially increased by one, and
maintained in a list for safe keeping. These resources must be
deallocated when the thread group exits. To accomplish this,
when a thread exits, it checks to see if it was the last thread
(including threads executing on remote kernel instances) to
exit within the distributed thread group. If the exiting thread
is the last, it sends a message to all remote kernel instances
indicating that the thread group is closing. At that point, all
kernel instances can free all resources for that distributed
thread group. Another reason for maintaining resources while
no threads are executing is that some resources, such as the
thread group’s memory map (held in a struct mm_struct
data structure), are partially replicated. It is therefore unknown
if a given resource is the only one with some critical in-
formation, such as mappings in the case of a memory map.
Deallocating that data would risk removing the only copy of
that information, and removes the possibility that it may be
resolved at some point in the future should a remote thread
group member need it. It is therefore necessary to hold all
resources associated with a distributed thread group until all
threads in that thread group exit. It is important to note that
resources being reserved still undergo consistency maintenance
to ensure that those resources are up to date with respect to
their replicated counterparts on remote kernel instances.
B. Address Space Migration Mechanism

A process’ address space is contained in a series of
sparse data structures. Because kernel instances do not share
kernel memory, those data structures are replicated per-kernel.
Popcorn implements partial replication, through a protocol
designed to maintain consistency between replicas (there is
previous work, such as [1], in this space). The address space
of a process can grow, shrink and be modified based on the
memory requirements of the process. As this address space
change happens, Popcorn must take action to ensure that local

changes are reflected globally to keep the replicated address
space consistent across kernel instances. This does not imply
that it is necessary that all replicated memory maps associated
with the same distributed thread group on all involved kernel
instances be exactly the same, because not all thread group
members need the entire address space at all times. Rather
each kernel instance needs to provide enough of the address
space to the threads that it is hosting to support their execution,
while also ensuring that invalid memory mappings are never
available. Additionally, it is necessary that analogous mappings
on different kernel instances match exactly. Two mappings
are consistent with one another if and only if the following
attributes match: virtual page, physical page, protection status,
backing source (anonymous or file), and special page status
(COW, zero, normal).

1) On-Demand Migration: With on-demand address-space
migration, an empty memory map is created for a thread when
it migrates to a kernel which none of its distributed thread
group members has visited before. Once the thread executes it
begins to cause page faults because the memory map was not
populated. Popcorn alters Linux’s memory handling subsystem
to catch page faults and adds a step at the beginning of the
fault handler to attempt to retrieve mappings from remote
distributed thread group members. This ensures that mappings
are migrated only as they are needed by an executing thread.

When a page fault occurs, a query is sent to all kernel
instances specifying the distributed thread group identity, and
the faulting virtual address (dtgroup query mm). The remote
kernel instances that receive this query search for any threads
that they may be currently hosting that are members of the
faulting thread’s distributed thread group. If one is found, its
struct mm_struct is used to resolve the mapping. If for
any reason after searching existing threads and saved memory
maps, none is found, a response is sent that indicates that
no mapping was found on that kernel instance. Otherwise, all
information about the found mapping is sent as a response.

Special treatment is applied in cases where the resolved
mapping is COW. When a mapping request results in a
mapping that is a COW page, the responding kernel instance
first breaks the COW by allocating a new page and copying
the original content, then retries the mapping search before
responding to the requesting kernel instance. This is necessary
in order to ensure address space consistency. If the COW
mapping was instead retrieved without first breaking the COW
page, the newly installed mapping on the requesting kernel
instance would also be mapped COW. If code on both kernel
instances then breaks the COW, two different physical ad-
dresses would be assigned to the same virtual address, which
breaks consistency. It was decided to pay the performance
penalty associated with breaking the COW prior to migration
to avoid this situation.

Because the address space is partially replicated, responses
gathered from kernels may have different content. Kernel
instances can either indicate that no mapping exists; a valid
struct vm_area_struct exists, but no physical page has
been allocated; or a complete and specific virtual-to-physical
page mapping exists. If a message is received with a complete
virtual-to-physical page mapping, it is given precedence. If
no such message is received, messages indicating that the
virtual memory area is valid are given precedence. If no such
messages arrive, then it must be the case that no remote

VAR: vaddr (in), taskid (in), VMA (out), PTE (out)
groupid← thread group(taskid)
dtgroup lock((groupid, vaddr))
RESP ← dtgroup query mm((groupid, vaddr))
(vma, pte)← find map(RESP)
if vma 6= null then

if pte 6= null then
VMA← vma; PTE ← pte
dtgroup unlock((groupid, vaddr)); exit

else
VMA← vma

end if
end if
RET ← call(SMP Linux faultHandler)
dtgroup unlock((groupid, vaddr))
if RET is error then

call(SMP Linux segFaultHandler)
end if

Fig. 4. Popcorn Linux’s page fault handler algorithm. The page fault handler
queries the distributed thread group. To protect against multiple distributed
page faults on the same address range a distributed lock is taken.

mapping exists for the faulting address.
If no remote mapping is found, the SMP Linux fault

handling mechanism is invoked. If instead the struct
vm_area_struct exists, but no physical page has been
allocated to it, then an identical struct vm_area_struct
is installed in the faulting thread’s memory map, and the
SMP Linux fault handler is invoked. In that case, the SMP
Linux fault handler will map physical memory to the faulting
address. If instead, both a struct vm_area_struct and
a physical page mapping are reported to exist, an identical
mapping is installed in the faulting thread’s memory map.
Unlike the other cases, both a struct vm_area_struct
and struct pte are now assured to exist, so the SMP Linux
fault mechanism does not need to be invoked. If neither a
local mapping nor a remote mapping is found, the Linux fault
handler will ensure that a segmentation fault is reported.

2) Concurrent Mappings: On-demand address space mi-
gration creates a number of concurrency challenges due to
mapping retrieval interleavings between kernel instances. Sup-
pose two threads in the same distributed thread group running
in two kernel instances fault on the same virtual address at
the same time and no kernel has any mapping for that virtual
address. In that case, neither of those kernel instances will
receive any responses that include a mapping. Each will then
default to the normal Linux fault-handling mechanism, wherein
a new physical page is assigned to the faulting virtual page.
But those physical addresses will be different. This results in a
distributed address space in which there are two physical pages
mapped to the same virtual page, which is an inconsistent state.
This example is representative of a class of similar consistency
failures that Popcorn addresses. In order to remove this class
of failures, Popcorn implements distributed mutual exclusion
to allow consistent concurrent mapping operations of a page
or group of pages (the same communication cost applies in
both cases).

We implement a variation of Lamport’s distributed mutual
exclusion algorithm in which a Lamport queue is lazily-created
for every distributed thread group/faulting virtual page pair
(dtgroup lock, dtgroup unlock) in Figure 4). This ensures
that Popcorn can concurrently resolve mappings for threads

in different thread groups, or threads that are in the same
distributed thread group but are faulting on different virtual
pages. In order to minimize the memory requirements for
this mechanism, queues are created dynamically as they are
needed, and are destroyed when they are no longer needed.
The mutual exclusion algorithm requires that all nodes share
a common notion of time. A memory counter that is shared
between kernel instances was created to serve as a logical time-
stamp. A single shared page is used to host a counter which is
fetched and incremented each time a time-stamp is required.

3) Operations on a Group of Pages: Certain types of
address space modifications require a more coarse grain lock
than the per-page Lamport lock used for mapping retrieval
operations. To address this need, a single lock was created
for each thread group per kernel. When a munmap, mremap,
mprotect, or mmap operation is executed against a region
of memory, such a lock is secured. The addition of this lock
removes the overhead of a naive implementation which would
require creating a Lamport queue for every virtual page in
the address space. We call this lock a heavy lock. A heavy
lock behaves exactly the same as one of the fine-grained per-
page locks, with a slight variation. When an entry is added
into the heavy queue, the same entry is also added into
every existing fine-grained per-page queue, in order of time-
stamp. When an entry is removed from the heavy queue, the
corresponding heavy entry is removed from every fine-grained
per-page queue. Additionally, when a new per-page queue is
created, one entry is added into that new queue for every entry
in the heavy queue, also ordered by time-stamp. A heavy lock
is not acquired until its corresponding entry is at the front
of every queue for the process, including the heavy queue
and all per-page queues. This is conceptually equivalent to
creating a queue for every page in the user address space.
This eliminates the overhead that would be necessary to
create queues for every virtual page in the address space.
This mechanism coexists with and interacts appropriately with
the per-page distributed mutual exclusion implementation for
mapping retrieval. The exact mechanism implemented for each
address space modification event and its implementation is
covered in detail in [25].

4) Prefetching: Mapping prefetch was implemented to
reduce the number of mapping retrieval messages that must
be circulated to maintain the address space. The message
that carries mapping responses was extended to include a
configurable number of prefetch slots. Each slot includes the
start and end address of a contiguous region of virtual-to-
physical mappings. By describing mappings in this way, large
quantities of mappings can be described in a compressed
format. Popcorn tries to fit as many mappings into each
response as there are slots in the prefetch message. If there are
not enough mappings in the struct vm_area_struct
to fill the slots, the remaining slots are left empty, without
additional overhead.
C. Inter-Thread Synchronization

The glibc library relies heavily on futex. Futex was ported
to Popcorn to support applications that use glibc. We extend
futex to Popcorn by adopting a client/server model. The server
kernel, which is the kernel that the lock’s physical page belongs
to, maintains the futex queue. This enforces serialization. All
other kernels are clients and must send a message to the
server to be enqueued when the application calls wait. wake

operations are similarly directed to the server kernel. That
kernel receives the request and wakes up the first task in
the queue, notifying it with a message. Upon receiving this
message, the new lock owner resumes execution.

VI. EXPERIMENTAL SETUP

All results were collected on a multiprocessor x86 64bit,
32-core server machine, assembled with two AMD Opteron
6274 CPUs running at 2.2GHz with 128 GB of RAM. We
compare SMP Linux 3.2.14, Popcorn Linux, and Barrelfish
(Mercurial changeset 2249:4211588bbdff). Popcorn is based
on Linux version 3.2.14, adding 31k lines of code (LOC)
to the kernel and 5k LOC of user-space tools used for
testing and data gathering. Linux was tested with a number of
cores equal to the maximum number of threads specified with
OMP_SCHED_AFFINITY. Furthermore, the kernel command
line options apic=off noacpi were added to ease data
collection. Popcorn Linux was tested with a one core per kernel
configuration for a direct comparison with Barrelfish. In all
tests power management was turned off to drive the processors
to the maximum performance.

Influenced by Clements et al. [26], we focused on compute
and memory intensive benchmarks.Compute/memory intensive
applications from the SNU NPB [14] (IS, CG, and FT),
Parboil [27] (LUD), and Rodinia [28] (BFS) benchmark suites
were run. These applications were chosen to exhibit diversity
in memory access patterns and thread interaction. The bench-
mark implementations that were used were originally written
for OpenMP. They were run with a stripped down version of
the OpenMP library, called pomp, which is based on a stripped
down version of pthread, called cthread. The pomp library is
an adaptation of Barrelfish’s bomp, ensuring a fair comparison
between OSes.Where specified, the benchmarks were run with
glibc/nptl as fully fledged libc pthread libraries.

VII. RESULTS

In this section we show the validity of the chosen approach,
the cost of thread migration, and the cost of distributed
address space consistency maintenance. All results presented
are averages of ten runs.

A microbenchmark that quantifies the overhead of a thread
migration was also run. The microbenchmark creates a thread
and migrates it to a different kernel and back. In Linux,
migrating a thread to a different core is fast, being performed
on the order of 9µs. In Popcorn the first migration requires up
to 2ms but a migration back costs only 120µs (which is still
slower than Linux), though it was found that thread migration
cost does not necessarily drive workload overhead.

a) NPB IS, FT, CG: We selected NPB’s IS, FT, and
CG applications to compare Popcorn with SMP Linux and
Barrelfish. Barrelfish’s software distribution includes the class
A version of these benchmarks. The class of the benchmark
represents the input data size. Class A is fairly small, and
highlights system overheads over computational time.

The IS profile is depicted in Figure 5(a). As evident
in the figure, the benchmark has scalability issues. Popcorn
outperforms competing OSes. Linux is up to 68% slower than
Popcorn when using 8 threads, while Barrelfish is up to 17
times slower than Popcorn when using 4 threads. However,
beyond 32 cores Linux is slower than Popcorn. This is due to
the increasingly significant overhead of Popcorn’s messaging
layer. A complete analysis of the memory behavior of IS

can be found in [25]. Threads in IS have disjoint memory
maps. In Linux there is a bottleneck in the memory subsystem
characterized by an overhead that is proportional to the core
count, which slows the kernel-space execution in IS. The same
bottleneck does not exist in Popcorn due to the fact that the
replicated-kernel OS capitalizes on disjoint memory accesses
in IS, removing contention and allowing for faster execution.

The FT profile is shown in Figure 5(b). In this workload,
Popcorn is comparable to Linux. At 8 cores Popcorn is up to
10% faster than Linux, but Popcorn is up to 30% slower than
Linux when using 28 cores. Barrelfish is up to twice as slow
as Popcorn when using a 12 thread configuration. We traced
the FT benchmark in Linux, and discovered that the kernel
time is dominated by overhead in the memory subsystem. This
time increases with the number of threads. This overhead is
again mitigated by Popcorn but the overhead of the distributed
protocol and our messaging begins to degrade performance
after 16 cores. Unlike the IS benchmark, the FT benchmark
fetches many existing mappings from other kernels, indicating
that threads in FT have overlapping memory working sets.

The CG behavior is reported in Figure 5(c). Popcorn
significantly under-performs compared to both SMP Linux and
Barrelfish. Popcorn is up to 25 times slower than Linux on
28 cores, and up to 6 times slower than Barrelfish on 16
cores. Barrelfish is the fastest OS up to 8 cores, in which it is
60% faster than Linux. However, after 12 cores Linux scales
better than any other solution. Tracing reveals that there are no
scaling issues in the CG execution on SMP Linux. Time spent
in the kernel is constant as the number of threads increases.
The memory access pattern in CG is asymmetric, as the main
thread shares a piece of memory with every worker thread. In
Popcorn, this causes the first kernel to become a performance
bottleneck because it is the only one that allocates memory
and dispatches mappings to other kernels. Another contributing
factor to Popcorn’s poor performance is the fact that CG
performs five thread migrations for every kernel instance that
is used beyond the first kernel instance. The migration cost is
significant in this case. This also negatively impacts Barrelfish
after 12 cores.

Why this difference between Popcorn and Barrelfish?
According to [2], Barrelfish does not implement on-demand
paging. Instead, all memory is allocated at load time. This is a
significant difference with Popcorn, and explains Barrelfish’s
better performance on CG, in which Popcorn is overwhelmed
by memory map retrieval traffic. Further analysis shows that
Barrelfish was slower than Popcorn in FT and IS due to
different services running on each core, for example, for inter-
core communication in the gang scheduler.

b) BFS and LUD: Rodinia BFS and Parboil LUD do
not have Barrelfish ports. Those workloads were run on Pop-
corn Linux and SMP Linux only. Linux outperforms Popcorn
on the BFS benchmark, where Popcorn is up to 15 times slower
than Linux; see Figure 5(d). The BFS benchmark was made to
run with the 1M W input file. While this input file is the largest
shipped with the Rodinia distribution, the benchmark runtime
is very short. The performance gains that Popcorn makes
over SMP Linux on other workloads are due to the removal
of lock contention during accesses to shared data structures.
The extremely short duration of the BFS workload negatively
impacts Popcorn’s performance results, because Popcorn is not
given time to compensate for its migration overheads through

 0.1

 1

 10

 100

1 2 4 8 12 16 20 24 28 32

G
ti
c
k
s

Threads

(a) NPB IS

 5

 10

 15

 20

 25

 30

 35

1 2 4 8 12 16 20 24 28 32

G
ti
c
k
s

Threads

(b) NPB FT

 0.1

 1

 10

 100

1 2 4 8 12 16 20 24 28 32

G
ti
c
k
s

Threads

(c) NPB CG

 0.1

 1

 10

1 2 4 8 12 16 20 24 28 32

G
ti
c
k
s

Threads

(d) Rodinia BFS

 0

 40

 80

 120

 160

 200

1 2 4 8 12 16 20 24 28 32

G
ti
c
k
s

Threads

(e) Parboil LUD

Fig. 5. Execution time of each benchmark on SMP Linux, Barrelfish and Popcorn varying the number of threads. Lower is faster.

reduction of lock contention. This benchmark performs twelve
thread migrations for every kernel instance, which contributes
to the overhead seen on Popcorn. The analyzed memory
behavior of BFS shows a similar access pattern to CG but
with a much higher level of locality (see below).

The LUD results are shown in Figure 5(e). Popcorn is up to
27% faster than Linux on 12 cores. As the core count increases,
this performance benefit decreases. For the case of 32 cores,
Popcorn is slower than Linux by 63%. Our analysis shows that
the overhead of the messaging layer is the primary contributor
to this slow down. Further analysis of the SMP Linux results
reveals that kernel overhead increases with the number of
threads. This increase is not solely related to the memory
subsystem. The same overhead is not found in Popcorn.
A. Prefetch

The effect of mapping prefetch is shown in Fig-
ures 6(a), 6(b), 6(c), 6(d), 6(e) for IS, FT, CG, BFS, and
LUD, respectively. Prefetch exploits data locality to reduce
the number of messages in the system. Benchmarks with a
locality access pattern similar to FT, BFS, and LUD greatly
benefit from prefetch. BFS execution time improves over the
one depicted in 5(d) up to 39% at high core-counts. The benefit
is more significant when using 4 prefetch slots than 8. This
is due to processing time spent acquiring mappings, installing
mappings on the receiving kernel, and more time spent trans-
porting the mapping contents between kernel instances. In FT,
increasing the number of prefetch slots improves the execution
time up to 13% at high core-counts. Prefetching is not always
beneficial. For example in IS, the execution time is negatively
impacted consistently at any core count by the prefetching
mechanism by as much as 5%.
B. Tailored Consistency

An application specific address space consistency protocol
was implemented for the NPB benchmarks. Figure 7 shows
the profiles. Knowledge gained through profiling was applied
to implement the protocol, reducing the number of messages
exchanged. Results show that the new protocol, called Popcorn
Lazy, improves performance when compared to Linux up to
54% at 18 cores, and over Popcorn implementation up to 42%
at 28 cores. This version is always faster than Popcorn, for all
NPB benchmarks.
C. Futex

As discussed above, glibc makes extensive use of futex.
However, our replicated-kernel OS implementation of futex,

 1

1 2 4 8 10 1216 20 24 2832

G
ti
c
k
s

Threads

Popcorn
Linux

Popcorn Lazy

Fig. 7. Comparison of SMP Linux,
Popcorn, and Popcorn with Tailored
Consistency protocol on NPB IS.

 1

1 2 4 8 10 1216 20 24 2832

G
ti
c
k
s

Threads

Popcorn
Linux

Popcorn Futex

Fig. 8. Comparison of SMP Linux,
Popcorn, and Popcorn with futex on
NPB IS.

in Popcorn, does not provide better results than spinlocking
(cthread). This is shown in Figure 8. The Figure shows the
NPB IS experiment compiled with glibc/nptl, i.e., the POSIX
threads library. Popcorn with futex is up to 57% slower than
Popcorn without futex support, and up to 54% slower then
SMP Linux at 32 cores. However, until 12 threads, Popcorn
with futex is faster than SMP Linux (up to 20% at 8 cores).
We believe that a distributed protocol will not provide a faster
futex implementation than the one that is in place. Indeed
an alternative futex design, including modifications to glibc,
should be introduced to Popcorn. Futex as it currently exists
does not scale to a replicated-kernel design, as it is designed
specifically as an optimization for an SMP OS.

VIII. CONCLUSION

This work contributes the design of thread migration in
a replicated-kernel OS, its implementation in Popcorn Linux,
and an evaluation on selected benchmarks. The thread mi-
gration mechanisms investigated include the initial thread
migration, and the maintenance of address space consistency.
We show that the same design principles applied to the
multikernel OS [2] can be applied to a monolithic OS adapted
to the replicated-kernel OS model, while achieving similar
scalability benefits. To make a multiple-kernel system run as
Linux we extended the same system interface introducing inter-
kernel migration instead of remote thread creation. Popcorn is
shown to be faster then Barrelfish in most benchmarks and

8 Prefetch 4 Prefetch

32
30
28
26
24
22
20
18
16
14
12
10
8
6
4
2
1

-6 -4 -2 0 2 4

Percentage Improvement

T
h

re
a
d
s

(a) NPB IS

32
30
28
26
24
22
20
18
16
14
12
10
8
6
4
2
1

-15 -10 -5 0 5 10 15

Percentage Improvement

T
h

re
a
d
s

(b) NPB FT

32
30
28
26
24
22
20
18
16
14
12
10
8
6
4
2
1

-5 -4 -3 -2 -1 0 1 2 3 4

Percentage Improvement

T
h

re
a
d
s

(c) NPB CG

32
30
28
26
24
22
20
18
16
14
12
10
8
6
4
2
1

-20 -10 0 10 20 30 40 50

Percentage Improvement

T
h

re
a
d
s

(d) Rodinia BFS

32
30
28
26
24
22
20
18
16
14
12
10
8
6
4
2
1

-10 -5 0 5 10 15 20

Percentage Improvement

T
h

re
a
d
s

(e) Parboild LUD

Fig. 6. Execution time improvement on Popcorn with 4 and 8 prefetch slots over 1 slot varying the number of threads.

comparable to or better than Linux. In fact, Linux is up to
68% slower than Popcorn in the IS experiment. However,
our study shows that the messaging layer acts as a primary
bottleneck in the Popcorn implementation, e.g., slowing down
thread migration, and considerably dampers scalability. We
believe that hardware message passing will yield a more
favorable scalability outcome. It was also found that scalability
is dependent on application memory access patterns. Thus, we
conclude that there may not be a catch-all solution that results
in universally improved performance in a replicated-kernel OS
design. Rather, application specific or dynamically determined
policies may need to be developed to optimize performance
for distributed actions.

ACKNOWLEDGMENT

The authors thank the anonymous reviewers, Rauchfuss
Holm, and Simon Peter for their valuable comments, and the
Barrelfish team for their support. Popcorn Linux’s messaging
layer was originally written by Ben Shelton.

REFERENCES

[1] S. Boyd-Wickizer, H. Chen, R. Chen, Y. Mao, F. Kaashoek, R. Morris,
A. Pesterev, L. Stein, M. Wu, Y. Dai, Y. Zhang, and Z. Zhang, “Corey:
an operating system for many cores,” ser. OSDI’08, 2008.

[2] A. Baumann, P. Barham, P.-E. Dagand, T. Harris, R. Isaacs, S. Peter,
T. Roscoe, A. Schüpbach, and A. Singhania, “The multikernel: A new
os architecture for scalable multicore systems,” ser. SOSP ’09, 2009.

[3] D. Wentzlaff and A. Agarwal, “Factored operating systems (fos): the
case for a scalable operating system for multicores,” SIGOPS Oper.
Syst. Rev., vol. 43, no. 2, pp. 76–85, 2009.

[4] I. Singh, A. Shriraman, W. Fung, M. O’Connor, and T. Aamodt, “Cache
coherence for gpu architectures,” Micro, IEEE, vol. 34, no. 3, May 2014.

[5] G. Kurian, J. E. Miller, J. Psota, J. Eastep, J. Liu, J. Michel, L. C.
Kimerling, and A. Agarwal, “Atac: A 1000-core cache-coherent pro-
cessor with on-chip optical network,” ser. PACT ’10, 2010.

[6] H. Esmaeilzadeh, E. Blem, R. S. Amant, K. Sankaralingam, and
D. Burger, “Power challenges may end the multicore era,” Commun.
ACM, vol. 56, no. 2, Feb. 2013.

[7] Tilera Corporation, http://www.tilera.com/products/platforms.
[8] Intel Corporation, http://www.intel.com/content/www/us/en/processors/

xeon/xeon-phi-detail.html.
[9] D. A. Holland and M. I. Seltzer, “Multicore OSes: Looking forward

from 1991, Er, 2011,” ser. HotOS’13, 2011.
[10] R. W. Wisniewski, D. da Silva, M. Auslander, O. Krieger, M. Ostrowski,

and B. Rosenburg, “K42: lessons for the OS community,” SIGOPS Oper.
Syst. Rev., vol. 42, no. 1, Jan. 2008.

[11] S. Boyd-Wickizer, A. T. Clements, Y. Mao, A. Pesterev, M. F. Kaashoek,
R. Morris, and N. Zeldovich, “An analysis of Linux scalability to many
cores,” ser. OSDI’10, 2010.

[12] S. Boyd-Wickizer, M. F. Kaashoek, R. Morris, and N. Zeldovich, “Non-
scalable locks are dangerous,” ser. OLS ’12, July 2012.

[13] A. T. Clements, M. F. Kaashoek, and N. Zeldovich, “Scalable address
spaces using rcu balanced trees,” ser. ASPLOS XVII, 2012.

[14] D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L. Carter,
L. Dagum, R. A. Fatoohi, P. O. Frederickson, T. A. Lasinski, R. S.
Schreiber, H. D. Simon, V. Venkatakrishnan, and S. K. Weeratunga,
“The NAS parallel benchmarks summary and preliminary results,” in
Supercomputing ’91, 1991.

[15] R. Pike, D. Presotto, K. Thompson, and H. Trickey, “Plan 9 from bell
labs,” in UKUUG Conference, 1990, pp. 1–9.

[16] K. Li and P. Hudak, “Memory coherence in shared virtual memory
systems,” ACM Trans. Comput. Syst., vol. 7, no. 4, Nov. 1989.

[17] C. Morin, P. Gallard, R. Lottiaux, and G. Vallee, “Towards an efficient
single system image cluster operating system,” ser. 5th AAPP, Oct 2002.

[18] X. Song, H. Chen, R. Chen, Y. Wang, and B. Zang, “A case for scaling
applications to many-core with os clustering,” ser. EuroSys ’11, 2011.

[19] J. Chapin, M. Rosenblum, S. Devine, T. Lahiri, D. Teodosiu, and
A. Gupta, “Hive: fault containment for shared-memory multiproces-
sors,” ser. SOSP ’95, 1995.

[20] J. Ousterhout, A. Cherenson, F. Douglis, M. Nelson, and B. Welch,
“The sprite network operating system,” Computer, vol. 21, no. 2, pp.
23–36, Feb 1988.

[21] S. McClure and R. Wheeler, “MOSIX: How linux clusters solve real
world problems,” ser. ATC ’00, 2000.

[22] R. P. Draves, B. N. Bershad, R. F. Rashid, and R. W. Dean, “Using
continuations to implement thread management and communication in
operating systems,” ser. SOSP ’91, 1991.

[23] H. Franke, R. Russell, and M. Kirkwood, “Fuss, Futexes and Furwocks:
Fast Userlevel Locking in Linux,” ser. OLS ’02, 2002.

[24] A. Barbalace, B. Ravindran, and D. Katz, “Popcorn: a replicated-kernel
os based on linux,” ser. OLS ’14, 2014.

[25] D. Katz, “Popcorn Linux: Cross Kernel Process and Thread Migration
in a Linux-Based Multikernel,” Virginia Tech, Tech. Rep., Sept. 2014.

[26] A. T. Clements, M. F. Kaashoek, N. Zeldovich, R. T. Morris, and
E. Kohler, “The scalable commutativity rule: Designing scalable soft-
ware for multicore processors,” ser. SOSP ’13, 2013.

[27] J. A. Stratton, C. Rodrigrues, I.-J. Sung, N. Obeid, L. Chang, G. Liu, and
W.-M. W. Hwu, “Parboil: A revised benchmark suite for scientific and
commercial throughput computing,” University of Illinois at Urbana-
Champaign, Tech. Rep., Mar. 2012.

[28] S. Che, M. Boyer, J. Meng, D. Tarjan, J. Sheaffer, S.-H. Lee, and
K. Skadron, “Rodinia: A benchmark suite for heterogeneous comput-
ing,” ser. IISWC 2009, Oct 2009.

