
On Reducing False Conflicts in Distributed Transactional
Data Structures

Aditya Dhoke
Virginia Tech

adityad@vt.edu

Roberto Palmieri
Virginia Tech

robertop@vt.edu

Binoy Ravindran
Virginia Tech

binoy@vt.edu

ABSTRACT
We present techniques for reducing false conflicts in dis-
tributed transactional data structure (DDS). The open nest-
ing transactional model is the common solution because it
allows nested transactions to commit independently of their
parent transaction, thereby objects in the transaction read-
set and write-set are released early, minimizing aborts due to
false conflicts and improving concurrency. We present three
protocols for avoiding false conflicts in DDS. Our first proto-
col, QR-ON, incorporates open nesting into the QR proto-
col that manages concurrency control for distributed trans-
actional memory systems using quorum-based replication.
We then introduce Optimistic Open Nesting, QR-OON, in
which open-nested transactions commit asynchronously so
that subsequent transactions can proceed without waiting
for the commit of previous transactions. Finally, we propose
an early release methodology, QR-ER, in which objects that
do not affect the final state of the shared data are dropped
from transaction’s read-set, which avoids false conflicts and
reduces communication costs. Our implementation and ex-
perimental studies revealed that QR-OON outperforms QR-
ON by up to 43%, and that QR-ER outperforms QR-ON and
QR-OON by up to 10×.

Categories and Subject Descriptors
D.1.3 [Programming Techniques]: Concurrent Program-
ming; H.2.4 [Systems]: Transaction processing

General Terms
Transactional Memory, Algorithm, Transactions

1. INTRODUCTION
With the advent of multi-core architectures, application

software performance can no longer be improved by simply
relying on increased clock speeds; performance can only be
improved by exposing greater concurrency. Since the pres-
ence of sequential code in a concurrent program – often re-

.

quired for concurrency control – significantly limits the pro-
gram’s speedup, sequential code must be minimized as much
as possible. As coarse-grained locking increases sequential
execution time, and fine-grained locking (and lock-free syn-
chronization) have poor programmability, alternative con-
currency control techniques such as software transactional
memory (STM) [27] are increasingly gaining traction. With
STM, which is inspired by database transactions, program-
mers write code that access shared memory objects using the
abstraction of memory transactions provided by a software
framework. The framework transparently ensures transac-
tion properties including atomicity, consistency, and isola-
tion, thereby significantly simplifying the development of
concurrent applications. Similar to STM, distributed STM
(or DTM) [7, 8], which extends STM to distributed sys-
tems (i.e., those based on message passing) is also showing
increasing promise.

STM’s growing interest has led to the extension of well
known concurrent data structures (e.g., concurrent Linked
List, Hashmap, Binary Search Tree) with transactional sup-
port, in both multiprocessor [14] and distributed [19, 28]
contexts. While the benefits of transactional data structures
under multiprocessor settings are well-known, they can be
equally useful in distributed systems.

Some commercial products are implementing interfaces of
well-known data structures. Such interfaces can also be
helpful in the integration of legacy applications. For ex-
ample, Infinispan [19] and Oracle Cache Coherence are in-
memory transactional distributed data grids designed from
the ground up to be scalable. They extend java.Map, offer-
ing APIs such as put and get. Developers can invoke these
APIs inside an atomic code block, and execute that block as
a transaction. From an user standpoint, the difference be-
tween interacting with a local hash-map and its distributed
version is minimal, e.g., only the system’s configuration file
needs modifications.

In classical transaction processing [5], a conflict occurs
among transactions when at least one of them is writing to
the same object. This can cause a read/write or write/write
conflict. One of the involved transactions must be aborted
to resolve the conflict. In addition, transactions also suf-
fer from another type of conflict, called false conflict [25,
23], which occurs among transactions performing seemingly
independent operations. For example, consider a set imple-
mented using a sorted list. Insertion of an element in the set
can be viewed as a high level operation, while insertion of an
object in the sorted list can be viewed as a low level oper-
ation. To insert an object O1 between objects O2 (smaller)

and O3 (larger), a transaction T must traverse from the head
of the list, and read all objects prior to O1. Ideally, any in-
validation due to concurrent writes on objects prior to O1

would not compromise T ’s correctness and should not create
any conflicts. However, high level operations, even though
semantically independent, traverse the same set of objects
during their execution, causing such false conflicts.

False conflicts have a significant impact in systems where
network communication costs dominate transaction execu-
tion – i.e., distributed systems. In such systems, traversing
a list may involve accessing different physical nodes. For
example, let a transaction T access objects {OX , OY , OZ},
where OX , OY , and OZ are shared objects in a list of 100
elements that are physically spread on 10 nodes. In the
worst case, OX , OY , and OZ are at the tail of the list.
Each time T interacts with an object (read/write), it has
to traverse 10 remote nodes to reach that object. In the
meanwhile, if other transactions are concurrently updating
the list, then they will invalidate objects already accessed
by T during its traversal, aborting T (due to a false con-
flict). Also, when other transactions attempt to access OX ,
OY , and OZ , they could be aborted for the same reason.
Moreover, when long-running transactions operate on the
same shared data structure, false conflicts can prevent those
transactions from successfully committing. This scenario is
exacerbated in fault-tolerant DTM systems, in which multi-
ple replicas must be updated after a transaction’s commit.
In this paper, we focus on such systems, where false con-
flicts can significantly degrade performance. Our target is
improving performance of transactional data structures de-
ployed in a distributed system, relying on the same appeal-
ing programming abstraction as DTM.

False conflicts have been previously studied. In particular,
the DBMS literature has extensively studied the problem
of preventing physical memory conflicts in data types that
define commutative operations [12, 30]. However, these so-
lutions cannot be used as-is in fault-tolerant DTM systems
because of two fundamental reasons. First, the (theoret-
ical) performance gain of such solutions has been studied
largely on centralized systems; those gains are negated by
the high cost of remote synchronization in DTM. Second,
historically in DBMS settings, concurrency control is usu-
ally eager (i.e., locks are acquired at encounter time) to mit-
igate the relatively expensive cost of transaction roll-back
(due to interactions with the stable log). In contrast, STM
concurrency control protocols are mostly optimistic, acquir-
ing locks only at commit time, to reap the advantage of
relatively low-cost transaction roll-back (due to in-memory
processing) and short transaction execution time. Classical
eager approaches, when deployed in DTM, will block trans-
action execution due to encounter-time lock acquisition, de-
creasing performance.

Transaction execution characteristics in distributed sys-
tems are significantly different from multiprocessor systems.
Unlike in a multiprocessor, in a distributed system, the cost
of communication dominates overall transaction execution
time. Moreover, replication (often used for fault-tolerance)
incurs additional overhead due to the need for multicast or
broadcast to the replicas. Any transactional conflict en-
countered during execution will result in transaction aborts,
thereby wasting processor and costly network resources.

Moss [23] and Herlihy et al. [14] have proposed solutions to
the problem of false conflicts. Moss [23] presented the open

nesting model, wherein low-level operations within a trans-
action form open-nested transactions. The commit of these
transactions are globally visible immediately, even though
the parent transaction may not have committed yet. The
memory release of low-level operations improves concurrency
among the high-level operations. Abstract locks are used
to prevent accesses on the same elements. The open nest-
ing model was developed in [23] for centralized concurrency
control. One of the contributions of our work is apply-
ing the same approach to distributed concurrency control,
and understanding its effectiveness in the presence of differ-
ent overheads in DTM (e.g., remote synchronization cost).
In [14], Herlihy et al. introduced transactional boosting,
where transactional support is provided on top of a concur-
rent list using abstract locks to boost performance. Boosting
eagerly modifies shared objects while the transaction is exe-
cuting. If applied to DTM, it increases the number of remote
messages in the transaction’s critical path, significantly de-
grading overall performance.

Motivated by these observations, with the goal of reduc-
ing false conflicts in DTM, and thus reduce the likelihood
of transaction aborts and improve performance, we present
the design and implementation of three protocols. Each
protocol targets different transactional and system models.
As a baseline DTM concurrency control protocol, we con-
sider [31]’s quorum-based replicated DTM protocol, called
QR (Section 2). In QR, transaction execution is divided
into two independent phases with orthogonal responsibili-
ties: 1) read/write phase, in which a transaction executes
optimistically and obtains the latest copies of objects, and
2) commit phase, in which read objects are validated and
write objects are committed. The protocol uses the quorum
intersection property for providing the latest copy of objects
and detecting conflicts in the presence of node/link failures
(Section 2.3). We consider QR as a baseline DTM protocol,
as it exhibits good availability, complexity, and scalability
properties.

Our first protocol is called QR-ON, for QR with open
nesting (Section 4). QR-ON incorporates the open nesting
model into the QR protocol (both the open nesting model
and QR are summarized in Section 2 for completeness). In
open nesting, only the objects accessed within the (open)
nested transactions are validated and (globally) released af-
ter successful commit. This early memory release increases
the potential for improving concurrency: two parent trans-
actions that have read or written the same set of objects in
their inner transactions will not detect any conflict during
their commit. Since each nested transaction directly com-
mits to the shared (or possibly distributed) memory, other
transactions can also immediately access the just committed
data.

The open nesting model distinguishes between physical
serializability (i.e., at the memory-level) and abstract seri-
alizability (i.e., at the semantic level). Open nesting breaks
transactions’ isolation at the memory level, but preserves se-
rializability at the abstract level using abstract locks. If the
application checks for the presence of an abstract lock on an
accessed object before interacting with its physical memory
location, then serializability is preserved. Also, reorganizing
transactions into nested transactions enables splitting the
validation and commit phases into multiple, smaller pieces
that can be more easily successfully committed.

At its core, QR-ON exploits open nesting for speeding

up the validation of parent transactions. This has a draw-
back. For fault-tolerant protocols with a commit phase that
is inherently an order of magnitude slower than the rest of
the transactional execution, repeating the commit as many
times as there are (open) nested transactions can negate
the benefits of open nesting’s potential for increased con-
currency due to early memory release. Thus, we propose
a second protocol called QR-OON, for QR with optimistic
open nesting (Section 5). QR-OON makes QR-ON’s commit
phase non-blocking: an open-nested transaction locally com-
mits, speculatively, without blocking, allowing subsequent
transactions to start their execution without waiting for its
commit. This causes an overlap between the commit of an
open-nested transaction and the read/write phase of the sub-
sequent transactions, thereby reducing overall transaction
execution time. The approach pays off when the subsequent
open-nested transactions are likely to access the data writ-
ten by the previous, still committing, transaction. In this
way, the subsequent transactions will speculatively access
the pre-committed version of the data written by the com-
mitting transaction. This optimism, in case of successful
finalization of a, so called, asynchronous commit, allows it
to completely overlap the commit phase with transactional
execution, thereby mitigating the cost of the expensive com-
mit.

Both QR-ON and QR-OON exploit open-nested transac-
tions for reducing the size of the read-set when the parent
transaction commits. Even though in QR-OON, the ex-
pensive cost of a commit is alleviated by the asynchronous
implementation, fault-tolerant protocols extensively use the
network during transaction execution. In such cases, the
overlapping time may be limited because few speculative
nested transactions can execute concurrently with the com-
mit phase (our experiments revealed up to three). There-
fore, we propose a third protocol called QR-ER, for QR with
early release (Section 6). QR-ER does not rely on open nest-
ing. Instead, false conflicts are avoided by dropping those
objects from the read-set that do not need to be validated
because, even in case of invalidation, they do not compro-
mise correctness of the execution. This approach is suited for
transactional data structures and for protocols that require a
significant amount of network communication for executing
operations and/or the validation and commit phases. With
early release, each transaction locally decides if it wants to
exclude objects from the read-set, according to the seman-
tics of the data structure used, thereby saving additional
messages. Even though the size of the read-set when the
transaction reaches the validation phase is not as small as
that in open nesting, it is composed of the minimum number
of objects needed for ensuring execution correctness.

We implemented all three protocols in QR-DTM [31, 9],
an open source DTM framework, written in Java. We con-
ducted experimental studies using distributed data struc-
tures such as Linked List, Hashmap, Binary Search Tree,
and a version of the TPC-C benchmark [1] implemented us-
ing a distributed hash table (as also used in [26]) (Section 7).
Our studies revealed that QR-OON outperforms QR-ON by
up to 43%. Additionally, they showed that QR-ER outper-
forms QR-ON and QR-OON by up to 10×.

2. BACKGROUND

2.1 Open Nesting

Open nesting was introduced by Moss [23] as a solution
for avoiding false conflicts. The idea behind open nesting
is to commit nested transactions to shared memory, thereby
releasing objects in its read-set and write-set, and thus avoid
conflicts with transactions working on the same set of ob-
jects.

Open-nested transactions optimistically commit changes,
which are immediately made globally visible, assuming that
the parent transaction will subsequently commit. However,
if the parent transaction aborts, those changes must be com-
pensated before the parent transaction can be re-issued.
The compensation action does not simply restore the orig-
inal state of memory, but restores the semantic state of
the shared data. For example, the compensation action of
adding an element to a set is removing that element from
the set (i.e., remove is the inverse operation of add). Thus,
operations with well defined inverses are appropriate to be
open-nested, such as those of collection classes (e.g., set,
map).

Globally committing changes of the nested transactions
allows other transactions to proceed without encountering
conflicts. However, there is a restriction on which transac-
tions can execute concurrently. We illustrate this with an
example. Figure 1 shows two parent transactions, T 1 and
T 2, each performing add and contains operations on a set
as open-nested transactions. On completion of execution of
the two nested transactions, the set should either have the
element e or e’, but not both. If T 1 and T 2 complete
their contains operation, then both will proceed to their re-
move operations, resulting in an incorrect state. This occurs
because there is no way for transactions to know what op-
erations are being performed by others. This problem is
solved by using an abstract lock : an open-nested transac-
tion will acquire an abstract lock corresponding to the oper-
ation it has performed to inform other transactions. In the
above example, after T 1 finishes its contains, it will acquire
an abstract lock on e. This will prevent remove(e) of T 2
from committing. Note that contains(e) and contains(e’)
can commit at the same time, as each will acquire different
abstract locks i.e., on e and e’, respectively.

T_1
if (set.contains(e))

set.remove(e’);

T_2
if (set.contains(e’))

set.remove(e);

Figure 1: Concurrent transactions in the open nest-
ing model.

The abstract lock acquired by an open-nested transaction
is added to the parent transaction’s log. The parent trans-
action is responsible for releasing the locks acquired by its
open-nested transactions. On successful commit, the parent
transaction will commit its changes and release the abstract
locks in its log. On abort or unsuccessful commit, the parent
transaction will run the compensating actions for its com-
mitted open-nested transactions, release the corresponding
abstract locks, and restart itself from the beginning.

There is no global order that is followed by open-nested
transactions in acquiring abstract locks. As a result, dead-
locks can occur. If an abstract lock is unavailable for an
open-nested transaction, the parent transaction aborts to re-
lease all previously acquired abstract locks, and thus avoids
deadlocks.

Correctness. In the open nesting model, transactional iso-
lation is violated as partial changes of a transaction are ex-
posed to other concurrent transactions before the commit
phase. However abstract locks are acquired on those uncom-
mitted objects such that other transactions are prevented
from interact with them. Thus, open-nesting preserves ab-
stract serializability [25].

Programmability. The open nesting model affects pro-
grammability: the programmer must understand that phys-
ical serializability is compromised for the sake of improved
performance. Moreover, the programmer must identify op-
erations that are appropriate for open nesting and provide
compensating actions for them. For our early release proto-
col, the programmer must also identify the objects that can
be dropped from the read-set.

2.2 Closed Nesting
The closed nesting transactional model has been intro-

duced in [24, 21]. In this subsection we just briefly overview
this model because in this paper we do not extensively use
it. Only the QR-ER protocol has similarities with it.

Closed nesting allows inner transactions to abort individu-
ally. Aborting an inner-transaction does not necessarily lead
to also aborting the parent transaction (i.e., partial rollback
is possible). However, inner-transactions’ commits are not
visible outside the parent transaction. An inner-transaction
commits its changes only into the private context of its par-
ent transaction, without exposing any intermediate results
to other transactions. Only when the parent transaction
commits is the shared state modified.

2.3 QR: Quorum-based Replication
The QR protocol [31] provides concurrency control for ob-

jects via STM and fault-tolerance by maintaining copies of
each object on all the nodes. Each node is designated a
read quorum and a write quorum, where a quorum is a set
of nodes having specific properties. A read quorum services
a transaction’s read and write requests on objects, while a
write quorum is used to commit changes to objects through
two-phase commit. A transaction executing on a node uses
the read and write quorums designated to that node. (Here-
after, when we say a node’s or transaction’s quorum, we will
refer to these designated quorums.)

The QR protocol ensures 1-copy equivalence [5], meaning
that when a transaction reads an object, it will use the latest
copy of the object. This is because any write quorum and
read quorum always intersect [3]. Thus, the latest changes
committed to a write quorum will be visible to at least one
node in a read quorum. Therefore, any read quorum can
provide the latest version of the object. (Note that the rest
of the nodes in a read quorum may have stale versions of an
object.) Thus, the QR protocol ensures a consistent view of
the most recently committed changes.

A transaction uses its read quorum and write quorum for
reading from, or writing to objects and for propagating up-
dates, respectively. For reading or acquiring a writable copy
of an object, a transaction sends a request to its read quo-
rum. The transaction selects the object copy with the latest
version from all the copies received from the read quorum.
This object copy is the most recent one in the system, at
that point of time.

For committing writes, a transaction uses a two-phase
commit protocol to lock written objects from its write quo-

Figure 2: Ternary tree with 13 nodes.

rum. Initially, the transaction sends a commit request mes-
sage to its write quorum. On every node of the write quo-
rum, the read-set and write-set objects of the transaction are
validated by comparing their version numbers with those of
the objects on the write quorum node. On successful valida-
tion, the node decides to commit the transaction and locks
objects corresponding to write-set which prevents any fur-
ther reads or writes to them. On unsuccessful validation,
the node decides to abort the transaction and the object
state remains unchanged. The decision (commit or abort) is
then sent back as reply to the requesting transaction. The
transaction collects replies from the write quorum nodes and
commits only when it receives commit message from all;
otherwise, the transaction is aborted. Finally, the request-
ing transaction sends its decision back to the write quorum
nodes, who will release the locks on transaction’s write-set
objects, if necessary.

Quorums maintain potential readers list (PR) and poten-
tial writers list (PW) for every object. Whenever a read
or a write request is processed for an object, the requesting
transaction is added to the PW or PR, accordingly. These
lists are used by contention managers to decide which trans-
action needs to be aborted or committed.

The nodes in QR form a logical ternary tree. Agrawal et.
al [3] have defined the procedure for creating read and write
quorums. A read quorum can be viewed as the majority
of children at a level, while write quorum can be viewed as
majority of children at every level.

Figure 2 illustrates the process through a simple example.
The figure shows a tree with 13 nodes with read quorum as
R1 = {n1, n2} and write quorum as W2 = {n0, n2, n3, n8, n9,
n11, n12}. A transaction Tw writes to an object o1 and com-
mits the changes at time t using W2. All the nodes of W2
have the latest version of o1. Now, another transaction Tr

reads o1 by requesting to R1 after time t. Since the inter-
section of R1 and W1 is n2, n2 has the latest version of o1.
Tr collects copies of objects from n1 and n2, and chooses the
one sent by n2.

Assume that n2 fails. As per the protocol for read quorum,
R1 can be reconfigured to {n1, n7, n8}, where n2 is replaced
by the majority of its children. As per the protocol for write
quorum, W2 is reconfigured to {n0, n1, n4, n5, n3, n11, n12})
to form majority at all the levels. In this new configuration,
the intersection has changed from n2 to n1.

3. SYSTEM MODEL
We consider a distributed system which consists of a set

of nodes that communicate by message-passing links. A set
of distributed transactions T := {T1, T2, . . .} sharing a set
of objects O := {o1, o2, . . .} distributed over the network is
assumed. A transaction consists of a sequence of requests,

each of which is a read or a write operation request for an
object, followed by a commit operation. An object has the
following meta-data that are used for QR’s operations:

1. Version number maintains the object’s version number
and is used during object validation.

2. Protected is a boolean field. When true, read or write
to the object is disabled until commit is complete, after
which it is set to false.

3. Validate is set to true or false depending on whether
the object needs to be validated or not, respectively
(see Section 6).

In addition, objects contain data structure-specific fields:
next for Linked List, and left and right for Binary Search
Tree.

For the sake of this presentation, we refer to the requesting
transaction as the client, and the quorum node as the server.
The term data-set refers to the read-set and write-set of a
transaction.

Two of the approaches we present leverage on nested trans-
actions. In this paper we limit to only one level of nesting.
A transaction TN2 cannot start in the context of another
transaction TN1 if TN1 is already nested in its parent trans-
action. However, due to the complexity of designing multiple
nesting levels, usually, only one level is considered in trans-
action processing [22, 9]. We believe this assumption does
not represent a restriction.

4. QR-ON: OPEN NESTING
In QR-ON, the read and write operations of both the

nested and parent transactions are exactly the same as that
of QR’s, described in Section 2.3.

The commits of nested transactions are globally visible.
A nested transaction’s commit operation will validate the
transaction’s read-set and write-set objects, and attempt to
acquire the abstract lock, corresponding to the transaction
operation. On successful commit, the nested transaction
will commit its changes, discard the read-set and write-set,
acquire the abstract lock, and record the abstract lock in
parent transaction’s log. The parent transaction can then
continue further execution. Once the parent transaction
completes execution, its commit operation will validate the
parent’s read-set and write-set objects, and release the ab-
stract locks acquired by its nested transactions. Note that
the parent validates only the objects it has read, and not
those read by its nested transactions.

A parent transaction could abort anytime during its exe-
cution, either because it has detected a conflict for objects
in its data-set or one of its nested transactions could not ac-
quire the needed abstract lock. When a parent transaction
aborts, it will perform compensating actions for the opera-
tions committed by its nested transactions and release the
corresponding abstract locks.

A nested transaction could also abort because of a con-
flict detected for objects in its data-set. In this case, it will
rollback and restart from its beginning. The parent transac-
tion’s state is not altered when its nested transaction aborts.

Algorithm 1 describes the methods of QR-ON. A method
partly executes on the requesting node (Local) and partly
on the remote quorum nodes (Remote).

We now describe each method of QR-ON:
- OpenNestedCommit. This method performs the commit

operation of a nested transaction. The remote or write
quorum nodes perform object validation for the nested

transaction and acquire the abstract lock corresponding to
the operation (lines 2-3). On the local node, the result is
commit, if object validation and abstract lock acquisition
succeed for every write quorum node; else it returns abort.
In case of commit, this method will record the operation
details and abstract lock in the parent transaction log (line
14). In case of abort, onOpenNestedAbort is invoked.

- parentCommit. This method performs the commit opera-
tion of a parent transaction. The remote or write quorum
nodes perform object validation for the parent transac-
tion (line 24). If validation succeeds, abstract locks are
released. On the local node, the result is commit if object
validation succeeds on every write quorum node; else it
returns abort. In case of abort, onParentAbort is invoked.

- onOpenNestedAbort. This method is invoked when a nested
transaction aborts. An abort occurs if a conflict was de-
tected for any of the objects in its data-set, or the ab-
stract lock could not be acquired. In the former case, the
nested transaction is retried. In the latter case, to avoid
a deadlock, the parent transaction must release the previ-
ously acquired abstract locks, and invoke onParentAbort
(to abort the parent transaction).

- onParentAbort. This method is invoked when a parent
transaction aborts. It performs the compensation actions
corresponding to the abstract locks in its log. For each
abstract lock in the log, it performs a compensating action,
which is another transaction that undoes the effects of the
original operation. Additionally, the remote node releases
the abstract locks (line 39).

5. QR-OON: OPTIMISTIC OPEN NESTING
In QR-ON, the commit of a nested transaction is a block-

ing operation i.e., the subsequent transaction has to wait
until the commit of the previous transaction completes. In
QR-OON, we relax this: a nested transaction commits asyn-
chronously without blocking the next transaction. Addition-
ally, a nested transaction commits its changes locally so that
the next transaction can speculatively read those changes.
This allows the current transaction’s (curr) commit phase to
overlap with the next transaction’s (next) read/write phase.

The read phase of a nested transaction always executes
in the context of the default thread, i.e., defThread. The
commit of curr involves merging its data-set with the par-
ent’s data-set, and delegating the commit phase to a sepa-
rate thread, asyncThread. As a result of this delegation, the
execution of next can be started by defThread, while async-
Thread is still committing curr. During next ’s read phase,
for processing an object request, the object is first locally
looked-up in the parent’s data-set. If the object is not found,
it is fetched from the read quorum nodes. During each oper-
ation of next, the final outcome of curr ’s commit operation
is checked. If the outcome is a successful commit of curr,
then next can continue its execution without any change and
proceed to commit. However, if curr failed to commit, then
it has to be retried. This involves discarding the speculative
work done by next and rolling back defThread to the start
of curr.

Rollback is achieved by means of checkpointing. At the
start of every nested transaction, a checkpoint is created,
which contains the execution state of the defThread along
with its metadata. When an abort is detected, the execution
of defThread is restored to the checkpoint corresponding to
the aborted transaction.

Algorithm 1: Methods of QR-ON.

procedure OpenNestedCommit (T)
1 Remote:
2 valid = validateObjects(T);
3 lock = acquireAbstractLock(T);
4 if valid and lock then
5 return commit;
6 else
7 if !lock then
8 reason = lockUnavailable;
9 else

10 reason = objectInvalid;
11 return abort, reason;

12 Local:
13 if result == commit then
14 T.parentLogAdd(T.op,

T.abstractLock);
15 return true;

16 else
17 onOpenNestedAbort(T, reason);

procedure onOpenNestedAbort
(T, reason)

18 Local:
19 if reason == objectInvalid then
20 retry T ;
21 else
22 onParentAbort(T);

procedure parentCommit (T)
23 Remote:
24 valid = validateObjects(T);
25 if valid then
26 releaseAbstractLocks(T);
27 return commit;

28 else
29 return abort;
30 Local:
31 if result == commit then
32 return true;
33 else
34 onParentAbort(T);

procedure onParentAbort (T)
35 Local:
36 foreach op in T.opLog do
37 op.compensateRemote();
38 Remote:
39 op.releaseAbstractLock();

Note that, QR-OON needs changes on the client node
(with respect to QR-ON), while the processing at server or
quorum nodes remains the same as in QR-ON.

Algorithm 2: Methods of QR-OON.

procedure readObject
(T, objId, validate)

1 DefThread:
2 checkState(T.prev);
3 ob=checkParent(objId);
4 if ob != null then
5 return ob;
6 else
7 ob =

getRemoteObject(objId);
8 return ob;

procedure checkState
(curr)

9 defThread:
10 if state == alive then
11 return;
12 else
13

onStateChange(curr, state);

procedure onStateChange
(curr, state)

14 defThread:
15 if state == abort then
16

restoreCheckpoint(curr);
17 else
18 return;

procedure
OpenNestedCommit (T)

19 DefThread:
20 mergeParent(T);
21 delegateCommit(T);
22 return;

procedure asyncCommit
(T)

23 AsyncThread:
24 OpenNestedCommit(T);

Algorithm 2 shows the methods required to support QR-
OON. The methods execute either in the context of defThread
or asyncThread, and are summarized as follows:
- readObject. This method is invoked for reading objects

for a transaction. The parent’s data-set is checked for the
existence of the requested object. If it is not found locally,
the object is fetched from the read quorum nodes. The
state of curr is checked by invoking checkState.

- OpenNestedCommit. This method is responsible for the
optimistic commit of a nested transaction. It merges the
transaction’s data-set with its parent’s; delegates the work
of commit to the asyncThread ; resumes execution of next.

- asyncCommit. This method runs in the context of async-
Thread and invokes the OpenNestedCommit method of
QR-ON.

- checkState. This method is invoked in every read operation
of a transaction. The method checks the status of the pre-
vious transaction and invokes onStateChange when the
previous transaction either commits or aborts.

- onStateChange. This method is invoked whenever the final

outcome of curr is decided. On commit, it simply returns
to let next continue its execution. However, in case of
abort of curr, restoreCheckpoint will restore the execution
to the start of curr to retry it.
While curr is performing its commit asynchronously, only

its subsequent transaction, i.e., next, can view curr ’s locally
committed changes. Other transactions cannot read these
changes. Therefore, the correctness argument for QR-OON
is exactly the same as that for QR-ON.

6. QR-ER: EARLY RELEASE
We now present the QR-ER protocol in which objects are

dropped from the read-set of a transaction to reduce false
conflicts, invalidations and communication costs. For data-
structures, certain objects in the read-set of a transaction do
not affect the final state of the data structure, and therefore
need not be validated during the commit phase. This idea
forms the basis of QR-ER. The approach has similarities
to [15], but they address the problem in centralized setting.

In QR-ER, each object has a boolean field validate. If
validate is set to true, then the object needs to be validated
during commit; otherwise, the transaction can commit with-
out validating that object. This field is set when the ob-
ject copy is added to the read-set during the transaction’s
read operation. During the transaction’s commit operation,
objects with false validate flags are not validated, and the
transaction commits without validating them.

In QR-ER, we retain objects so that subsequent opera-
tions can read them locally. In contrast, [15] releases objects
from the read-set.

We build QR-ER on top of the QR-CN protocol [9], which
extends the QR protocol with the closed nesting model. QR-
ER treats nested transactions as in the closed-nesting model.
In fact, it inherits all properties of closed nesting such that:
a nested transaction’s commit merges its data-set with its
parent’s data-set, and a nested transaction aborts without
changing its parent’s state. In contrast to open nesting,
here the nested transaction’s commits are local, while only
the parent transaction commits globally. This eliminates the
overhead of running a global commit phase for each (open)
nested transaction. During the parent transaction’s commit,
only objects with true validate flags are validated.

Algorithm 3: Methods of QR-ER.

procedure readObject
(T, objId, validate)

1 ob=checkParent(objId);
2 if ob != null then
3 if validate then
4 ob.setV alidate(true);

5 else
6 ob =

getRemoteObject(objId);
7 ob.setV alidate(validate);

8 T.addReadSet(ob);
9 return ob;

procedure childCommit (T)
10 mergeParent(T);

procedure parentCommit
(T)

11 foreach ob in
T.getReadSet() do

12 if ob.validate then
13

validationSet.add(ob);
14 T.commit(validationSet);

Algorithm 3 shows the methods required to support QR-
ER, which are summarized as follows:
- Read. This method is invoked with the validate flag for

requesting an object by the transaction. The object is
looked up locally on the parent’s data-set (line 1). If the
object is not found, it is retrieved from the quorum nodes
over the network, and the method argument validate flag
is set on the object (lines 6-7). For locally found objects,
the validate flag is set only when the method invalidates
the object (lines 3-4).

- childCommit. For the commit operation, the nested trans-
action merges its data-set with the data-set of its parent.
This behavior is similar to the closed nesting model (QR-
CN).

- parentCommit. For the commit operation, the parent trans-
action creates the list of objects which need to be validated
(lines 11-12), and sends them for validation in the commit
message.

Theorem 6.1. QR-ER’s early release protocol guarantees
linearizability of the Linked-List data structure.

Proof. Consider the add operation of the linked-list. Let
add insert the new element between pred and curr nodes
of the linked-list. During linked-list traversal, the objects
read are inserted into the read-set, while the objects pred
and curr are inserted into the write-set. Linearizability of
linked-list is guaranteed only when the following invariants
are maintained for the add operation:
- pred is reachable from the head of the linked-list;
- curr is pred.next ; and
- curr.item is in the linked-list.

These invariants are similar to those of the fine-grained
lock implementation of the linked-list [16]. We now establish
how QR-ER’s early release protocol ensures these invariants
during validation.

The scenarios in which the current transaction can be
aborted include:
- If pred is not reachable from the head, this means that

another transaction has deleted pred. In this case, pred ’s
version number will increase, aborting the current trans-
action.

- If curr is not pred.next, this means that another transac-
tion must have added a new object in between. In this
case, the version number of both pred and curr will in-
crease, aborting the current transaction.

- If curr is not in the linked-list, then another transaction
must have removed curr. This will also increase the version
number of pred, aborting the current transaction.

It can be seen that the invariants only consider the objects
that are in the write-set of the transaction, and are oblivious
to the objects in its read-set. Thus, dropping the objects in
the read-set will not affect correctness.

Note that for find operation of linked-list, pred and curr
are maintained in the read-set and validated during commit.
The proof for other operations of Linked-List, Hashmap and
Binary Search Tree are on similar lines, we omit them due
to space constraints.

7. EXPERIMENTAL EVALUATION
We implemented QR-ON, QR-OON, and QR-ER on top

of QR-DTM [31], the flat nesting implementation of quorum-
based replication. We experimentally evaluated the proto-
cols using three distributed data structures: Linked-List,
Hashmap, and Binary Search Tree (BST); as well as the well-
known TPC-C benchmark [1] implemented storing objects
in a distributed hash table (as also used in other works such
as [26]). For the benchmarks except TPC-C, each transac-
tion consisted of multiple nested transactions, each of which
enclosed a single operation on the data structure. In case
of TPC-C, we split the original transaction profiles — e.g.,
new order or delivery — into nested transactions. We also
included the original QR-DTM in our comparison. This way
we can assess also the overhead of our proposals with respect
to the classical, flat-nesting, protocol.

Our testbed consisted of 13 nodes in a private cluster, each
of which is an 8-core AMD machine running Linux 10.04. We
used 30 clients, with each client working on a single core.

QR-ON is particularly effective in scenarios where trans-
actions are composed of a reasonable number of operations
and with significant contention level. Our experiments there-
fore included 20% read-only transactions and with up to 7
nested calls per transaction.

-100

 0

 100

 200

 300

 400

 500

Linked-List Hashmap BST

% Improvement

Figure 3: QR-ON vs QR-DTM.

Figure 3 shows the average throughput improvement of
QR-ON over QR-DTM. (We report the speed-up instead of
absolute numbers because the throughput of Hashmap and
BST are two orders of magnitude higher than that of Linked-
List.) We observe maximum throughput improvement of
4.2× for Linked-List and 1.95× for Hashmap; a performance
degradation of 62% for BST, over QR-DTM. The reason for
the throughput improvement in Linked-List and Hashmap
is directly due to reduced false conflicts. Avoiding false con-
flicts decreases the abort rate and the message size. In BST,
clients access a small subset of shared objects, and therefore
the benchmark does not suffer from false conflicts. As a con-
sequence, QR-ON pays the overhead of committing (open)

nested transactions without actually reaping open nesting
benefits.

The impact of QR-ON’s overhead is minimal in execution
scenarios that are prone to generate several false conflicts.
When contention is reduced, the overhead, however, can be-
come significant and degrade performance. QR-OON was
indeed designed to overcome this.

 0

 10

 20

 30

 40

 50

50 60 70 80 90 100

T
h
ro

u
g
h
p
u
t

Read %

% Improvement

(a) Linked-List (#calls per transaction=5,
object count=500)

 0

 5

 10

 15

 20

 25

 30

 35

50 60 70 80 90 100

T
h
ro

u
g
h
p
u
t

Read %

% Improvement

(b) Hashmap (#calls per transaction=10, ob-
ject count=800)

Figure 4: Speed-up of QR-OON over QR-ON with
increasing read %.

Figure 4 shows the speed-up of QR-OON over QR-ON
for varying percentages of read-only transactions. We ob-
serve that QR-OON outperforms QR-ON by up to 43% for
Linked-List and up to 29% for Hashmap. The improvement
occurs because open-nested transactions speculatively read
objects from the previous transaction, thus reducing the re-
mote requests for those objects. Indeed, remote requests
are reduced by as much as 76% for Linked-List and 25% for
Hashmap.

We excluded BSTs in this comparison, because QR-OON
does not provide sufficient improvement over QR-ON on
BSTs. This is because BST is divided into multiple parts
(the paths on the tree), and the probability of a subsequent
transaction to access same objects (or part of) accessed by
the previous committing transaction is very limited.

QR-OON is susceptible to workload changes and its per-
formance improvement is bound by the amount of overlap
between local execution and the commit phase. This is over-
come in QR-ER, which commits nested transactions locally.

To understand QR-ER’s effectiveness, we compared it against
QR-ON for micro-benchmarks, by varying the number of
objects in the data structure (Figure 5) and the number of
nested transactions (Figure 6). The workload is configured
with 50% of write transactions and we report the actual
throughput.

We observe that QR-ER outperforms QR-ON by as much

 0

 50

 100

 150

 200

 250

 300

 1 2 3 4 5

T
h
ro

u
g
h
p
u
t

Nested Calls

Open Nesting
Early Release

(a) Linked-List (objs=500)

 100

 200

 300

 400

 500

 1 2 3 4 5

Nested Calls

Open Nesting
Early Release

(b) Hashmap (objs=400)

 200

 300

 400

 500

 600

 1 2 3 4 5

Nested Calls

Open Nesting
Early Release

(c) BST (objs=1024)

Figure 5: QR-ER vs. QR-ON: throughput with in-
creasing nested calls.

as 7× for Linked-List, 82% for Hashmap, and 1.1× for BST.
This improvement is due to the reduction in the abort rate
and the number and size of messages. Figure 7 shows the
average of these parameters for each benchmark.

To understand the impact of message size on throughput,
we compared QR-ER against QR-ON for 100% read-only
workload (i.e., no abort) on all the benchmarks (we omit
this plot due to space constraints). Here, the reduction in
the message size is the sole factor that can contribute to any
potential throughput improvement. We observed an average
message size reduction of 8%, contributing to an average
throughput improvement of 40%.

We also compared QR-ER against QR-ON for the TPC-C
benchmark. We conducted this experiment on our private
cluster (Figure 8(a)), as well as on the Future Grid public
infrastructure1 (Figure 8(b)). We report the throughput
varying with the number of nodes. We observe that QR-ER
outperforms QR-ON by 44% on average.

8. RELATED WORK
Replication has been studied in DTM for improving con-

1http://www.futuregrid.org/

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180
 200

 40 60 80 100 120 140 160 180 200

T
h
ro

u
g
h
p
u
t

Objects

Open Nesting
Early Release

(a) Linked-List

 0

 50

 100

 150

 200

 50 100 150 200 250

Objects

Open Nesting
Early Release

(b) Hashmap

 0

 100

 200

 300

 400

 500

 600

 700

 100 200 300 400 500 600 700 800 900 1000

Objects

Open Nesting
Early Release

(c) BST

Figure 6: QR-ER vs. QR-ON: throughput with in-
creasing object count (Calls=3).

currency and for coping with failures, largely in the con-
text of cluster DTM [8, 7]. These works provide fault-
tolerance by relying on broadcast primitives. D2STM [8], is
a replicated DTM that provides strong consistency through
a distributed certification scheme. GenRSTM[7] is a generic
framework for replicated DTM, and supports replication via
a replication manager, which is notified of updates made by
local STMs.

Transactional nesting has been studied for TM, but largely
in the multiprocessor context. Earlier multiprocessor TMs
either did not support nesting or simply flattened nested
transactions into a single top-level transaction. Harris et.
al. [13] argued that closed nested transactions, supporting
partial rollback, are important for implementing composable
transactions, and presented an orElse construct that relies
on closed nesting. In [2], Adl-Tabatabai et. al. presented an
STM that provides both nested atomic regions and orElse,
and introduced the notion of mementos to support efficient
partial rollback.

Recently, a number of researchers have proposed the use
of open nesting in (multiprocessor) TM. Moss described the
use of open nesting to implement highly concurrent data
structures in a transactional setting [23]. In contrast to the

 0

 20

 40

 60

 80

 100

 120

 140

Linked-List Hashmap BST

%
 R

e
d
u
ct

io
n

Aborts
#Message

Message Size

Figure 7: Abort rate and number/size of messages
in QR-ER vs. QR-ON.

 0

 20

 40

 60

 80

 100

 120

 140

 4 6 8 10 12 14 16

T
h
ro

u
g
h
p
u
t

Nodes

Open Nesting
Early Release

(a) Private cluster

 0

 20

 40

 60

 80

 100

 120

 4 6 8 10 12 14 16

T
h
ro

u
g
h
p
u
t

Nodes

Open Nesting
Early Release

(b) Public cluster

Figure 8: QR-ER vs. QR-ON: throughput with
TPC-C.

database setting, the different levels of nesting are not well-
defined; thus different levels may conflict. For example, a
parent and a child transaction may both access the same
memory location and conflict.

Atomos [6], TCC [20], and LogTM [22] describe HTM im-
plementations of closed and open nesting, with commit and
abort handlers for open nesting. Agrawal et al. [4] study the
memory model semantics of open-nested TM. They describe
ownership-aware transactions, which provide a disciplined
methodology for open nesting, while guaranteeing abstract
serializability.

None of the DTM efforts [8, 18, 17, 7] consider transac-
tional nesting or checkpointing. The nested DTM works that
we are aware of include the N-TFA protocol [29], which sup-
ports closed nesting, and the TFA-ON protocol [28], which
supports open nesting. However, N-TFA and TFA-ON use a
single copy DTM model and therefore are not fault-tolerant.

The problem of reducing false conflicts in TM has been
addressed also in [10] and [11]. The former [10] allows the
execution of independent chunks of DTM transactions at
commit time after the lock acquisition. The latter [11] ap-

plies to general memory accesses without considering the
semantics of the accessed data.

9. CONCLUSIONS
Transactional workloads, in particular, transactional data

structures, can suffer from false conflicts. This phenomenon
is exacerbated in DTM where each abort has a significant
negative impact on total transaction execution time. Open
nesting is the typical solution for solving false conflicts, but
we determined that it has significant commit overhead in
fault-tolerant DTM. We showed that optimistic open nest-
ing can outperform open nesting in low contention scenarios.
Additionally, we showed that early release can provide sub-
stantial performance improvement – up to an order of magni-
tude – over its open nesting counterparts. Along with abort
rate reduction, we observed that reducing message size also
helps to significantly improve throughput. This observation
is very relevant for fault-tolerant DTM, where reduction in
message size can reduce network latency to a large extent.

10. ACKNOWLEDGMENTS
This work is supported in part by US National Science

Foundation under grants CNS-1217385 and CNS-1116190.

11. REFERENCES
[1] TPC-C benchmark: Transaction processing

performance council. www.tpc.org.

[2] A.-R. Adl-Tabatabai, B. T. Lewis, V. Menon, B. R.
Murphy, B. Saha, and T. Shpeisman. Compiler and
runtime support for efficient software transactional
memory. In PLDI, pages 26–37, 2006.

[3] D. Agrawal and A. El Abbadi. The tree quorum
protocol: An efficient approach for managing
replicated data. In VLDB ’90.

[4] K. Agrawal, I.-T. A. Lee, and J. Sukha. Safe
open-nested transactions through ownership. In
SPAA, pages 110–112, 2008.

[5] P. A. Bernstein, V. Hadzilacos, and N. Goodman.
Concurrency Control and Recovery in Database
Systems. Addison-Wesley, 1987.

[6] B. D. Carlstrom, A. McDonald, H. Chafi, J. Chung,
C. C. Minh, C. Kozyrakis, and K. Olukotun. The
Atomos transactional programming language. In ACM
SIGPLAN, pages 1–13, 2006.

[7] N. Carvalho, P. Romano, and L. Rodrigues. A generic
framework for replicated software transactional
memories. In NCA ’11, pages 271–274.

[8] M. Couceiro et al. D2STM: Dependable distributed
software transactional memory. In PRDC, pages
307–313, 2009.

[9] A. Dhoke, B. Ravindran, and B. Zhang. On closed
nesting and checkpointing in fault-tolerant distributed
transactional memory. In IPDPS, pages 41–52, 2013.

[10] N. L. Diegues and P. Romano. Bumper: Sheltering
transactions from conflicts. In IEEE SRDS, pages
185–194, 2013.

[11] N. L. Diegues and P. Romano. Time-warp: lightweight
abort minimization in transactional memory. In ACM
SIGPLAN PPoPP ’14, pages 167–178, 2014.

[12] H. Garcia-Molina. Using semantic knowledge for
transaction processing in a distributed database. ACM

Trans. Database Syst., 8(2):186–213, June 1983.

[13] T. Harris, S. Marlow, S. Peyton-Jones, and
M. Herlihy. Composable memory transactions. In
PPoPP, pages 48–60, 2005.

[14] M. Herlihy and E. Koskinen. Transactional boosting:
a methodology for highly-concurrent transactional
objects. In PPoPP ’08, pages 207–216.

[15] M. Herlihy, V. Luchangco, M. Moir, and W. N. S. III.
Software transactional memory for dynamic-sized data
structures. In PODC, pages 92–101, 2003.

[16] M. Herlihy and N. Shavit. The Art of Multiprocessor
Programming, Revised Reprint. Morgan Kaufmann,
2012.

[17] S. Hirve, R. Palmieri, and B. Ravindran. Archie: A
Speculative Replicated Transactional System. In
ACM/IFIP/USENIX Middleware, 2014.

[18] S. Hirve, R. Palmieri, and B. Ravindran. Hipertm:
High performance, fault-tolerant transactional
memory. In ICDCN, pages 181–196, 2014.

[19] F. Marchioni and M. Surtani. Infinispan Data Grid
Platform. Packt Pub., 2012.

[20] A. McDonald, J. Chung, B. D. Carlstrom, C. C. Minh,
H. Chafi, C. Kozyrakis, and K. Olukotun.
Architectural semantics for practical transactional
memory. SIGARCH, pages 53–65, 2006.

[21] M. J. Moravan, J. Bobba, K. E. Moore, L. Yen, M. D.
Hill, B. Liblit, M. M. Swift, and D. A. Wood.
Supporting nested transactional memory in logtm. In
ASPLOS, pages 359–370, 2006.

[22] M. J. Moravan et al. Supporting nested transactional
memory in logTM. In ASPLOS, pages 359–370, 2006.

[23] J. E. B. Moss. Open nested transactions: Semantics
and support. In WMPI ’06.

[24] J. E. B. Moss and A. L. Hosking. Nested tm: Model
and architecture sketches. Sci Comp Prog,
63(2):186–201, 2006.

[25] Y. Ni, V. Menon, A. Adl-Tabatabai, A. L. Hosking,
R. L. Hudson, J. E. B. Moss, B. Saha, and
T. Shpeisman. Open nesting in software transactional
memory. In ACM PPOPP, pages 68–78, 2007.

[26] S. Peluso, P. Romano, and F. Quaglia. Score: A
scalable one-copy serializable partial replication
protocol. In ACM/IFIP/USENIX Middleware, pages
456–475, 2012.

[27] N. Shavit and D. Touitou. Software transactional
memory. In PODC, 1995.

[28] A. Turcu and B. Ravindran. On open nesting in
distributed transactional memory. In SYSTOR,
page 12, 2012.

[29] A. Turcu, B. Ravindran, and M. Saad. On closed
nesting in distributed transactional memory. In
TRANSACT, 2012.

[30] W. E. Weihl. Commutativity-based concurrency
control for abstract data types. IEEE Trans.
Computers, 37(12):1488–1505, 1988.

[31] B. Zhang and B. Ravindran. A quorum-based
replication framework for distributed software
transactional memory. OPODIS, pages 18–33, 2011.

