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Abstract—Increasing the computing performance within a
single-machine form factor is becoming increasingly difficult
due to the complexities in scaling processor interconnects and
coherence protocols. On the other hand, converting existing ap-
plications to run on multiple nodes requires a significant effort
to rewrite application logic in distributed programming models
and adapt the code to the underlying network characteristics.

This paper presents DEX, an operating system-level ap-
proach to extend the execution boundary of existing applica-
tions over multiple machines. DEX allows the threads in a
process to be relocated and distributed dynamically through
a simple function call. DEX makes it trivial for developers to
convert any application to be distributed over multiple nodes
and for applications to transparently utilize disaggregated re-
sources in a rack-scale system with minimal effort. Evaluation
results using a running prototype and eight real applications
showed promising results – six out of the eight scaled beyond
the single-machine performance on DEX1.

Keywords-Thread migration; distributed execution; dis-
tributed memory; RDMA;

I. INTRODUCTION

Computer systems have undergone a fundamental shift
to process exponentially increasing volumes of data despite
the limitations in current semiconductor technologies. Data
volume is projected to grow by 40% every year for the
next decade [1], implying that more computational power is
necessary in order to process such large volumes of data in
a reasonable amount of time. Processor designers, however,
are increasingly facing fundamental limitations in making
faster processors under reasonable power budgets owing to
the slowdown of Moore’s Law, the end of Dennard Scaling,
and the Dark Silicon effect. Thus, processor technologies
are quickly moving toward many-core, heterogeneous, and
specialized-core architectures.

1This is the author-submitted, peer-reviewed, and accepted manuscript
posted on this website according to IEEE Author Posting Policy. The
definitive Version of Record is published in the Proceedings of the 40th IEEE
International Conference on Distributed Computing Systems (ICDCS’20),
Singapore, November 29 - December 1, 2020. Copyright held by IEEE.

Meanwhile, many memory-intensive applications such
as in-memory database systems and in-memory graph
processing engines have emerged to provide the ability
to produce analytic results within a short latency and to
process an enormous amount of data efficiently. These types
of applications achieve the best performance on scale-up
machines, which have extreme processing power and memory
capacity in a single-machine form factor. However, building
such a high-performance scale-up machine is expensive and
becoming more difficult in practice due to the complexities
of scalable interconnects and coherence protocols between
CPU cores [2], [3].

Thus, we seek to explore the following question: Can we
boost applications beyond the single-machine performance
while keeping the convenient programming models for
a single machine? We argue that confining the process
execution boundary within a single machine limits appli-
cation performance, as normal applications (in opposite to
distributed applications) are inherently written to utilize only
local system resources. Previous approaches to extending
the execution boundary of a process to multiple nodes
(i.e., utilizing remote system resources) require rewriting
applications according to a distributed programming model
or execution paradigm. Converting existing applications,
however, requires significant modification, making it costly
and oftentimes infeasible in practice.

This paper proposes a simple yet effective operating
system-level approach to remove the limitations of the
single-node execution boundary. DEX, short for “Distributed
process eXecution environment” is an operating system
extension that enables a process to freely migrate threads on
multiple machines. Any thread in a process can dynamically
relocate itself to any remote node at any time by simply
calling a function. Although each thread might be on a
different node, threads can run as if they were on the
same node; the distributed threads can transparently access
consistent memory through regular load and store instructions
as is. Moreover, the threads can synchronize with each



other without modifying existing synchronization primitives,
regardless of the threads’ locations. These capabilities make it
trivial for developers to convert existing applications written
for a single machine into ones that extend their execution
boundaries over multiple machines, allowing the applications
to easily leverage the system resources dispersed in a rack-
scale cluster and to perform beyond the performance of a
single machine.

To realize this idea, we implemented a typical page-
level memory consistency protocol in the Linux kernel.
However, it is challenging to implement such a memory
consistency protocol in the performance-critical and highly
concurrent virtual memory subsystem of a contemporary
operating system. In addition, using a page-level approach
inevitably incurs false page sharing, in which a page
containing data objects for different threads bounces between
nodes, impairing application performance. We present our
design and implementation of the protocol and propose
application optimization techniques to mitigate false page
sharing in our system. We also present the challenges to
leverage emerging networking technologies (i.e., RDMA over
InfiniBand) to minimize the memory consistency protocol
overhead. The evaluation result using eight real applications
on a running prototype indicates that our approach is practical
and effective; we easily achieved a performance increase of
up to 10.06× from seven applications on an eight-node rack-
scale configuration.

The rest of this paper is organized as follows. Section II
describes our motivation to build DEX. Section III describes
the design principles and decisions for DEX and the im-
plementation challenges and details. Section IV discusses
a number of techniques to reduce the memory interference
between nodes, known as false page sharing. Section V
evaluates the applicability and performance of DEX using
the prototype and real applications. Section VI reviews related
work and compares them with the approach used by DEX.
Section VII concludes the paper.

II. MOTIVATION

We have been looking for a way to scale application
performance to multiple machines while maintaining the con-
venience of developing applications for a single machine. Our
initial idea was to provide a single system image over multiple
machines so that applications could utilize system resources
regardless of the locations of the resources. Obviously, such
an approach is not new and has been intensively discussed
in the literature, as explained in Section VI. However, the
majority of these systems, including traditional distributed
shared memory (DSM) systems, nowadays do not have any
mindshare nor are they widely deployed in practice despite
their promising features; to the best of the authors’ knowledge
at the time of this writing, there is no OS-level DSM system
that keeps supporting contemporary OSes such as Linux.

Many single-system image (SSI) system projects have been
discontinued or have been inactive for years [4], [5].

We attribute the failure to the inherently poor programma-
bility and performance of the systems. These systems
have been proposing memory models, execution semantics,
and/or programming models, which are oftentimes heavily
customized for their assumptions and settings. To write an
application using these systems, developers should thoroughly
understand the complicated models and programming con-
straints, and adapting existing applications usually involves
drastic modification. Such a high effort and cost are not
acceptable for developers and industry in practice, and
therefore these systems eventually lost attention [6].

Why did these systems propose such complicated se-
mantics and memory models to begin with? We argue that
the main reason for these complicated approaches is long
network latencies. During the 1980s and 1990s, accessing
data over the network took several orders of magnitude longer
than accessing local data [7]. Thus, these works proposed
relaxed memory consistency models and lock/release-oriented
semantics in the hope of avoiding significant latency [8]–
[14]. However, fast-evolving network technologies have been
closing the gap between nodes, and modern interconnect
technologies such as InfiniBand, RoCE, Omni-Path, and
GenZ provide extremely high bandwidth (e.g., 400 Gbps)
and low latency (e.g., 300 ns) [15] that approach those of
inter-socket networks such as Intel UPI and AMD Infinity
Fabric. In this sense, the boundaries between a local machine
and remote nodes are blurring, and we argue that it is the
right moment to realign previous approaches with the modern
context.

In addition to the fast-evolving network technologies,
the advancement of software architectures should also be
considered. Multi-threaded applications exploiting high-core
counts are ubiquitous these days. Developers should consider
data placement and sharing to maximize the performance of
an application even in a single machine setup. For example,
non-uniform memory access (NUMA) architectures introduce
bimodal memory access times, and, therefore, data location
should be considered for optimally placing computation.
Reckless use of locking mechanisms can easily destroy the
scalability of an application [16], [17]. On the basis of this
observation, we conclude that modern performance-critical
applications are already likely to be designed for scalability
by considering data placement and sharing. If this is the case,
these scale-ready applications may easily leverage extended
execution boundaries once a system enables the feature.

III. DESIGN AND IMPLEMENTATION OF DEX

The primary objective of DEX is to transparently extend
the execution boundary of a process over multiple nodes so
that applications can easily utilize the dispersed resources in
a rack-scale system. To this end, DEX focuses on enabling
threads to be migrated across machine boundaries and
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Figure 1: With DEX, the threads of an application can be freely migrated to any machine at any time ( 1 and 2 ; §III-A).
A page-based read-replicate write-invalidate memory consistency protocol provides sequential memory consistency to the
distributed threads ( 3 and 4 ; §III-B and §III-C). DEX is tightly integrated with the virtual memory subsystem inside the
operating system kernel ( 5 ; §III-D), allowing applications to access consistent memory via regular load and store instructions.
DEX utilizes a custom messaging layer to effectively exchange data between nodes using InfiniBand VERB and RDMA
(§III-E).

to provide a consistent execution environment to these
distributed threads. Figure 1 illustrates an example of how an
application executes using DEX and how DEX implements
the required features. From the perspective of process A,
four threads are running on a single node. However, the
process is actually distributed across three nodes (nodes 0,
1, and 2) through operations 1 and 2 . These threads can
be relocated again to any node at any time. DEX provides
consistent memory to distributed threads through operations
3 , 4 , and 5 .

A. Migrating Execution Contexts

To migrate a thread across a machine boundary, we need to
obtain the execution context that describes the current state of
the thread at the original node. Fortunately, modern operating
systems maintain such an execution context to preserve the
thread state across system calls and context switches. In par-
ticular, Linux uses struct pt regs and struct mm struct
for preserving registers and virtual address states, respectively,
across system calls and context switches. We leverage these
mechanisms to obtain the execution context.

DEX transfers the execution context between nodes via
a messaging layer (see §III-E for details). We will refer to
the node where the threads for a process are created as the
origin of the threads. All threads in a process have the same
origin, which is the node where the process is created for
the first time. We will refer to the node onto which a thread

is migrated as the remote. For example, in Figure 1, node 1
is the origin of the threads, node 0 is the remote for thread 0,
and node 2 is the remote for threads 2 and 3. After sending
the execution context to the remote, the original thread at
the origin waits for incoming requests from its paired thread
at the remote.

At the remote node, DEX reconstructs the original thread
from the received execution context. It first creates a remote
thread initialized using the received context. The remote
thread is then put into the run queue of the job scheduler
so that it can be scheduled eventually. Note that DEX only
transfers the minimal execution context that is essential to
start executing the thread at the remote; the virtual memory
data of the application is not transferred at this stage.

Remote threads can ask their corresponding original
threads to work at the origin on their behalf. For example,
a remote thread may require virtual memory area (VMA)
information from the origin to replicate its address space
as shown in 3 in Figure 1. When the remote thread sends
a work request to the origin, the request is dispatched to
the original thread that was put to sleep after the migration
or handling the last work request. The original thread is
awaken, processes the request in the context of the original
thread, and returns the result. The original thread is put to
sleep again, waiting for the next request from its peer remote
thread.



This work delegation design minimizes changes to the
kernel yet transparently supports stateful OS features in the
distributed environment. Practically, it is infeasible to re-
implement all OS features (such as futexes and file I/O) to
support a distributed execution environment. Instead, DEX
reuses existing implementations through the work delegation.
When a remote thread requires a stateful kernel feature, the
request is handed to the original thread, performed at the
origin, and only its result is transferred back to the remote
thread. From the perspective of the kernel, this is identical to
handling the request from a local thread. In this way, DEX
can transparently provide many OS features to distributed
threads without significant kernel modification. For example,
DEX supports futexes (fast user-space mutex) which is the
core mechanism for implementing thread synchronization
primitives on Linux [18]. When a remote thread calls a
thread synchronization operation, the operation is effectively
translated to one or more futex system calls. The futex
operations are forwarded to their original threads and handled
at the origin through the original futex implementation. Thus,
applications can use thread synchronization primitives based
on the futex as is, regardless of their locations.

Despite pairing threads for work delegation, DEX still
requires an additional thread at the remote for processing
node-wide operations. Consider the case when a thread at
the origin shrinks a VMA. The update should be applied to
all remote threads in order to prevent illegal memory access
operations. However, it is unclear from the perspective of the
origin which remote thread should update the VMA on each
remote node. For this reason, DEX creates a thread called the
remote worker for each distributed process in each remote
node. Node-wide operations such as VMA modification and
original process exit are delivered to the remote worker and
processed in the context of the remote worker.

Migrated execution can also be brought back to the origin.
This backward migration is almost the same as the forward-
migration; DEX collects the execution context of the remote
thread at the remote, transfers the context to the origin,
updates the context of the original thread with the up-to-
date context, and resumes execution of the original thread.
The remote thread exits upon completion of the backward
migration. The resumed original thread may continue on to
the origin or be migrated to any node again.

In the current implementation, both forward and backward
migration are initiated by a system call. We believe that it
can be easily extended so that OS schedulers or user-space
libraries automatically initiate the migration. When a thread in
a process is migrated to a node for the first time, DEX starts
the remote worker with the given address space information,
and forks a remote thread from the remote worker with
CLONE THREAD, allowing them to share the address space.
Subsequent migration requests from the same process can
be handled by simply forking a thread from the remote
worker. In this way, DEX deals with multiple and repeated

migrations with low overhead, which are commonly found
in applications with multiple parallel execution regions.

B. Memory Consistency Protocol

Because threads share the same virtual address space, all
threads must have the same view of memory even though
they are distributed across remote nodes. There have been
extensive studies on providing a consistent memory space to
distributed execution contexts in DSM systems. However, as
discussed in Section II, the vast majority focus on utilizing
remote memory through custom memory management APIs
to explicitly grab, lock, and release shared memory regions,
which complicates application development and debugging
significantly. Thus, we did not adopt a relaxed memory
consistency model even though it is a popular, and maybe an
effective, optimization method in traditional DSM systems.
Instead, we fell back to the sequential memory consistency
model in which distributed threads can transparently access
shared memory with conventional load/store instructions.

To provide up-to-date data to distributed threads, DEX
tracks the location of up-to-date pages by maintaining
ownership of pages. Overall, it is similar to the multi-reader
single-writer memory model in a DSM context [19]. Initially,
the origin exclusively owns all pages of the process and
remote nodes must contact the origin to obtain page data
and page ownership. Each page can be owned by one or
more nodes, and the ownership is tracked on a per-page and
per-node basis at the origin. A node can continue accessing
a page without contacting the origin as long as it has proper
ownership of the page. If the request is for read access,
the origin grants a common ownership to the remote so
that both the origin and the remote can access the page
simultaneously. When a remote requests a page for writing,
the origin grants an exclusive ownership to it by revoking
ownership from other nodes (including itself) by sending
ownership revocation requests. To minimize network traffic,
the origin simply grants ownership without transferring the
page data when the remote already has the up-to-date one.
Information such as the list of owners and page state is
maintained in a per-process radix tree which indexes the
information by the virtual page address.

C. Handling Concurrent Faults

The memory consistency protocol is triggered through the
page fault handler in the kernel. DEX sets up page table
entries (PTEs) so that access operations to pages not owned
by the current node are trapped in the page fault handler. It
checks whether the fault should be handled by the memory
consistency protocol, and if so, the protocol handles the fault
by resolving the ownership and acquiring page data from
other nodes.

Modern operating systems including Linux rely on the page
fault mechanism to provide various virtual memory features



such as paging, copy-on-write, page sharing, kernel same-
page merging (KSM) de-duplication, zero-page mapping,
and page caching. Moreover, threads in a process access the
address space concurrently, meaning that several page faults
can be triggered simultaneously. For these reasons, page fault
handling lies on the performance-critical path and operating
systems are highly optimized for handling concurrent faults
efficiently. To this end, the Linux kernel handles page faults
optimistically and concurrently; when a fault happens, the
kernel first prepares for the page by allocating physical
memory, reading data from storage, or receiving data over
the network, and only later updates the corresponding PTE.
Page preparation can be performed concurrently, whereas the
PTE update is serialized with a spinlock for correctness. If
the PTE value is changed by other threads during the page
preparation, the prepared page is simply discarded.

This optimistic and concurrent fault handling complicates
ownership tracking in DEX. In the memory consistency
protocol, page ownership must be updated during page
preparation. However, it is possible that multiple threads in a
node request the same page simultaneously. This can initiate
multiple protocol requests, even though all per-thread requests
are for the same page. This becomes more complicated if a
thread must discard the fetched page owing to a changed PTE
or to conflicts between threads; to safely discard the fetched
page or resolve the conflicts, the kernel should maintain per-
PTE metadata to identify which thread changed the PTE for
whatever reason. This can slow down the page fault handler,
which is not acceptable.

To effectively tame this inherent concurrency in page fault
handling, we employed a leader-follower model in the page
fault handler. DEX maintains a per-process hash table to
track all ongoing fault handling. The thread that triggers
the first fault for a page becomes the leader for the page
fault handling of the page. Subsequent threads requiring the
same page with the same access type (i.e., read or write)
become the followers of the leader. The leader performs
the operations to prepare the page; it brings the page from
the other nodes by sending requests and invalidating. After
handling the fault, the leader updates the corresponding PTE
as well. Before the leader resumes its execution, it wakes
up any followers. Followers do not process the fault again;
instead, they simply resume execution with the updated PTE.
In this way, DEX coalesces similar types of page faults and
handles them with a single page fault handling.

D. On-Demand VMA Synchronization

The VM subsystem in Linux manages memory at two
levels: at the virtual memory area (i.e., VMA) and at the
page table entry (PTE). VMAs maintain the permissions,
backing file, offset in the file, etc., for an address space
range. On the other hand, PTEs maintain the current per-
page status. Because VMA information must be shared by
threads in the process, DEX requires a mechanism similar to

the memory consistency protocol explained in the previous
section. Threads, however, usually use disjointed VMAs
(e.g., thread-local storage), making it unnecessary (even
prohibitive) to fully synchronize VMAs across all threads. For
these reasons, we deploy on-demand VMA synchronization.

During the execution context migration, no VMA infor-
mation is transferred to the remote. When a remote thread
sees a missing VMA (i.e., the address being accessed does
not belong to any VMA it has), it contacts the origin to
check whether the access is legitimate. If the access is to a
legitimate address range and there is a VMA corresponding
to the address, it implies the remote node has stale VMA
information. In this case, the origin replies with the up-to-
date information about the VMA, and the remote updates its
VMA accordingly. If the access is invalid, the origin sends
an error code to the remote which terminates the remote
threads as if it performed an illegal memory access.

All VMA manipulations are performed at the origin by
using the work delegation explained in §III-A. The origin only
broadcasts updated VMA information when the operation
shrinks a VMA region (e.g., munmap) or downgrades (e.g.,
mprotect) its access permissions; permissive operations (e.g.,
mmap) are not eagerly synchronized but are updated through
the on-demand VMA synchronization mechanism.

E. Inter-node Communication

The communication layer is performance critical in
distributed systems. Moreover, the communication layer
should be flexible enough to support highly-concurrent and
complicated communication usage in the implementation
of DEX. To this end, we designed and implemented an
inter-node messaging system over InfiniBand to leverage
the high bandwidth and low latency of modern interconnect
technologies.

At system boot-up time, nodes read in a configuration to
establish a communication channel for each node pair under
the InfiniBand Reliable Connection (RC) mode. Messages
are routed to destination nodes through the corresponding
connections, and message handlers on the nodes process the
incoming messages.

Unlike in traditional sockets, I/O buffers for send and
receive over InfiniBand must be explicitly mapped to a
DMA-capable address space range so that an InfiniBand
host controller adaptor (HCA) can perform DMA from/to the
buffers. In addition, to perform remote DMA (RDMA), we
must also associate the buffer with an RDMA memory region
with a remote key, with which a remote node can perform
RDMA from/to the buffer. Previous studies showed that DMA
mapping and RDMA region association are costly [20]–[22];
therefore, so our design aims to minimize these operations.

In DEX, messages are bimodal in size; control messages
are small, ranging up to tens of bytes, whereas page data is
transferred in 4 KB messages. Owing to the high overhead
of RDMA region association and the RDMA completion



control path [21], transferring small messages over RDMA is
too costly for DEX. Instead, DEX transfers small messages
using InfiniBand VERB. To avoid the costly DMA mapping,
we employ a send buffer pool in the messaging layer. Each
connection has its own dedicated send buffer pool, which
is configured during the initial setup. Internally, the pool is
composed of chunks of physically contiguous pages that are
mapped to DMA-capable address space ranges, and the pool
manages the chunks as a ring buffer. A context (e.g., a thread
trapped to the page fault handler) can allocate a buffer from
the pool and compose an outbound message in the buffer.
Because the buffer is DMA-ready, the message can be sent
without the DMA mapping. The buffer is reclaimed by the
pool when the send is completed.

Similarly, DEX maintains receive buffer pools for inbound
messages. Each connection sets up a receive buffer pool
during the initial setup phase by posting receive work requests
built with DMA-mapped memory regions. An InfiniBand
HCA writes the incoming data to the buffer through DMA,
and notifies the host of the event through a completion queue.
After processing the incoming message event, DEX recycles
the DMA-ready buffer by reinitializing the receive work
request with the buffer and posting the request again. In
this way, DEX eliminates both DMA mapping and memory
copies for small messages.

DEX leverages RDMA for transferring large messages
such as page data. Unlike in domain-specific RDMA
work [20]–[24], DEX must support arbitrary user applications.
Thus, it is impossible to predetermine the virtual memory
footprint and lifetime of the processes, which dynamically
change over time and are different from each other. In
addition, it is practically infeasible to keep the virtual memory
address space of an application contiguous in physical
memory. Thus, we rule out static approaches for RDMA
memory region association which are commonly used by
these domain-specific systems. On the other hand, dynamic
RDMA region association is so costly that it can offset the
benefit of RDMA.

Based on these observations, we devise a hybrid approach
using both RDMA and memory copying. Each connection
has an RDMA sink, which is set up during the connection
initialization. The RDMA sink is composed of chunks of
physically contiguous pages, and the chunks are associated
with an RDMA memory region during the setup. To perform
RDMA, DEX allocates a buffer from the RDMA sink and
asks its peer to perform RDMA to the location. When the peer
notifies an RDMA completion, the data in the RDMA sink is
copied to its final destination (i.e., a page in the application
virtual memory) and released. Even though this approach
involves one memory copy, it is faster than performing
RDMA association for each page in the memory consistency
protocol.

IV. ADAPTING APPLICATIONS

As we will show in Section V, many applications are scale-
ready, so they can easily scale beyond the single machine
performance on DEX. However, some applications do not
scale unmodified since DEX provides memory consistency
at a page granularity. This can lead to (1) contended
pages, where conflicting accesses (read/write and write/write)
to program objects on the same page cause cross-node
interference, and (2) memory consistency protocol overheads,
where multiple-node read, single-node write patterns cause
the consistency protocol to flood the network with ownership
invalidation messages. DEX provides a set of tools that
help the developer identify and remove these bottlenecks
in applications. Because DEX provides a shared memory
programming model, developers can spend minimal effort
when profiling by using the tools provided by DEX and by
tweaking applications to achieve scalability on a cluster as
opposed to other programming models such as MPI, which
may require overhauling entire applications.

A. Profiling Page Faults

First, applications were profiled to determine which
components caused the most cross-node traffic. DEX provides
a profiling tool that collects a page fault trace containing a
six-tuple for each observed page fault requiring the memory
consistency protocol in DEX. Each tuple contains the system
time when the page fault occurred, the node ID where the
fault occurred, the task ID for the faulting task, the type of the
fault (i.e., read/write/invalidate), the memory address of the
faulting instruction, the memory address that caused the fault,
and a user-specified identifier for tagging individual pieces
of the application. DEX can be configured to collect this
information for each fault and to hand it over to user-space
via ftrace.

For profiling, applications were built with debugging
information and run using DEX’s profiling tool. After
the execution, the profiling tool post-processes the trace
in conjunction with the binary to provide a rich set of
analyses, such as identifying the program objects or source
code locations that caused the most page faults, page fault
frequency over time, per-thread memory access patterns,
etc. Using these traces, we could identify the sources of
cross-node traffic and apply a set of small yet effective
optimizations for better scalability.

Application data can be generally broken down into
two categories: (1) global data used by all threads, which
usually consists of arrays or custom data structures (e.g.,
graphs), and (2) per-node data, which includes per-thread
data for all threads on a node and other data structures
(e.g., filtered graphs in NUMA-aware applications [16] or
logically partitioned heaps). Approaches for optimizing data
access patterns vary for each category. For per-node data,
the profiling tool helps identify data from multiple nodes
placed on the same page; developers can then easily separate



this data onto different pages to avoid contention. For global
data, the tool helps developers find sub-optimal data access
patterns that can then be optimized for scaling out. In addition,
developers can express these patterns to the DEX system
through data access hints to reduce protocol overheads.

B. Reducing False Page Sharing

There are several sources of false sharing common in many
shared-memory applications that are easy to identify and
remove using the page fault trace. The following approaches
help remove false sharing caused by co-locating per-node
data from multiple nodes onto the same page.
Stack. Each application thread is allocated its own local
runtime stack for execution. Oftentimes, when forking
child threads, however, the parent thread will pass data to
children using its own stack, e.g., data pointers passed to
pthread create or OpenMP shared variables. This causes
false sharing when the child threads read/write the shared
program objects and the parent thread writes to its own stack
at other locations on the same page. To eliminate this type
of false sharing, we identified and relocated problematic
stack data into global memory or pushed the data down to
the thread-local storage of the child thread. For OpenMP
specifically, we modified the compiler to automatically
offload shared variables to global memory for the duration
of parallel regions.
Global Data and Heap. Global program state, including
statically and dynamically allocated data, can cause false
sharing if two program objects with conflicting access
types are allocated to the same page. This problem is
easy to rectify: the user can simply add padding and align
objects to page boundaries using the aligned declaration
attributes for static data and allocating dynamic data using
posix memalign. However, blindly applying these fixes to
all program objects could cause significant memory bloat.
Moving every declared program object to a separate page
would cause the binaries to balloon in size, and dynamically
allocating every object in its own page would cause extreme
internal memory fragmentation and out-of-memory errors
for programs that allocate large numbers of small objects.
Even worse, moving all objects to separate pages could
cause performance degradation by reducing spatial locality
and polluting caches. Instead of applying page alignment to
every program object, we identified and selectively aligned
per-node objects that caused the most interference according
to the page fault trace.

C. Optimizing Global Memory

The profiling tool also helps developers optimize global
memory usage for previously unseen applications by iden-
tifying source code locations where the most number of
faults occur. Oftentimes two bottlenecking locations surface
together – one location will incur a large number of write
faults, while another incurs a correlated number of read/write

faults. Another source of contention is globally-shared flags;
some applications continue iterating while some condition
holds (e.g., graph computation continues until no node data
changed). Rather than blindly checking and setting the flag,
it is often better to store each thread’s flag updates locally
and perform a global flag update at the end of an iteration.
The tool helps identify data access patterns in the application
which cause the bottleneck and correct them. Because of
DEX’s programmability advantages, developers can easily
and progressively optimize these patterns for scaling out.

V. EVALUATION

This section evaluates various aspects of DEX to answer
the following questions:

• How much development effort is required to adapt
existing applications to utilize DEX? [§V-A]

• How do the converted applications perform? What
factors affect their performance? [§V-B]

• How can we optimize applications for DEX using our
page fault profiling tool? [§V-C]

• How efficient are the key components of DEX in terms
of performance and scalability? [§V-D]

Implementation. We implemented DEX in the Linux
kernel version 4.4.137. The implementation consisted of
9,581 lines of added/modified kernel code, 474 lines of
user-space migration library, and 1,094 lines of optimization
toolchain. The full source code of DEX is publicly available
as open-source as the part of the Popcorn Linux project:
http://popcornlinux.org/.
Experimental setup. We evaluated DEX on eight servers,
each of which was equipped with an Intel Xeon Silver 4110
processor running at 2.10 GHz and with 48 GB of RAM.
The processor has eight cores with two-way hyper-threading
(16 hardware threads in total). The nodes are connected over
InfiniBand through a Mellanox ConnectX-4 VPI HCA and
a Mellanox SX6012 switch, which supports bandwidths of
up to 56 Gbps. The nodes mount a Network File System
(NFS) share from a network-attached storage (NAS) so
they can share an identical file system image, especially
for executables and input data.
Benchmark applications. We evaluated DEX using eight
applications in three different categories: (1) shared-memory
data processing applications, (2) scientific applications, and
(3) modern NUMA-aware applications.

We implemented two in-house data processing algorithms,
namely, string match (GRP) and k-means clustering (KMN).
String match looks up user-specified key strings from a
file and counts their occurrences. The input file is divided
into partitions, and each thread counts the occurrences of
keys from the given partition in parallel. We used 8 GB
of Wikipedia text and four key strings, each of which was
7 to 10 bytes. K-means clustering finds 100 centers of 5
million points in a three-dimensional space by repeating the
computation until the vertices settle into the clusters.



Application Multithread Changed LoC

Impl. Initial Optimized

Simple GRP Pthread +2 -0 +21 -12
KMN Pthread +2 -0 +6 -3

NPB Common - +1 -1
BT OpenMP (15)∗ +38 -4 +5 -2
EP OpenMP (1)∗ +2 -0 +2 -1
FT OpenMP (7)∗ +28 -7 +1 -1

PARSEC BLK Pthread +2 -0 -

Polymer Common +18 -18 +86 -67
BFS Pthread +6 -2 +10 -4
BP Pthread +12 -11 +13 -10

Table I: Complexity to apply DEX to existing applications.
∗The number in parenthesis indicates the number of converted
OpenMP parallel regions.

For scientific applications, we picked BT, EP, and FT
from the SNU NPB Benchmark Suite v3.3 [25], a C port
of the NASA Parallel Benchmarks used for evaluating
parallel system performance. We used the OpenMP multi-
threaded implementation as our baseline and ran with the
class C workload, the large problem size. We also used
blackscholes (BLK) from the PARSEC Benchmark Suite
v3.0 [26]. We used the gcc pthread implementation among
a number of multi-threaded implementation variants, and
evaluated the ‘native’ workload, the largest workload the
benchmark suite provides.

For modern NUMA-aware applications, we picked two
graph processing applications from Polymer [16], namely,
breadth-first search (BFS) and belief propagation (BP).
Polymer is a graph analytic engine optimized for NUMA
architectures; the applications are examples written using
the framework. We ran the applications using a synthesized
graph composed of 67 million vertices and 50 million edges,
which is the maximum number of edges that fit in system
memory. The graph was generated with the R-MAT generator
in the Ligra framework [27] using the same configuration
that used for the Graph500 benchmark (α = 0.57, β = 0.19)
for realistic graphs. The applications were set to iterate up
to 64 iterations.

A. Adapting Applications to DEX

First, we analyzed the applicability of DEX. Initially,
all applications were written for a single machine. We
converted the applications to span over multiple nodes
by distributing their worker threads. Each worker thread
relocates itself to an assigned node at the beginning of the
multi-threaded parallel execution region and returns to the
origin at the end of the region. Applying this modification
was straightforward, especially for those using pthreads
(all but the NPB applications); we simply inserted thread
migration function calls once the multi-threaded regions were
identified. Each modification required only a few lines of

code2. Specifically, as shown in Table I, we could convert
GRP, KMN, and BLK by adding only one line each for the
forward and the backward migration.

The NPB applications using OpenMP were converted
similarly. We triggered thread migration at the beginning and
end of the OpenMP parallel regions. EP has one OpenMP
parallel region, and, therefore, we converted it by inserting
two lines of code, one each for the forward and the backward
migration. BT and FT have 15 and 7 OpenMP parallel regions,
respectively, and we converted each region using the same
way. This requires multiple code changes as shown in Table I.
However, it requires only 2.5 to 4 lines of code per OpenMP
region on average and can be done routinely, which we
considered to be a negligible effort.

Because Polymer’s applications are based on pthreads, we
can apply the same strategy as that applied to GRP and
KMN, i.e., by calling the migration functions in a worker
thread. However, they require more lines than those required
by other applications to replace libNUMA-specific functions
(e.g., numa alloc local()) with their equivalent standard
library functions (e.g., malloc()). Despite the additional
modifications, each Polymer application can be converted
with up to 12 lines of modification, most of which can be
done with a simple search and replace operation.

Converting eight applications only required adding 110
lines and removing 42 lines of code in total, which is
approximately 1.1% of the total lines of application source
code. Because identifying the line to insert the migration
function call only requires analyzing the execution flow
rather than understanding every detail of the applications,
the modification took only 3 days for one of the authors
who had no prior knowledge about the applications. From
this experience, we can conclude that DEX provides great
programmability, allowing any application to easily extend
its execution boundary with marginal effort.

B. Application Performance

We first analyzed the inherent scalability of the applications
using a high-performance scale-up machine, which was
equipped with eight Intel Xeon Platinum 8180 processors
(224 cores in total). The times to complete application
execution were inversely proportional to the number of
threads for all applications. This result implies that the
applications can inherently scale out as long as the system
can provide more resources.

To evaluate the performance of the converted applications,
we measured the time to complete application execution
while increasing the number of nodes from 1 to 8. We
configured the applications to use 8×n threads on an n-node
configuration (i.e., 64 threads for an 8-node configuration).
We used 8 threads instead of 16 to avoid any side effects

2To focus on the actual burden of use for developers, we do not count
the lines when including the API header files or setting up the evaluation
environment such as the number of threads and nodes.
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Figure 2: Scalability of applications on DEX. The x-axis is the number of nodes and the y-axis is the performance trend
normalized to the original, unmodified application running on a single machine.

of hyper-threading. The symbol key ‘Initial’ in Figure 2
shows the performance trend normalized to the unmodified
application on a single node using 8 threads. Every point is an
average of four runs; their standard deviation was negligible,
and is therefore not shown.

We can clearly classify the applications into two categories:
those whose performance scales with respect to the number of
threads and those that do not. EP, BLK, and BP scaled linearly
beyond the single-machine performance as we increased
the number of nodes, with a speedup of up to a 10.06×.
This implies that, while some applications are inherently
scalable, but confined execution boundaries within a single
machine have limited their performance. Once DEX removes
this limitation, these scale-ready applications can utilize the
resources of other machines immediately, achieving scalable
performance. It is worth noting that BP scaled super-linearly,
as its performance increased by 3.84× with the increase in
nodes from 1 to 2. Further investigation showed that the
CPUs were underutilized on a single-machine configuration
and that the sum of CPU utilization across multiple nodes
was larger than that of a single machine. This indicates that
the performance of BP was not limited by the cores but by
other system resources. We suspect that the limiting resource
is memory channel bandwidth as BP continues accessing a
large amount of memory without locality. Nevertheless, this
supports our claim that DEX enables applications to utilize
resources in other nodes in the rack-scale cluster.

GRP, KMN, BT, FT, and BFS performed worse on multiple
nodes even with more processing resources than on a single
node. Because these applications scale well in a single
machine, we can infer that there is a performance bottleneck
when they run on DEX. We attribute the performance
degradation to the memory consistency protocol overhead
between nodes. Note that, at this point, we have only

converted applications to span over multiple nodes without
any optimizations to mitigate false page sharing. Thus,
these types of applications, which are not scale-out ready,
continually shuffle pages between nodes with little execution
progress. Moreover, we blindly inserted the migration triggers
and set destinations without any in-depth analysis, making
these applications run under suboptimal conditions.

C. Optimizing Applications for DEX

We applied the optimization techniques described in
Section IV to our initial porting. We used our page fault
profiling tool to identify contended access operations and
other memory access patterns that could vastly degrade the
performance in DEX. We found that our page fault profiling
tool is quite effective, and, therefore, one author spent 4
days gathering profiling data and optimizing all applications.
As shown in Table I, only 246 lines of code were modified
in total across all applications. Overall, optimization does
not take much effort, and we can conclude that adapting
applications to DEX requires only marginal effort, similarly
to converting the application to be distributed using DEX.

Figure 2 shows a comparison of the performance between
our initial and optimized versions of the applications. Per-
formance was normalized to single machine performance
without any modification. Although the modifications were
small, we observed drastic changes in application scalability;
optimizing GRP and KMN allowed them to scale, BT
achieved enhanced performance vs. its performance on
a single machine, and EP, BFS, and BP improved their
performance further. Using DEX, six out of eight applications
scaled beyond a single machine. This indicates that many
applications are almost scale-ready and that DEX allows
developers to easily identify and remove bottlenecks to
enhance the application to scale out to multiple nodes.



Forward migration Backward migration
Origin→Remote Total Remote→Origin Total

1st 12.1 800.0 812.1 6.4 18.3 24.7
2nd 6.6 230.0 236.6 8.4 17.4 25.8

Table II: Migration latency in microseconds

To detail our optimization, we had GRP and KMN place all
thread arguments in an array contained on a single page, and
allocate per-thread buffers from the heap without considering
the locations of other thread buffers. We separated these
thread arguments and buffers by replacing the calls to malloc
with posix memalign for page-aligned heap allocations.
Additionally, the original implementations interfere with
global variables — GRP updates a global variable when it
finds an occurrence of a key, and KMN updates a global flag
and the clusters for points. We changed the implementation
so that each thread stages its updates locally before updating
the shared global variables once after the computation.

Our tool identified that NPB applications continually read
global parameters, especially variables containing for-loop
ranges of parallel regions. These variables are intensively
accessed and are read-only after the initial setup but are
co-located with other global variables that are frequently
updated. We relocated these read-only global variables onto
separate pages so that they are replicated across nodes and not
invalidated by nearby writes. Moreover, in BT, child threads
in a number of parallel regions read their parent’s stack
variables. To prevent interference on the parent’s stack, we
explicitly passed these variables to child threads as arguments.

In Polymer, the framework allocates a number of data
objects as arrays, which incur false sharing when different
threads access each type of data object. We packed these data
objects into a per-node data structure to avoid false sharing
and isolate them within a node. In addition, we aligned the
thread arguments and graph data to page boundaries in order
to minimize cross-node references.

Some applications showed degraded performance as the
number of nodes is increased greatly. We attribute the
degradation to the small working data size per core. Each core
will be assigned with a partition of the graph, and the partition
will get smaller as we put more cores. The smaller the graph
partition given to a core is, the faster the core will finish
the computation; however, at some point, distributing graph
partitions incurs more overhead than improved processing
performance. We observed a similar trend from KMN and
BLK, and we believe that the performance improvement will
be continue with a larger graph workload.

D. Performance of DEX’s Mechanisms

Thread migration overhead.
To measure the thread migration overhead, we used a

microbenchmark that repeatedly migrates a thread every
second. We measured the time for handling thread migration
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Figure 3: Breakdown of the migration latency at the remote
node

at both the origin and the remote node. Table II summarizes
the results using the average of 10 thread migrations.

The first forward migration took 812.1µs in total, whereas
the first backward migration only took 24.7µs in total. When
the thread was migrated to the same node again, the second
forward migration only took 230.0µs, which is only 28.3%
of the total time of the first migration. The time of the second
backward migration was almost the same as that of the first
backward migration. Subsequent migrations to the same node
were similar to the latencies of the second migration.

The latency difference between the first and the second
forward migration comes from the time to construct the
per-process data structures. During the first migration, DEX
handles most of the per-process procedures such as creating
the remote worker, setting up the address space, and setting up
other process-level data structures. The result of an evaluation
that breaks down the latency is shown in Figure 3, which
confirms that 620.0µs of the first migration was taken up
by the per-process procedures, denoted by the symbol key
“Remote Worker”.

The latency discrepancy between the forward and the
backward migration latency comes from the amount of
work required for each migration type. During the forward
migration, DEX creates threads and sets them up using
the original execution context. In contrast, the backward
migration simply requires updating the status of the original
thread, which is significantly faster than in the forward
migration.
Page fault handling overhead. To analyze the page fault
handling performance, we created another microbenchmark
that forks two threads and relocates one of them to a remote.
Both threads then continually update a single global variable,
stressing the memory consistency protocol to shuffle a page
between the nodes for exclusive ownership. We collected
around 154,676 page faults from the origin during a 30-
second execution of the microbenchmark.

We observed a bimodal distribution of the fault handling
time; although our messaging layer constantly took 13.6µs
to retrieve a 4 KB page, 27.5% of the faults were handled in
19.3µs. However, when both nodes contended for the same



page and one of the nodes had to fall back to retry, the fault
handing extended to 158.8µs on average. This implies that
reducing the false page sharing is critical in DEX because
it not only accelerates fault handling but also reduces its
occurrences.

VI. RELATED WORK

Distributed shared memory (DSM) systems provide a
consistent memory view to distributed execution contexts
(i.e., processes and threads) across multiple machines, and
have been thoroughly discussed in the past. The vast
majority of these systems focus on utilizing remote memory
through custom memory management APIs to explicitly
grab, lock, and release shared memory regions [8]–[14].
Oftentimes, such APIs limit the type of virtual memory
that can be shared between distributed contexts (e.g., only
heap-allocated data can be shared) and only guarantee a
relaxed memory consistency from shared memory regions.
This requires developers to write applications using APIs
and semantics tailored to the memory model of each system,
which complicates application development and debugging.
DEX is unique compared with previous DSM work in
that distributed threads can transparently access consistent
memory as-is, without rewriting applications for remote
memory accesses and distributed synchronization. In addition,
distributed threads can use synchronization primitives as is
regardless of their actual location.

The majority of DSM systems focus on sharing data
between processes; only a few consider threads in a DSM
context [9], [28]. In general, the latter only support static
thread placement, where a remotely created thread cannot be
relocated once it is spawned on a node. Additionally, they re-
quire application refactoring to place data in shareable virtual
memory regions for access after migration [28]. In contrast,
DEX allows threads to dynamically place themselves, thereby
greatly improving flexibility and programmability.

Recently proposed disaggregated memory systems and the
like leverage modern high-speed low-latency interconnects
to provide applications with a large volume of memory
beyond what is available in a single machine. In particular,
Grappa [29], LITE [22], HotPot [24], Remote Regions [30],
and LegoOS [3] inspire us by exploring emerging memory
system architectures with RDMA-capable interconnect and/or
the DSM concept in the modern context. Although they
show promising results, they do not allow developers to
leverage the simplicity and efficiency of a scale-up design
for a single machine; each application has to consider
the low-level details of the underlying network [20], [21],
[24], and/or developers must redesign entire applications
from the ground up [21], [29], [30]. For example, in
Grappa [29], developers must completely rewrite applications
using their data addressing modes, delegation operations, and
communication interfaces built on an MPI programming
model. This impairs programmability [31]–[33], making it

difficult to adapt existing applications to the framework. In
addition, many disaggregated memory systems do not provide
a mechanism to utilize remote system resources other than
memory (i.e., computing power of processors and underlying
storage); thus, applications must manually be distributed or
else the system resources remain underutilized [3].

Single-system image (SSI) systems feature flexible process
placement and migration to effectively utilize clusters by
balancing the load between nodes. The majority of these
systems, however, work at the process level; a process cannot
simultaneously utilize multiple nodes but can only run on a
single node at a given moment. Thus, application performance
is limited to single-machine performance even if there are idle
nodes in the cluster. Kerrighed [34], [35] uniquely supports
thread-level migration to deal with this case; however, like
traditional DSM systems, it requires explicitly declared
memory regions to share data between distributed threads.
This again impairs programmability and imposes overheads
for rewriting applications. Relocating running contexts is also
extensively studied in the context of virtualization [36]–[39]
and checkpoint/restart systems [40]–[42]. However, they also
cannot utilize multiple nodes simultaneously either, limiting
the execution boundary to a single machine at any given
moment. vNUMA [43] proposes a hypervisor-level DSM
system, however, it is unclear how it handles crucial OS-level
features such as futex in a distributed way. ScaleMP [44]
allows a software-defined server from multiple nodes by
leveraging virtualization technologies. Even though ScaleMP
provides very similar features to those of DEX, its internals
are unclear as it is proprietary software.

VII. CONCLUSION

We introduced DEX, a Linux kernel extension that allows
an application to expand its execution boundary beyond a
single machine. Any application can be converted to span its
execution over multiple nodes through a simple function call.
The evaluation result using a number of realistic applications
confirms that DEX provides an intuitive yet effective way
to utilize dispersed resources in a rack-scale system.

We believe that the execution relocation capability of DEX
can be leveraged in a number of scenarios, such as relocating
the computation near data, accelerating the computation
through offloading, and saving energy by using nodes with
heterogeneous power profiles.
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