HEXO: Offloading HPC Compute-Intensive Workloads on
Low-Cost, Low-Power Embedded Systems

Pierre Olivier, A K M Fazla Stefan Lankes Mohamed Lamine Karaoui,
Mehrab RWTH Aachen University Rob Lyerly, Binoy Ravindran
Virginia Tech slankes@eonerc.rwth-aachen.de Virginia Tech
{ polivier | mehrab }@vt.edu {karaoui | rlyerly | binoy }@vt.edu

ABSTRACT

OS-capable embedded systems exhibiting a very low power con-
sumption are available at an extremely low price point. It makes
them highly compelling in a datacenter context. In this paper we
show that sharing long-running, compute-intensive datacenter
HPC workloads between a server machine and one or a few con-
nected embedded boards of negligible cost and power consump-
tion can bring significant benefits in terms of consolidation. Our
approach, named Heterogeneous EXecution Offloading (HEXO),
selectively offloads Virtual Machines (VMs) from server class ma-
chines to embedded boards. Our design tackles several challenges.
We address the Instruction Set Architecture (ISA) difference be-
tween typical servers (x86) and embedded systems (ARM) through
hypervisor and guest OS-level support for heterogeneous-ISA run-
time VM migration. We cope with the low amount of resources
in embedded systems by using lightweight VMs: unikernels. VMs
are offloaded based on an estimation of the slowdown expected
from running on a given board. We build a prototype of HEXO
and demonstrate significant increase in throughput (up to 67%)
and energy efficiency (up to 56%) over a set of macro-benchmarks
running datacenter compute-intensive jobs.

CCS CONCEPTS

« Computer systems organization — Heterogeneous (hybrid)
systems; « Software and its engineering — Virtual machines;
Operating systems.

KEYWORDS

heterogeneous ISAs, unikernels, migration, offloading

ACM Reference Format:

Pierre Olivier, A K M Fazla Mehrab, Stefan Lankes, and Mohamed Lamine
Karaoui, Rob Lyerly, Binoy Ravindran. 2019. HEXO: Offloading HPC Compute-
Intensive Workloads on Low-Cost, Low-Power Embedded Systems. In The
28th International Symposium on High-Performance Parallel and Distributed
Computing (HPDC ’19), June 22-29, 2019, Phoenix, AZ, USA. ACM, New York,
NY, USA, 12 pages. https://doi.org/10.1145/3307681.3325408

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

HPDC ’19, June 22-29, 2019, Phoenix, AZ, USA

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6670-0/19/06....$15.00
https://doi.org/10.1145/3307681.3325408

1 INTRODUCTION

Costs in datacenters are driven by machine acquisition and equip-
ment power consumption/cooling [4] and operators are constantly
seeking to lower such expenditures. Manufacturers are today pro-
ducing at an extremely low price point OS-capable embedded sys-
tems exhibiting a very low power consumption, making them highly
attractive in a data-center context as shown by feasibility studies
and simulation works [33, 42].

In this paper we demonstrate that in certain scenarios, some
embedded systems may not be as slow as they are cheap: compared
to server execution times, slowdowns on embedded boards are
about one order of magnitude while the prices and power consump-
tion of the boards are 2 orders of magnitude lower than those of
servers. Based on these observations, we propose a new approach
in which HPC datacenter workloads are selectively offloaded at
runtime from servers to OS-capable embedded systems for con-
solidation purposes: the key idea is that by augmenting a server
with one or a few embedded boards for a negligible cost (less than
5% of the server price/energy), one can consolidate more jobs and
obtain a non-negligible increase in throughput. To achieve optimal
price/power consumption/performance characteristics, one needs
to consider machines implementing the most efficient Instruction
Set Architecture (ISA) in each domain: x86-64 for servers, Armé64
for embedded systems.

Existing works related to the integration of embedded systems in
the datacenter present various limitations: managing/operating em-
bedded systems and servers separately [27, 44] does not allow fully
exploiting the strengths of each type of machine, and simply assum-
ing homogeneous ISAs [15, 19, 24, 28, 48] forbids benefiting from the
combined efficiency of Intel x86-64 servers and ARM embedded sys-
tems. Finally, some virtualization techniques/languages [3, 9, 12, 17]
help to bridge the ISA gap but at the cost of a non-negligible per-
formance overhead.

We present an approach named Heterogeneous EXecution Of-
floading (HEXO). With high degrees of consolidation as our objec-
tive, we migrate/checkpoint/restart at runtime between ISAs Virtual
Machines (VMs) running with hardware virtualization support, i.e.
executing native code directly [7] on the CPU for maximized per-
formance. Contrary to existing approaches that relocate part of
the execution of mobile applications to servers for performance
reasons [9, 12, 17, 32], we propose to migrate or checkpoint/restart
entire applications from servers to embedded systems as the objec-
tive of consolidation is to free resources.

We address the low resources of embedded systems by choos-
ing unikernels [23, 29, 35, 36] as the unit of execution for jobs
on both servers and embedded systems. It provides a virtualized

https://doi.org/10.1145/3307681.3325408
https://doi.org/10.1145/3307681.3325408

environment that is both lightweight and secure (hardware en-
forced), suitable for running multi-tenant workloads on embedded
systems [34] where traditional VMs cannot run due to large re-
sources requirements. In this paper we port the HermitCore [29]
unikernel to Armé64 and redesign it to support cross-ISA migration.

We solve the disjoint ISA challenge by applying state trans-
formation techniques, allowing conversion of the architecture-
specific state of an application between ISAs. Existing implementa-
tions [2, 14, 50] target process migration with the Linux kernel and
need to be adapted to VM migration schemes in a unikernel context.
This is no trivial task, in particular because for part of the VM state
(e.g., kernel state) there exists no clear mapping between different
ISAs. Thus, traditional VM migration implementations cannot be
used. We redesign the virtualization layer to implement the concept
of semantic migration where the guest OS and hypervisor cooperate
to extract the entire application state from the migrated VM as well
as a minimal architecture-independent subset of the kernel state.

A final challenge consists in selecting the best candidates to
offload from a server to an embedded board. Widely present in the
datacenter [38], HPC compute-intensive jobs are a primary target
for HEXO due to their long-running characteristics. We observe
that the slowdown incurred by offloading to an embedded system
is correlated to application characteristics that are measurable on-
line. Without assuming any kind of offline profiling, HEXO uses a
simple but efficient scheduler to decide which applications should
be offloaded to embedded systems based on an estimation of the
slowdown incurred on that target.

We build and evaluate a prototype of HEXO over a set of micro-
and macro-benchmarks. By enhancing a server-class machine with
one or a few embedded boards, HEXO can obtain up to 67% in-
crease in throughput for a negligible increase in price and power
consumption. In this paper we make the following contributions:

e The design and implementation of HEXO, to our knowledge
the first system to propose offloading for consolidation direct-
execution unikernels from servers to embedded boards;

e The multi-ISA semantic VM migration technique that allows
a unikernel to migrate between machines of different ISAs;

e The port of a x86-64 unikernel, HermitCore, to Armé64;

e An evaluation of HEXO demonstrating improvements of up
to 67% in throughput and 55% in energy efficiency for HPC
compute-intensive datacenter workloads.

This paper is organized as follows: Section 2 motivates HEXO’s
development. Section 3 describes our design choices and assump-
tions, and gives a general overview of HEXO. Implementation de-
tails are given in Section 4. We evaluate HEXO in Section 5, discuss
related works in Section 6 and conclude in Section 7.

2 MOTIVATION

In this section we motivate HEXO by showing the cost and power
consumption benefits of the embedded systems we consider, as
well as addressing concerns about the low processing power of
embedded systems compared to server-class machines. In HEXO,
the embedded systems we consider are single board computers,
popularized by the Raspberry Pi. Such embedded systems satisfy
the requirements of HEXO in terms of price as they are two orders

Table 1: Considered server & boards characteristics.

Machine Xeon RPi Potato | Hikey
CPU model Xeon Broadcom | Amlogic | HiSilicon
E5-2637 BCM2837|S905X |Kirin 620
ISA x86-64 Arm64 Arm64 |Arm64
CPU frequency |3 (turbo 3.5) GHz |1.2 GHz |1.5GHz |1.2 GHz
Cores 4 (8 HT) 4 4 8
RAM 64 GB 1GB 2GB 2GB
Power (idle) 60 W 1.75W 1.8W |25W
Power (1 thread) |83 W 2W 21W |28W
Power (4 threads) | 124 W 435W [29W |43 W
Power (8 threads) | 127 W - - 6.6 W
Price $ 3049 $35 $45 $119

N
o
1

Pi

110

Exec. time slowdown
|_I
o

factor vs Xeon E5-2637
N
o

o

o < o - wun
UZ—!U):)LIJU.

Figure 1: NPB embedded boards slowdown vs Xeon.

of magnitude cheaper than traditional servers. In terms of resources,
they can run medium-sized HPC workloads as unikernels.

We measure the performance and power consumption of a tra-
ditional server class machine (Colfax CX1120s-X6, named Xeon in
the rest of this paper), and a set of single board embedded systems:
Raspberry Pi 3 Model B (RPi), Libre Computer LePotato (Potato), and
96Boards Hikey LeMaker (Hikey). The machines’ characteristics
and prices are given in Table 1. The power consumption is mea-
sured at the entire machine level using a Kill-A-Watt P4400, while
each machine is idle and running 1/4/8 instances of the stress
program (i.e. 1/4/8 cores/hardware threads active at 100%) for a suf-
ficiently long time. One important point for HEXO’s motivation is
that the price and power consumption of these boards is negligible
compared to those of the server.

For this motivation experiment, we use the NAS Parallel Bench-
marks (NPB) [1] which are representative of HPC datacenter com-
pute-intensive workloads. For these tests we use the natively com-
piled, serial version and the class B (medium data sets). We compute,
for each benchmark and each board, the slowdown incurred while
running on a board compared to the server. Performance results are
presented on Figure 1, where execution times are normalized to the
Xeon’s performance, i.e. 1 on the Y axis represents the execution
time of the server.

For some benchmarks the slowdown is relatively small — for
the Potato board, which generally performs better than the other

embedded systems, in some situations the slowdown is less than
10x (EP, FT and IS). This slowdown is less than one order of magnitude
and needs to be put into perspective with the fact that the board is
two orders of magnitude cheaper than the server, both in terms of
dollars and power consumption. Some other benchmarks show the
limits of the boards; for example, CG and MG are more than 30x
slower on the Raspberry Pi compared to the server. The RPi was
also unable to run FT due to a lack of RAM. A second important
observation is that the slowdown is highly variable depending on
the benchmark. This difference, is in particular due to the memory
intensity of the benchmarks. The boards’ memory subsystems are
slower than the server’s (smaller caches, lower DRAM frequency,
etc.). A key idea in HEXO is to offload from server to embedded
boards the jobs with the lowest expected slowdowns.

We estimate the energy consumption for each machine and
benchmark based on the measured power (see Table 1) and exe-
cution times. This reveals that independently of the benchmark,
it is always more energy-efficient to run on the Potato, even when
the slowdown is high. CG exhibits the highest slowdown but takes
30% less energy to execute on the board, and the energy reduction
goes up to 17x for EP. Multi-threaded tests and tests over differ-
ent data set sizes (class A and C) confirmed these observations. In
conclusion, these experiments show that some boards are not as
slow as they are cheap, and that is it always better from the power
consumption standpoint to run on these boards.

We conclude that the costs associated with these boards are so
low that, assuming acceptable migration overheads, even if aug-
menting a server with one or a few embedded boards for consoli-
dation only gives a small increase in throughput, it is still worth-
while. Moreover, the relatively small slowdown observed for some
benchmarks with some boards shows that in certain situations that
throughput increase may actually be significant.

Memory Capacity in Embedded Systems. Considering HPC, a
concern is the low RAM amount present on such boards. Workloads
requiring tens of GBs of RAM or more will not fit on such systems.
Nevertheless, prior work studying cluster traces [8, 18] from com-
panies including Google or Microsoft show a significant amount of
long-running jobs requiring less than 1 or 2 GB of memory.
Moreover, given the trends in handheld devices, it is likely that
the amount of RAM in embedded systems will increase in the
future. To study the impact of that evolution, we built a simple
analytical model estimating the price and power consumption of a
hypothetical board that would embeds up to 128 GB of RAM. To that
aim we used price data from DRAMeXchange [47], and computed
the memory power consumption in activity using the potato board’s
DRAM datasheet [46] and the Micron DDR3 SDRAM system power
calculator [37]. In this model we consider both the original DRAM
module of the potato board [46] (512MB capacity), but also another
one from the same family with a capacity of 1GB [22]. Note that
our model is simple and scopes out issues such as the maximum of
RAM supported by the CPU, space and thermal constraints, etc.
Results are presented on Figure 2. We wish to decide on a given
value in terms of price or power that, when passed, HEXO’s moti-
vation looses it strength. However we previously observed that the
slowdown on the board varies among applications. Therefore we
define 3 break-even points, based on 3 representative slowdowns

1400 Low slowdown B/E point

1200 ' 512 MB module]
1000 |01 GB module
& 800
8 600 . . R
£ 400 Medium.slowdown, B/E.Roint
200 High slowdown B/E point d]
0 =— = =]
2 4 8 16 32 64 128
__ 100 -
53 80
35 60
o = — —
o g 40
==
oo 20 (o) o]
S8 rrmrrmmrmrep e

2 4 8 16 32 64 128
Memory size (GB, log. scale)

Figure 2: Evolution of the price and power consumption of a
hypothetical embedded system with high amounts of RAM.

observed on Figure 1: low slowdown (EP, 2.2x), medium slowdown
(FT, 7.3x) and high slowdown (MG, 16.9x). We compute each break-
even point by dividing the price and power consumption of the
server (see Table 1) by each of these factors. Looking at the model
with these points in mind highlights the fact that for HEXO to be
worth it a board that is n times slower should be n times cheaper
than a server, with n equals to 2.2, 7.3, and 16.9, according to the
considered break-even point. These points are represented by hor-
izontal lines on Figure 2. As one can observe, for low slowdown
applications, even with a large increase in RAM capacity HEXO is
still generally beneficial up to 64/128 GB. For medium slowdown
applications, we expect that limit to be 32 GB (64GB for price alone
and 512 MB modules). Regarding high slowdown applications, they
are generally a bad fit for HEXO.

Finally, I/O performance in embedded systems is notoriously
slow, hence our focus on compute-intensive jobs. However it is
probable that in a near future I/O speed will increase in the embed-
ded systems we target, without a serious impact on their price and
power consumption. Multiple single-board computers costing tens
of dollars now offer gigabit Ethernet, USB 3.1 or PCle connections.

3 DESIGN

3.1 HEXO: Assumptions and Scope

In HEXO we assume that the server is equipped with an Intel x86-64
CPU and the embedded systems use Armé64 CPUs. It is possible
to create setups composed of servers and embedded boards of the
same ISA, avoiding the complexity of heterogeneous-ISA transla-
tion. However, we show that Armé64 servers and Intel’s embedded
CPUs are not as compelling as their competitors from the oppo-
site side, concerning metrics critical to the related markets. On the
one hand, the first generation of Arm64-based servers has been
entering the market in the last few years but is not yet on par
with similarly-priced Intel’s CPUs for multiple performance and
power consumption metrics [2, 13]. Concerning x86-based embed-
ded platforms, we demonstrate that ARM platforms are significantly

«— > ARM

15 - HEXO s target x86
@ price range
2
o 10 A
>
(o]
o
o 54

0 T

0 50 100 150 200 250 300 350
Price ($)

Figure 3: Prices distribution for 38 x86 and 115 ARM boards.

cheaper. To that aim we select from various sources online (includ-
ing linuxgizmos website [6]) a large list of single board computers
(115 ARM, 38 x86). We selected platforms under $350, 1 to 8 GB of
RAM, and a CPU frequency of at least 1 GHz. We plot the distribu-
tion of these boards’ prices on Figure 3. As mentioned above we
seek embedded systems in a price range of tens of dollars. While it
is hard to find x86 boards below 100 dollars, there is a plethora of
ARM boards with similar and higher specifications in that window.
Finally, in HEXO translating the architecture specific state between
ISAs takes a negligible overhead (max 2 ms), so the overhead of VM
state transfer, that would also be present in homogeneous setups,
completely dominates the migration latency. Thus, to reap the ben-
efits of the most efficient machines in their respective domains, we
consider heterogeneous-ISA setups.

HEXO targets datacenter HPC compute-intensive workloads.
These jobs are long-running [38] (from minutes to days) and thus
offloading cannot be achieved by killing and restarting regular
native binaries [16], as the loss of progress would be unacceptable
- such jobs need runtime migration or checkpoint/restart.

We assume a cloud provider datacenter scenario, i.e. a multi-
tenant environment. A high level of security is then needed and
jobs cannot run natively but must rather be virtualized. Due to
lack of resources, the embedded systems that we target cannot
run full-fledged VMs and have to rely on lightweight virtualization.
Moreover, we argue that hardware-assisted virtualization provides a
fundamentally stronger isolation [36] than software solutions such
as containers, as confirmed by current trends of running containers
inside VMs for security (clear containers [11]). Thus, unikernels
are suitable for HEXO.

For a minimal performance overhead, we select hardware-assisted
directly-executing [7] VMs running native code (C language) as
opposed to emulation or managed runtimes [3, 12, 17] that can
help to bridge the ISA gap but involve an unavoidable performance
overhead. To enable heterogeneous-ISA migration, we assume the
same endianness for the server and boards (Arm64 endianness is
configurable) as well as the same size and alignments for primitive
C types.

In the context of datacenter workloads, the use of embedded
systems may raise concerns in terms of reliability. HEXO employs a
multi-ISA checkpoint/restart system and when a job is offloaded to
a board, a checkpoint can be maintained on the server to save and
restore the job’s state in the case its execution fails on the board.
Moreover, the very low cost of the boards we consider makes it

x86-64] [Arm64
Libraries | | kernel | | kernel
LibOS| | LibOS
* * App. Ma[lual{auto
N sources migration
Heterogeneous-ISA E_ points
Toolchain < insertion,

Multi-ISA

unikernel X86-64 binary

Arm64 binary Ethernet link

Arm64 board

Affinity |

monitoring Offload/migrate back job

Scheduler
F

Figure 4: Overview of HEXO’s building & execution flow.

possible to use redundancy and offload jobs in parallel on multiple
boards for a low additional cost.

3.2 System Overview

Figure 4 represents an overview of HEXO’s building and execution
flow. The first step to create a multi-ISA unikernel is to instrument
the application code by inserting migration points (&) on Figure 4),
points in the application execution where migration is possible.
Adding a migration point consists of the insertion of a simple call
to a library function.

Application sources are fed to HEXO’s heterogeneous ISA tool-
chain ®. Metadata needed to transform the architecture-specific
application state (stack and registers) at runtime is inserted by
the compiler in the produced binaries. The toolchain outputs two
static binaries, one per ISA, that can be put together into an archive
forming a unikernel image ready for migration/checkpoint/restart
between servers and embedded boards D). For each ISA the code
is compiled and linked against multiple libraries: HEXO’s kernel
library OS (), a standard C library (newlib) ported to HEXO’s kernel,
a library containing the code needed for runtime architectural state
transformation, as well as any user-specified library.

At runtime, the x86-64 unikernel binary is first launched on the
server ® and the resulting VM is managed by HEXO’s hypervisor,
Uhyve, using the KVM API. Multiple unikernels are consolidated
on the server. A unikernel runs on the server until the scheduler
triggers its migration to a board, for example if the server runs out
of resources (available cores or RAM). The scheduler runs on the
server and monitors resource usage as well as some performance
metrics related to each job in order to estimate the slowdown they
would exhibit if offloaded to the board. When resource congestion is
detected on the server, the scheduler selects the jobs to be offloaded
based on multiple criteria, in particular the slowdown expected on
the board.

When a job is selected for offloading the scheduler signals the
hypervisor, which triggers the heterogeneous-ISA migration pro-
cess when the guest reaches the next migration point. At that point
the guest kernel freezes application execution and rewrites the

architecture-specific state for the target ISA, Armé64. The applica-
tion state is then transferred to the embedded system. Next, the
Armo64 binary is bootstrapped on the board, the guest kernel boots
and the application state is restored before resuming execution.

Saving, transferring and restoring the VM state is a complex
process as part of the VM memory needs not to be transferred and
others parts need to be transformed to the target ISA before trans-
fer. Existing VM migration implementations [10, 21] that blindly
snapshot the entire guest physical RAM cannot be used. Thus, we
design a new VM migration scheme targeting heterogeneous-ISA
migration of unikernels, in which the guest OS and hypervisor com-
municate to correctly extract the part of the VM physical address
space that needs to be transferred. We call this method semantic mi-
gration, in reference to the well-known virtualization concept of the
semantic gap illustrating the hypervisor’s lack of knowledge about a
VM’s inner workings. By opposition to classical migration schemes
that simply transfer a snapshot of the guest physical memory with-
out consideration for the nature of its content, semantic migration
requires coordination and information exchange between the guest
and the hypervisor. Concerning the transfer method, HEXO of-
fers both checkpoint/restart and post-copy on-demand memory
transfer.

In the case where a unikernel needs to be migrated from the
board to the server, for example when the scheduler detects some
free resources on the server and there is no upcoming jobs, the
inverse operation is performed.

3.3 Multi-ISA Unikernel Semantic Migration

Migration Points & Cross-ISA State Translation. Heteroge-
neous-ISA migration cannot happen at arbitrary points during
program execution [51] because there is not always a meaningful
mapping of application state across ISAs. Our toolchain instruments
the code with migration points ensuring a state of equivalence and
making migration possible at these particular points. Equivalence is
guaranteed at function boundaries [2, 51], so inserting a migration
point corresponds to inserting a function call to a library we devel-
oped. It can be placed anywhere in user code, but not in kernel code
so that migration does not happen when executing a system call/an
interrupt; this greatly simplifies the kernel state to be migrated. This
does not alter the flexibility of HEXO as only a negligible amount
of time is spent executing the kernel rather than the application in
the compute-intensive jobs we target.

The architecture-specific state of an application running as a
unikernel is composed of the stack and register content. To be able
to transform this state at runtime, we adopt a similar method as in
Popcorn [2] (and reuse part of its toolchain) by using a modified
version of LLVM/Clang [31]. The compiler records at each migra-
tion point the list and location of live values (stack & register slots)
on both ISAs. This information is placed in custom ELF sections
and loaded in memory at migration time. It is used to perform a
rewriting of the stack and register content by placing each live
value at the correct location for the target ISA.

Apart from the stack and registers, program data is architecture-
independent in HEXO- we assume the same endianness, primitive
types sizes/alignments (true between x86-64 and Armé4), and heap
management algorithm (we use the same C library on both sides).

A Arch -s ecific state
A Kernel Application Kernel RAVsJellleEt]
address d code data
space coce
x86-64 bina Load J(transfer
Arm64

ML) Kernel Application Kernel [Ty

address IS code data
space

Figure 5: Semantic heterogeneous-ISA migration.

We assume that the program does not make use of non-local gotos
(set/longjmp). To maintain the validity of functions/data pointers,
global variables and functions are located at the same virtual ad-
dresses on both ISAs. We use a custom linker script generated by
a tool analyzing function and global variable sizes and alignment
requirements. The linker, GOLD, is patched to generate a common
Thread Local Storage (TLS) layout for both ISAs.

The fact that we do not migrate while processing a system call
means that at a migration point the kernel is mostly stateless. Im-
portant data structures that are mostly architecture agnostic are
extracted on the source and restored on the destination machine:
process descriptors, open file descriptors, timer information, etc.

Semantic Migration. We cannot reuse existing VM migration im-
plementations as only some parts of the VM address space need to
be transferred. Some areas need to be transformed before transfer
and all areas must be identified by the hypervisor or the middle-
ware performing the migration. We define the concept of semantic
migration in which the guest OS communicates to the hypervisor
information about its address space to bridge this semantic gap.

Figure 5 illustrates semantic heterogeneous ISA migration from
x86-64 to Armé4. A unikernel is initially loaded by the hypervi-
sor @) and segments from the x86-64 binary are written in the
guest memory. The kernel initializes and control is passed to the
application which starts to execute. When migration is needed,
the first step is to perform the same loading process on the target
machine B with the corresponding Arm64 binary. The kernel ini-
tializes on the target machine then the state of the application and
kernel are restored, either by transferring and restoring a check-
point (checkpoint/restart) or in an on-demand fashion (post-copy).
Some memory areas are directly transferred (©) and others need
first to be transformed to the target ISA ©) ®. Note that a uniker-
nel boots very fast (25 ms for HEXO’s kernel) so booting the guest
kernel on the target machine as part of the restoring process is not
a concern.

To describe which memory areas should be transferred and
maybe transformed, HEXO divides the VM state as the content
of the registers plus the content of the memory. The content of the
registers is obviously architecture specific and needs to be trans-
formed before transfer. The content of the memory can be further
divided between architecture-specific and architecture-agnostic
memory areas, with the former describing memory areas in which
content would differ considering a program at the same point in

its execution on both ISAs, and the latter areas in which content
would be identical.

Semantic heterogeneous-ISA migration applies the following
rules: (1) directly transfer architecture-agnostic state (© on Fig-
ure 5); (2) reload architecture-specific read-only state ®); (3) trans-
form and then transfer architecture-specific read-write state ©) ®.
Architecture-agnostic state is composed of application static mem-
ory, i.e., areas where the .bss and . data sections were loaded, and
dynamic memory, i.e., the heap and TLS. These can be directly
transferred to the target machine during migration. It is in terms of
size the largest part of the VM state. Architecture-specific read-only
state includes application and kernel code - they are stateless due
to their read-only nature so they are simply reloaded alongside
other stateless data such as . rodata memory.

Read-write architecture-specific state is composed of the appli-
cation stack and register set — before transfer these are transformed
as previously described. It also includes kernel data — kernel .data
and .bss, heap, etc. It is highly architecture-specific as close to
50% of the kernel’s LoC is included only for either the x86-64 or
Armo64 build. As mentioned earlier HEXO minimizes this state by
migrating outside of system call and interrupt processing. The small
amount of kernel read-write state left to checkpoint are important
data structures needed to correctly resume the application on the
target machine: process descriptors, open file descriptors, etc.

State Transfer: Checkpoint/Restart vs Post-Copy. We offer
two ways to transfer the state between machines: checkpoint/re-
start or post-copy [21]. The former consists of dumping the VM
state to a file, transferring that file through the network, and restor-
ing the VM state on the target machine. With the latter [21], a
minimal checkpoint is transferred (CPU state) and the rest (mem-
ory state) is served on-demand from source to target machine. We
chose not to implement pre-copy [10] because (A) it generates a
lot of network activity which is undesirable on the sometimes slow
networks available in embedded boards (e.g. 100Mb/s) and (B) it is
highly undeterministic in terms of migration time which does not
help the goal of HEXO- freeing resources.

Both techniques have benefits. Checkpoint/restart is useful when
the objective is to have a deterministic migration time and to free
resources as soon as possible, and post-copy is needed when mini-
mal downtime is required. In the context of HEXO, post-copy also
provides significant benefits when, after resuming on the target
machine, the unikernel executes then exits without requesting 100%
of the memory state. This can considerably reduce the transfer over-
head as with a full checkpoint, all the memory state is transferred
independently of which amount will be needed on the destination.

3.4 Datacenter Integration and Scheduler

Datacenter Integration. There are multiple ways to integrate
HEXO in the datacenter. We believe that pure integration within
existing cluster management software [20, 49] would involve a lot
of complexity and falls out of the scope of this paper. Indeed, while
such software supports managing clusters of heterogeneous nodes
in terms of hardware resources, they do not consider the concept
of heterogeneous-ISA migration and do not support unikernels.
Moreover some have poor or no support for managing nodes of

various ISAs and managing embedded systems (due to the amount
of resources they require).

Thus we propose a simple integration method allowing the use

of existing cluster schedulers with minimal modifications — some
servers are augmented with one or a few embedded boards, and
each of these machine sets (1 server + boards) is seen as an abstract
machine (depicted by the dashed-line rectangle on Figure 4) by the
cluster scheduler, with an amount of resources equals to that of
the server. The HEXO scheduler runs on the server and takes job
migration decisions between the server and the boards. Thus, the
cluster scheduler needs only to be updated of the resources usage
on the server as jobs move between it and the boards.
Scheduler. The scheduler mainly decides if some job currently
running on the server should be offloaded to the board. As we focus
on long-running jobs, the goal is to maximize throughput, i.e. how
many jobs can be completed in a given period of time by the group
of machines consisting of the server and the boards. In order to
determine if a job should be offloaded, a central criterion is the
slowdown that job would exhibit if run on the board. We do not
assume that jobs have been profiled offline: the slowdown is un-
known before execution. When scheduling unknown applications
on heterogeneous compute units, a central point is to estimate the
behavior of an application on one type of unit while observing
its behavior on another type [41]. In HEXO’s context, we need to
compute an estimation of the slowdown a job would incur on the
board by observing the job’s execution behavior on the server.

We measured on the Xeon server (see Table 1) the instructions
per second, last level cache references per second, and last level
cache misses per second for each of the NPB [1] benchmarks. These
are mostly stable throughout the execution. Using linear regression
we found a strong correlation between these three metrics and
the slowdowns observed on the Potato board — the correlation r
is 0.95 and R? is 0.90). These numbers were confirmed by running
the same experiment on other boards including the Raspberry Pi.
Monitoring these metrics for a job on the servers allows HEXO to
estimate with a relatively good accuracy the slowdown that job
would incur if ran on the board. It allows the scheduler to offload
jobs having the lowest estimated slowdown in order to maximize
the overall throughput. Note that currently a job always starts on
the server, so the scheduler does not need to monitor performance
on the embedded board to determine which job would get the best
speedup if migrated back to the server — the speedup is simply the
inverse of the slowdown initially estimated on the server. While
this assumption does not hold if we consider applications with
dynamic behavior, we do not observe such behavior for any of the
macro-benchmarks presented in our evaluation.

An additional scheduling criterion is the amount of free resources
(cores and memory) on the board and server. We assume jobs are
characterized by the number of cores and the amount of memory
they require. As the jobs we consider are compute intensive we
do not consolidate more than one job per core on both server and
boards. The memory available, especially on the board, also sets a
hard cap on which and how many jobs can be offloaded.

We assume that the jobs to run are available in a queue. The
scheduler considers the next job to execute J and starts by assessing
if the amount of RAM and cores needed for the job is available on
the server. If it is the case, the job is launched on the server. If not,

the scheduler searches for a victim candidate job V to offload on a
board among the jobs currently running on the server. That choice is
made according to the estimated slowdown of V, which we want to
minimize, and of the resources available on the boards. If V is found
then it is offloaded and J is launched on the server. Otherwise J is
re-queued and the scheduler waits for a job to finish either on the
board or on the server. Once this happens the scheduler considers
J again and the previous steps are repeated.

Under a steady flow of upcoming jobs, which we believe to be
the case in a datacenter, there are no chances for jobs to migrate
back to the server from the embedded systems. However in the
rare case of an idle period, the scheduler wakes up regularly and, if
no upcoming job was detected for a long time, migrates jobs from
the boards to the server according to the expected speedup. The
scheduling algorithm presented here is relatively naive and there
is a lot of room for improvement. Designing an in-depth scheduler
for HEXO is out of the scope of this paper, however we show in the
evaluation section that even with a simple scheduler, HEXO can
give a significant increase in throughput.

Note that independently of its migration capabilities, a HEXO
unikernel image brings portability benefits as it can execute on
any of the ISAs it is compiled for. This can be useful in scenarios
where particular jobs that are performance insensitive (for example
development/debug jobs) may be executed on the embedded system.

4 IMPLEMENTATION

The implementation of HEXO is divided into 3 components: (1) the
port of HermitCore’s kernel to Armé4 (4,583 LoC added/modified);
(2) the support for heterogeneous semantic migration, subdivided
into (2.1) kernel and hypervisor support (6,368 LoC) and (2.2) tool-
chain support (1,806 LoC); (3) the scheduler (400 LoC). The total
number of LoC added and modified is 13,157. HEXO is currently
implemented on x86-64 and Armé4. Porting to new ISAs would
mainly require porting the architecture-specific parts of the kernel
and hypervisor as well as porting the state transformation software.

4.1 Porting HermitCore to ARM

HermitCore [30] is a unikernel designed for HPC and Cloud work-
loads on x86-64 processors. HermitCore’s initially focused on HPC
in common multicore clusters and combined multi-kernel designs
like FusedOS [40], mOS [53], and McKernel [45] with a unikernel
design. It was later extended with support for standalone execution
without Linux running alongside [30].

General hypervisors such as QEMU [3] exhibit a large overhead
in a unikernel context, in particular at initialization time which
is critical in HEXO when resuming for migration. HermitCore
comes with a lightweight specialized hypervisor Uhyve, extended
from Solo5 [52] with support for larger guest memory sizes and
symmetric multiprocessing (SMP). In contrast to common kernels
within QEMU, the boot mechanism starts directly in 64 bit mode and
does not rely on inter-processor interrupts to wake up additional
cores. Guest boot time can then be reduced from ~2500 to ~25 ms
when comparing QEMU with Uhyve. In general, Uhyve realizes a
higher abstraction layer than traditional hypervisors, as it does not
virtualize on the hardware layer but rather provides an interface to

the system software of the host. Due to its swift boot time, we use
and heavily modify Uhyve in this paper.

To support multi-ISA migration, we integrated Arm64 support
into the Uhyve hypervisor and the HermitCore kernel. For Uhyve,
the support for Armo64 is relatively simple. Uhyve uses KVM, the
Linux interface to hardware virtualization extensions. KVM sup-
ports the hardware virtualization extensions from ARM, Intel and
AMD. The differences between ISAs, for example the access method
to guest registers upon trap, are small and easy to support.

The kernel configures the Armé64 processor in a comparable
mode to the x86-64 configuration: HermitCore runs on both systems
in 64 bit mode, uses little-endian, and 4-level page tables. Conse-
quently, on both systems HermitCore uses a page frame size of 4 KB.
To avoid Translation Look-aside Buffer (TLB) misses, HermitCore
uses 2 MB pages on x86-64 for the code and static data segments.
Consequently only dynamically-allocated pages (for example heap
pages) have a size of 4 KB. HermitCore supports a feature of Arm64
known as contiguous blocks to efficiently use the TLB - a bit in the
page table signals that the page belongs to a 16 KB block which is
mapped to physically contiguous blocks of page frames. This hint
helps to reduce the number of TLB misses and improves perfor-
mance. HermitCore runs on Armoé64 in exception level 1, which is
comparable to ring 0 of x86 and is the typical mode to run a kernel.

4.2 Semantic Heterogeneous Migration

State Transformation. We adapted the LLVM compiler and GNU
Gold linker modifications proposed in Popcorn [2], originally devel-
oped for Linux, to embed the necessary metadata for heterogeneous
migration in our unikernel binaries. This includes modifying the
linker and compiler to generate ELF object files and binaries using
the HermitCore OSABI identifier. HermitCore was initially com-
piled with GCC, and a few kernel updates were necessary to enable
compilation with LLVM/Clang, such as refactoring nested func-
tions and changing unsupported assembly data types. The Newlib
C library used by HermitCore also needed instrumentation. In par-
ticular, it was modified to mark the bottom of the stack so that
during the stack translation process, when rewriting the stack from
top to bottom, the translation runtime knows where to stop. Func-
tions and global variables also needed to be located at the same
addresses in both ISAs to preserve the validity of pointers across
migration. We developed a python script that analyzes functions
and global variable sizes and alignment requirements, and gener-
ates custom linker scripts (1 per ISA) to compile an application with
aligned functions and global variables across ISAs.

Also adapted from Popcorn [2], the runtime responsible for stack
and register translation executes in the unikernel’s context. As it
originally assumed Linux, modifications were necessary for that
software to interface with HEXO’s kernel. It also involved a port of
Libelf to HEXO for the unikernel to access the binary ELF sections
containing the metadata through the host.

Semantic Migration. Triggering migration is a multi-step process
as (1) the entity deciding if a unikernel should migrate (the sched-
uler) is running independently of the unikernels themselves and
(2) a unikernel can only migrate when it reaches a migration point.

Inserting a migration point into user code simply corresponds
to inserting a function call — hexo_check_migrate();. Asitisa

function call, this creates a state of equivalence between ISAs. Inside
this function, our migration library checks if migration should
actually happen. This is indicated by a flag in the VM address
space that is in a shared memory area between the guest and the
hypervisor, accessed with atomic instructions. When the scheduler
decides that a unikernel should migrate, it sends a signal to the
hypervisor, which immediately sets the flag. Upon reaching the
next migration point, the guest will check and then discover that
the flag is set, and will begin the translation and migration process.
Migration points can be manually inserted at strategic points by
the programmer, or fully automatically inserted by the compiler
through the use of the -finstrument-functions flag.

The stack and registers are transformed in the guest’s context.
Afterwards, the guest issues a hypercall indicating which areas
need to be transferred to the target machine. The hypervisor then
checkpoints them to a file for checkpoint/restart, or serves them
for post-copy. As mentioned previously, most of the kernel data
is architecture-specific and is not transferred as opposed to appli-
cation data. For the application static data (.data and .bss) to be
efficiently checkpointed or served on demand, it is important for it
not to be intertwined with kernel static data. Because HEXO, as a
unikernel, is a LibOS, the kernel and the application are compiled
together into a single static binary. We must then ensure that ap-
plication and kernel data are placed on different memory pages.
This is achieved by placing kernel static data into separate sections
(.kdata and .kbss from application static data .data and .bss)
and enforcing alignment constraints using objcopy and modifica-
tions to the linker scripts. A few kernel data structures (process
descriptors, open file descriptors, etc.) are transmitted by the guest
to the hypervisor which saves them in a file. Currently HEXO does
not support the migration of sockets.

When resuming on the target machine, the guest kernel executes
a normal boot process. At that point the kernel state is restored and
a user task is created. In the case of a full checkpoint restore, the
task address space is then restored by the hypervisor by reading the
checkpoint file from the host. A stack is allocated for the user task
and care is taken for this stack to be at the same location as the stack
on the source machine to preserve the validity of pointers to the
stack. The transformed stack is restored and the set of transformed
registers is put at its top. The task is then marked as runnable and
the scheduler is invoked. While scheduling in the task, it pops the
register values from the stack into the CPU registers, allowing the
task to resume where it was stopped on the source machine.

State Transfer. With checkpoint/restart, once state is ready to be
transferred the guest issues a hypercall indicating which memory
areas need to be included in the checkpoint. The hypervisor writes
this memory into a file along with the registers’ content and some
metadata including kernel state. At that point guest and hypervisor
data structures can be freed on the source machine. The checkpoint
is transferred to the destination machine over the network and is
restored by the hypervisor after the guest kernel has initialized.
With post-copy, when the state is ready to be transferred, the
hypervisor snapshots a minimal checkpoint of the guest. This snap-
shot contains the transformed CPU register set and stack content,
as well as some metadata. The hypervisor next spawns a TCP/IP

Source
machine

@ Destination
machine

Hypervisor

Guest
address
space

0.

Application data ’?:3? Unmapped mem.

Figure 6: Post-copy batch page fault handling.

server. The minimal checkpoint is transferred to the target ma-
chine where it is restored after guest kernel initialization. The next
steps are illustrated on Figure 6. When booting, the guest kernel
ensures that the areas of the address space corresponding to remote
memory (e.g. application data) are unmapped (@ on Figure 6). The
application resumes and accesses to remote memory trigger a page
fault ®. The page fault handler issues a hypercall ©. The hyper-
visor is connected to the server, i.e., the other hypervisor on the
source machine, and requests the virtual address ®). The server
then transfers the page to the client ®.

We observed that on-demand paging involves a significant per-
page overhead, including a large latency due to the slow networks
that may be found in embedded systems. Thus we use batching: the
server transfers sets of pages which virtual addresses are contiguous
to the page that triggered the fault. Measurements between a typical
server and the Potato board show that batching pages by sets of 4
or 8 brings speed improvement of 50% compared to transferring
pages one by one. Once the pages are received the client writes
them in guest memory ® and the guest resumes.

In HEXO we migrate for consolidation, i.e. to free resources on
the server to accommodate more jobs. With post-copy, as long as
the entire memory to be transferred is not transmitted, resources
are still occupied on the source machine. This corresponds mostly
to RAM as the CPU usage while serving remote memory is minimal.
The amount of time to reach the end of a post-copy migration can
be undeterministic as it depends on the memory usage of the appli-
cation. Upon resuming in post-copy mode the guest kernel spawns
a kernel thread that has a larger priority than the application and
wakes up at regular intervals to proactively pull remote memory.
The frequency of this thread is configurable so that a system admin-
istrator can set a trade-off between the overhead the thread brings
to user code and the length of the post-copy migration.

The server has only a view upon the guest physical memory.
Thus, to be able to take a checkpoint or transfer a given virtual
page on-demand, a guest virtual-to-physical translation step is
needed. That overhead is reduced in HEXO as for the concerned
static memory (application data), there is a direct virtual to physical
mapping. Thus, only the heap pages require such translation. To
obtain a guest physical address from a guest virtual one within the
hypervisor, one can use the KYM_TRANSLATE command for x86-64.
Unfortunately this command is not available for Armé4, so HEXO
includes hypervisor code to perform a manual walk of the guest
page table to perform such translation, which has the benefit of
avoiding a KVM call on the host, i.e. a system call.

Table 2: Checkpoint sizes at half of the execution.

Benchmark | Chkpt. size Benchmark Chkpt. size
NPB BT (A) 45 MB NPB UA (A) 37 MB
NPB CG (A) 27 MB Phoenix Kmeans 5.7 MB
NPB DC (A) 191 MB Phoenix Matrix Mult. 47 MB
NPB FT (A) 323 MB Phoenix PCA 32 MB
NPB IS (B) 266 MB PARSEC Blackscholes | 612 MB
NPB LU (A) 40 MB (native)

NPB MG (A) 453 MB Linpack 1.5 MB
NPB SP (A) 47 MB Dhrystone 1.2 MB
NPB EP (A) 11 MB Whetstone 1.2 MB

4.3 Scheduling Infrastructure

The scheduler is a Python daemon running on the server. It takes
as input a list of jobs to run and gathers unikernel images from
a dedicated folder. As in a regular datacenter infrastructure, we
assume that each job comes with requirements in terms of vCPUs
and RAM. Because we target are HPC compute-intensive jobs, we
do not consolidate multiple VCPUs on a single physical CPU.

The scheduler monitors performance metrics for the jobs run-
ning on the server in order to estimate the slowdown they would
incur if offloaded to the board. This monitoring is achieved using
the live monitoring function of the perf-stat tool with the kvm
switch. It allows us to obtain at runtime basic performance counter
values for a VM running under KVM. In HEXO we do not need to
sample the performance counters very frequently — the period is
set to 1 second which has no noticeable overhead on performance.

In the case of post-copy migration, the scheduler has to keep
track of the unikernel states to avoid (1) killing a unikernel serving
remote memory and (2) sending a migration order to a unikernel
that did not yet pull its entire address space. To that aim, a file
is maintained on the host containing the current state of each
unikernel. It is updated by the hypervisor and read by the scheduler
to determine if a unikernel is migratable or not.

5 EVALUATION

We evaluate HEXO by showing that a server augmented with one
or a few embedded boards of negligible cost (1) provides a better
throughput than a single server and (2) is cheaper and more energy-
efficient than two servers in consolidated scenarios with macro-
benchmarks. We also analyze the migration overhead over a set of
compute-intensive macro- and micro-benchmarks.

The server and embedded board are the Xeon and Potato ma-
chines whose characteristics are in Table 1. They are linked with
Ethernet, capped at 100Mb/s by to the board’s NIC. Both run Ubuntu
16.04 as host, with Linux 4.4 (server) and 4.14 (board). We use a
wide variety of serial macro-benchmarks representative of modern
HPC compute-intensive datacenter workloads: the shared-memory
MapReduce implementation Phoenix [43], PARSEC [5], NPB [1],
and the micro-benchmarks Linpack, Dhrystone and Whetstone.

5.1 Migration Overhead

Full Checkpoint/Restart. We use the benchmarks listed in Ta-
ble 2 and manually trigger migration in full checkpoint mode at

half of the execution of each benchmark. We measure the execu-
tion times of (A) taking a checkpoint (includes ISA translation) and
writing it to a file, (B) transferring it to another machine, and (C)
restoring it. Numbers are gathered while migrating at half of the
execution of each benchmark, from the server to the board and from
the board to the server. Table 2 presents the size of the checkpoint
for each benchmark. It is dependent of the size of memory used by
the application and is relatively varied among programs, from 1.2
MB (Dhry/Whetstone) to 612 MB (Blackscholes). Application heap,
.data and .bss make the major part of these checkpoints.

Results are presented on Figure 7 in which each data point corre-
sponds to a benchmark run identified by its checkpoint size on the
x-axis. As one can observe, all phase times are function of the check-
point size which is not surprising; the bigger the checkpoint, the
more data needs to be written/transferred/read in each phase. An
interesting observation is that checkpointing and restoring times
differ according to the direction of the migration - checkpointing is
slower when going from the board to the server, while restoring is
slower the other way. The explanation lies in the difference in terms
of storage of the two machines. The SD card used on the board is
much slower than the hard disk of the server — checkpointing the
612 MB of Blackscholes is more than 10 times slower on the board
(70s) than on the server (6.3s). This is also true for restoring times,
even if the slowdown is smaller — about 3x. Restoring is generally
faster than checkpointing as it is a read operation and is probably
served by the Linux host from the page cache as the checkpoint file
was just transferred before restoration.

The board’s slow NIC caps the checkpoint transfer speed, inde-
pendently of the migration direction. For example, it takes close
to one minute to transfer Blackschole’s checkpoint. These tests
point out that a major factor in migration overhead is the slow
1/O capabilities of embedded systems, both in terms of network
and storage. However, given HEXO’s focus on HPC long-running
jobs, long migration overheads are not a fundamental limitation.
Moreover, post-copy can help to reduce that overhead.

Post-Copy. Post-copy can reduce I/O overhead in two ways. First,
it avoids writing/reading a potentially large checkpoint to/from
disk, Second, it reduces the network activity compared to full check-
point/restore in situations where a job finishes on the target ma-
chine without requesting the entire data set in memory.

To measure the efficiency of post-copy over full checkpoint trans-
fer, we select jobs with large datasets (see Table 2) and migrate at
half of the execution of each. We choose Blackscholes and DC
because they do not require the full data set to terminate after
resuming from migration. We also select FT and IS as they do re-
quire all the data set to terminate. We compare the overheads of
full checkpoint transfer vs. post-copy. Concerning the latter, we
compute the overhead after resuming by subtracting the time after
the restore step in full checkpoint mode from the time after the
restore step in post-copy mode.

Results are presented in Figure 8. As one can observe, the over-
head reduction brought by post-copy is significant for benchmarks
that do not require the entire memory to finish - for example it is
reduced by 40% for Blackscholes when migrating from the server
to the board, and more than 70% when migrating the other way
around. The improvement is due to the lowered network activity

3.5 Lower is better

Z 60 i C)

= 100 Loweris b)ftte)r(% X - Lower is better % © 3 +x86t0ARM +

o 50 g

g 10 £ ; X ARM to x86

£ 1% s ++ t + £ 40 * @ 2; T

w 4 G 30 = +

£ oaf S x g 15 .

2 o01," E2 * +X86 to ARM £ 1 + x

a 0.01 +x86 to ARM £ 10 - x

§ 0+ X ARM to x86 ‘g O*’* X ARM to x86 .§ ng « X X

5 0 100 200 300 400 500 600 700 § O 100 200 300 400 500 600 700 & 0 100 200 300 400 500 600 700
= B .

Checkpoint size (MB) © Checkpoint size (MB) S

Checkpoint size (MB)

Figure 7: Full checkpoint checkpointing (left), transferring (middle) and restoring (right) times.

140 | L ower is better _
[x86 to ARM full checkpointing

=z 120 x86 to ARM post-copy

T 100 72 ARM to x86 full checkpointing
'OEJ 80 = ARM to x86 post-copy

[

3 60

5

S 40

I

o0 20

>

Blackscholes

Benchmark

Figure 8: Migration overhead comparison.

brought by post-copy. The difference according to the direction of
the migration is because there is no large checkpoint taken and
restored with post-copy so the impact of the storage system, espe-
cially important when checkpointing on the board, is minimized.

For benchmarks requiring the entire memory to finish after
migration, post-copy can still reduce the storage overhead and thus
the total migration overhead (48% improvement for FT, 40% for IS)
when going from the board to the server. However, when going
from the server to the board there is not much storage overhead
and in terms of network the entire memory needs to be transferred
anyway in both migration modes, thus post-copy does not bring
significant benefits. It can even slightly increase the overhead, for
example with IS, because of page fault management.

5.2 Consolidated Scenarios

In this experiment we demonstrate the benefits of HEXO in consoli-
dated scenarios, showing that a server augmented with one or a few
embedded boards (1) offers a better throughput than a single server
and (2) is more energy-efficient than 2 servers. We consider 4 setups:
1 single Xeon server (denoted X); 1 server and one Potato board
(XP); 1 server and 3 boards (X3P); 2 servers (2X). We arbitrarily
choose 3 boards for X3P so that the total price of the boards stays
under 5% of the server (see Table 1). We disable hyper-threading on
the servers and use only 3 of the 4 cores on each machine (servers
and board) as we noticed that running compute-intensive jobs on all
cores resulted in congestion and low performance for the scheduler
and migration runtimes. It is also common practice to reserve part
of the host resources for host software [54].

We use four sets of jobs, managed by HEXO’s scheduler: A =
{EP}, B = {CG}, C = {EP,CG}, D = {EP,Kmeans,UA,LU,CG}.
We perform one run per set. For each run, an infinite queue of jobs

140
Higher is better WXeon

5 120 NXeon + 1 potato

g 100 Xeon + 3 potato

é 80 \ §

£ 60 Y §

I .

£ EP CG EPCG EP Kmeans
Job set CGLUUA

Figure 9: Throughput for HEXO versus 1 Xeon.

is created by picking jobs from the set one by one in a deterministic
order. We choose these particular sets because of the slowdown
factor exhibited by the jobs when run on the board compared to the
server. For A, EP represents the best case for HEXO (slowdown 3X).
For B, it is the worst case as CG’s slowdown is 30X. C is a middle-
ground and D contains a mix of jobs with variable slowdowns in
addition to EP and CG: Kmeans (7.5X), UA (10X) and LU (13X). We
choose the checkpoint/restart migration method as we want to free
resources as soon as possible and all of these jobs require the entire
data set to finish after migration.

Throughput. We send each queue to each setup and measure how
many jobs are completed after 1 hour, i.e. the throughput. Results
are presented on Figure 9. As one can see the only-EP set is the
best case for HEXO, which brings a high throughput improvement
of 25% (XP) and 67% (X3P). These good numbers are due to the low
slowdown of EP on the board, combined with a small checkpoint
size. CG has a high slowdown and is the worst case scenario: the
throughput improvement is only of 4.3% (XP) and 13% (X3P). The
other mixes of jobs bring throughput improvement that are far
superior to the price increase of XP (1.5% more expensive) and
X3P (4.5% more expensive); the improvement for the CG-EP mix
is of 16% (XP) and 33% (X3P), and for the EP-CG-Kmeans-LU-UA
mix it is 11% (XP) and 30% (X3P). These numbers must be put into
perspective with the minimal increase in price: $45 for XP and $135
for X3P. These good results show that the scheduler successfully
identifies and offloads the jobs with the lowest slowdowns (EP and
Kmeans) in all but the full-CG scenarios.

Energy Efficiency. We measured the power consumed by each
system when 3 cores are active and estimated the energy cost of
running each queue on each setup for 1 hour and computed how
many jobs were completed per kilojoule. Results are presented in

o
w

@ Xeon
NXeon + 1 potato

0.25 Higher is better

§ 0.2 =

22 o015 9

T2 01 N\

>3

< 005

=

i 0 N\
EP Kmeans
CG LU UA

Job set

Figure 10: Energy efficiency for HEXO vs 1 and 2 Xeons.

Figure 10. The increases in energy efficiency brought by HEXO are
somewhat lower than the increases in throughput as the power
consumption ratio between the board and the server is slightly
higher than the price ratio. Still, the energy efficiency is always
better in HEXO, and significantly increased in some cases. For
example for EP-only it is 22% (XP) and 56% (X3P), and for the EP-
CG-Kmeans-LU-UA mix it is 8.5% (XP) and 22% (X3P). Note that the
energy efficiency of 2X is the same as X, because 2X is twice faster
but also consumes twice as much as X. We re-ran the consolidation
experiments with the post-copy migration method and found no
noticeable difference because each of these benchmarks requires
the entire data set after migration.

6 RELATED WORKS

Embedded Systems Integration in the Datacenter. Integrating
embedded systems in the datacenter has been the subject of past
works [12, 15, 17, 19, 24, 27, 28, 33, 42, 44, 48]. Feasibility studies
and simulation work [33, 42] have shown the potential benefits but
do not propose real implementations. Existing implementations
disregard the ISA difference between servers and embedded sys-
tems by managing machines of different ISAs separately [27, 44],
simply assuming homogeneous ISA [15, 19, 24, 28, 48], or relying
on virtualization techniques [3, 9, 12, 17] that negatively impact per-
formance [2]. HEXO proposes a real implementation and focuses
on directly executing VMs running native code on the best ISAs in
their market domains: x86-64 for servers and Armé64 for embedded
systems. Moreover in HEXO the machines of different ISAs are
managed together and cooperate to process the same workload.
Embedded Systems and Servers Cooperation. Existing studies
propose to offload part of the execution of mobile applications to
servers in order to accelerate specific parts of the code [9, 12, 17,
32]. We take the inverse approach where the migration is mostly
performed from the server to the embedded system. Our goal is also
different as we target data-center workload consolidation. Finally,
our design differs significantly as most of these efforts target costly
virtualized runtimes [9, 12, 17]. Some consider native code [32], but
all are designed to offload only a section of an application, while
we migrate/checkpoint/restart an entire virtual machine.

Native ISA Translation Techniques. ISA translation techniques
for native code have been discussed in recent years [2, 14, 50].
Most of these work are simulations, assuming hypothetical CPU
chips containing multiple cores of different ISAs [14, 50]. Pop-
corn Linux [2] proposes a real-world implementation. However it

strongly differs from HEXO in terms of objective and design, as it tar-
gets process migration with the Linux kernel in a server-to-server
context, while we focus on VM (unikernel) migration between
servers and embedded systems. Helios [39] ships applications in an
intermediary format which is recompiled before execution on the
target ISA. It requires the developer to write application in a specific
language which is hinders programmability and is unacceptable in
many situations. In HEXO, we do not require source modification,
i.e. there is no effort from the application programmer.
Offloading Execution Flow. Some studies propose using check-
point/restart to freeze containers [55] and VMs [25, 26] during
periods of inactivity to free resources. They share a similar goal to
HEXO, consolidation. However the approach and contexts differ:
they target mostly-idle/sporadically active applications [55], where
it is acceptable not to run at all during idle periods. In HEXO, we
consider HPC jobs that are always active, which are offloaded to
slower execution units rather than completely frozen.

7 CONCLUSION

We advocate augmenting datacenter servers with one or a few em-
bedded boards of negligible price and power consumption. HEXO
offloads at runtime HPC compute-intensive jobs from servers to
embedded systems for consolidation purposes. This involves cop-
ing with the ISA difference (x86-64 and Armé4), using lightweight
VMs suitable for embedded systems (unikernels), and selectively
offloading jobs based on an estimation of the slowdown they incur
on the board. Evaluation shows a significant increase in throughput
and energy efficiency in consolidated scenarios. HEXO’s code is
available online: http://popcornlinux.org/index.php/hexo.

ACKNOWLEDGMENTS

We thank the anonymous reviewers and our shepherd, David Irwin,
for their valuable feedback. We thank Gilles Muller for his precious
comments. This work is supported by US ONR under grants N00014-
16-1-2104 and N00014-16-1-2711. This research and development
was also supported by the German Federal Ministry of Education
and Research under Grant 01IH16010C (Project ENVELOPE).

REFERENCES

[1] David H Bailey, Eric Barszcz, John T Barton, David S Browning, Robert L Carter,
Leonardo Dagum, Rod A Fatoohi, Paul O Frederickson, Thomas A Lasinski, Rob S
Schreiber, et al. 1991. The NAS parallel benchmarks. The International Journal of
Supercomputing Applications 5, 3 (1991), 63-73.

Antonio Barbalace, Robert Lyerly, Christopher Jelesnianski, Anthony Carno,

Ho-Ren Chuang, Vincent Legout, and Binoy Ravindran. 2017. Breaking the

boundaries in heterogeneous-ISA datacenters. In ACM SIGPLAN Notices, Vol. 52.

ACM, 645-659.

[3] Fabrice Bellard. 2005. QEMU, a fast and portable dynamic translator.. In USENIX
Annual Technical Conference, FREENIX Track, Vol. 41. 46.

[4] Ricardo Bianchini. 2017. Improving Datacenter Efficiency. In Proceedings of the
Twenty-Second International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS ’17). ACM, New York, NY, USA, 1.

[5] Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh, and Kai Li. 2008. The
PARSEC benchmark suite: Characterization and architectural implications. In
Proceedings of the 17th international conference on Parallel architectures and com-
pilation techniques. ACM, 72-81.

[6] Eric Brown. 2018. Catalog of 116 open-spec hacker boards. http://linuxgizmos.
com/catalog-of-116-open-spec-hacker-boards/, Online, accessed 01/10/2019.

[7] Edouard Bugnion, Jason Nieh, and Dan Tsafrir. 2017. Hardware and software
support for virtualization. Synthesis Lectures on Computer Architecture 12, 1
(2017), 1-206.

[8] Yanpei Chen, Archana Sulochana Ganapathi, Rean Griffith, and Randy H Katz.
2010. Towards understanding cloud performance tradeoffs using statistical

[2

http://popcornlinux.org/index.php/hexo
http://linuxgizmos.com/catalog-of-116-open-spec-hacker-boards/
http://linuxgizmos.com/catalog-of-116-open-spec-hacker-boards/

[9

=

[10]

[11

[12]

[13]

[14

[15]

(16

[17

(18]

[19

[20]

[21

[22]
[23]
[24]

[25

[26]

[27]

[28

[29

[30]

[31]

[32]

[33]

workload analysis and replay. University of California at Berkeley, Technical
Report No. UCB/EECS-2010-81 (2010).

Byung-Gon Chun, Sunghwan Thm, Petros Maniatis, Mayur Naik, and Ashwin
Patti. 2011. Clonecloud: elastic execution between mobile device and cloud. In
Proceedings of the sixth conference on Computer systems. ACM, 301-314.
Christopher Clark, Keir Fraser, Steven Hand, Jacob Gorm Hansen, Eric Jul, Chris-
tian Limpach, Ian Pratt, and Andrew Warfield. 2005. Live migration of virtual
machines. In Proceedings of the 2nd Conference on Symposium on Networked
Systems Design & Implementation-Volume 2. USENIX Association, 273-286.
Intel Corp. 2018. Intel Clear Containers. https://clearlinux.org/documentation/
clear-containers. Online, accessed 08/04/2018.

Eduardo Cuervo, Aruna Balasubramanian, Dae-ki Cho, Alec Wolman, Stefan
Saroiu, Ranveer Chandra, and Paramvir Bahl. 2010. MAUIL: Making Smartphones
Last Longer with Code Offload. In Proceedings of the 8th International Conference
on Mobile Systems, Applications, and Services (MobiSys °10). 49-62.

Johan de Gelas. 2016. Investigating Cavium’s ThunderX: The First ARM Server
SoC With Ambition. Online, accessed 2018/09/15.

Matthew DeVuyst, Ashish Venkat, and Dean M Tullsen. 2012. Execution migra-
tion in a heterogeneous-ISA chip multiprocessor. In ACM SIGARCH Computer
Architecture News, Vol. 40. ACM, 261-272.

Yves Durand, Paul M Carpenter, Stefano Adami, Angelos Bilas, Denis Dutoit,
Alexis Farcy, Georgi Gaydadjiev, John Goodacre, Manolis Katevenis, Manolis
Marazakis, et al. 2014. Euroserver: Energy efficient node for european micro-
servers. In Digital System Design (DSD), 2014 17th Euromicro Conference on. IEEE.
Peter Garraghan, PM Townend, and Jie Xu. 2013. An analysis of the server
characteristics and resource utilization in google cloud. In IC2E’13 Proceedings of
the 2013 IEEE International Conference on Cloud Engineering. IEEE, 124-131.
Mark S Gordon, Davoud Anoushe Jamshidi, Scott A Mahlke, Zhuoging Mor-
ley Mao, and Xu Chen. 2012. COMET: Code Offload by Migrating Execution
Transparently.. In OSDI, Vol. 12. 93-106.

Robert Grandl, Ganesh Ananthanarayanan, Srikanth Kandula, Sriram Rao, and
Aditya Akella. 2015. Multi-resource packing for cluster schedulers. ACM SIG-
COMM Computer Communication Review 44, 4 (2015), 455-466.

Hewlett Packard. 2018. HPE Moonshot System. https://www.hpe.com/us/en/
servers/moonshot.html Online, accessed 2018/09/20.

Benjamin Hindman, Andy Konwinski, Matei Zaharia, Ali Ghodsi, Anthony D
Joseph, Randy H Katz, Scott Shenker, and Ion Stoica. 2011. Mesos: A Platform
for Fine-Grained Resource Sharing in the Data Center.. In NSDI Vol. 11. 22-22.
Michael R Hines, Umesh Deshpande, and Kartik Gopalan. 2009. Post-copy live
migration of virtual machines. ACM SIGOPS operating systems review 43, 3 (2009).
SK Hynix. 2013. H5STQ8G63AMR Datasheet. https://www.skhynix.com/products.
view.do?vseq=904&cseq=74.

Antti Kantee and Justin Cormack. 2014. Rump Kernels No OS? No Problem!
USENIX; login: magazine (2014).

Kimberly Keeton. 2015. The machine: An architecture for memory-centric com-
puting. In Workshop on Runtime and Operating Systems for Supercomputers (ROSS).
Thomas Knauth and Christof Fetzer. 2014. DreamServer: Truly On-Demand
Cloud Services. In Proceedings of International Conference on Systems and Storage
(SYSTOR 2014). ACM, New York, NY, USA, Article 9, 11 pages.

Thomas Knauth, Pradeep Kiruvale, Matti Hiltunen, and Christof Fetzer. 2014.
Sloth: SDN-enabled Activity-based Virtual Machine Deployment. In Proceedings
of the Third Workshop on Hot Topics in Software Defined Networking (HotSDN ’14).
ACM, New York, NY, USA, 205-206.

Andrew Krioukov, Prashanth Mohan, Sara Alspaugh, Laura Keys, David Culler,
and Randy Katz. 2011. Napsac: Design and implementation of a power-
proportional web cluster. ACM SIGCOMM computer communication review 41, 1
(2011), 102-108.

Willis Lang, Jignesh M. Patel, and Srinath Shankar. 2010. Wimpy Node Clusters:
What About Non-wimpy Workloads?. In Proceedings of the Sixth International
Workshop on Data Management on New Hardware (DaMoN ’10). ACM, New York,
NY, USA, 47-55.

Stefan Lankes, Simon Pickartz, and Jens Breitbart. 2016. HermitCore: a unikernel
for extreme scale computing. In Proceedings of the 6th International Workshop on
Runtime and Operating Systems for Supercomputers (ROSS 2016). ACM.

S. Lankes, S. Pickartz, and J. Breitbart. 2017. A Low Noise Unikernel for Extrem-
Scale Systems. In 30th International Conference on Architecture of Computing
Systems (ARCS 2017), Vienna, Austria, April 3—6, 2017. Springer International
Publishing, 73-84.

Chris Lattner and Vikram Adve. 2004. LLVM: A compilation framework for
lifelong program analysis & transformation. In Proceedings of the international
symposium on Code generation and optimization: feedback-directed and runtime
optimization. IEEE Computer Society, 75.

Gwangmu Lee, Hyunjoon Park, Seonyeong Heo, Kyung-Ah Chang, Hyogun
Lee, and Hanjun Kim. 2015. Architecture-aware automatic computation offload
for native applications. In Proceedings of the 48th international symposium on
microarchitecture. ACM, 521-532.

Kevin Lim, Parthasarathy Ranganathan, Jichuan Chang, Chandrakant Patel,
Trevor Mudge, and Steven Reinhardt. 2008. Understanding and designing new

[34

(35]

&
2

[37

[38

[39

[40

[41

[42

[43

[44

S
&

[49]

[50

[51

(52]

(53]

[55

server architectures for emerging warehouse-computing environments. In ACM
SIGARCH Computer Architecture News, Vol. 36. IEEE Computer Society, 315-326.
Anil Madhavapeddy, Thomas Leonard, Magnus Skjegstad, Thomas Gazagnaire,
David Sheets, David J Scott, Richard Mortier, Amir Chaudhry, Balraj Singh, Jon
Ludlam, et al. 2015. Jitsu: Just-In-Time Summoning of Unikernels.. In Proceedings
of the 12th USENIX Symposium on Networked Systems Design and Implementation
(NSDI’15). 559-573.

A Madhavapeddy, R Mortier, C Rotsos, DJ Scott, B Singh, T Gazagnaire, S Smith,
S Hand, and] Crowcroft. 2013. Unikernels: library operating systems for the
cloud.. In Proceedings of the Eighteenth International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS’13). ACM,
461-472.

Filipe Manco, Costin Lupu, Florian Schmidt, Jose Mendes, Simon Kuenzer, Sumit
Sati, Kenichi Yasukata, Costin Raiciu, and Felipe Huici. 2017. My VM is Lighter
(and Safer) Than Your Container. In Proceedings of the 26th Symposium on Oper-
ating Systems Principles (SOSP ’17). ACM, New York, NY, USA, 218-233.
Micron. 2019. Systems Power Calculators. https://www.micron.com/support/
tools-and-utilities/power-calc.

Asit K Mishra, Joseph L Hellerstein, Walfredo Cirne, and Chita R Das. 2010.
Towards characterizing cloud backend workloads: insights from Google compute
clusters. ACM SIGMETRICS Performance Evaluation Review 37, 4 (2010), 34-41.
Edmund B Nightingale, Orion Hodson, Ross McIlroy, Chris Hawblitzel, and
Galen Hunt. 2009. Helios: heterogeneous multiprocessing with satellite kernels.
In Proceedings of the ACM SIGOPS 22nd symposium on Operating systems principles.
ACM, 221-234.

Y. Park, E. Van Hensbergen, M. Hillenbrand, T. Inglett, B. S. Rosenburg, K. D.
Ryu, and R. W. Wisniewski. 2012. FusedOS: Fusing LWK Performance with FWK
Functionality in a Heterogeneous Environment. SBAC-PAD (2012), 211-218.
Vinicius Petrucci, Orlando Loques, and Daniel Mossé. 2012. Lucky Scheduling
for Energy-Efficient Heterogeneous Multi-Core Systems.. In HotPower.

Nikola Rajovic, Paul M Carpenter, Isaac Gelado, Nikola Puzovic, Alex Ramirez,
and Mateo Valero. 2013. Supercomputing with commodity CPUs: Are mobile
SoCs ready for HPC?. In Proceedings of the International Conference on High
Performance Computing, Networking, Storage and Analysis. ACM, 40.

Colby Ranger, Ramanan Raghuraman, Arun Penmetsa, Gary Bradski, and Chris-
tos Kozyrakis. 2007. Evaluating mapreduce for multi-core and multiprocessor
systems. In High Performance Computer Architecture, 2007. HPCA 2007. IEEE 13th
International Symposium on. leee, 13-24.

Scaleway. 2018. Scaleway Cloud Pricing. https://www.scaleway.com/pricing/
Online, accessed 2018/09/15.

Taku Shimosawa, Balazs Gerofi, Masamichi Takagi, Gou Nakamura, Tomoki
Shirasawa, Yuji Saeki, Masaaki Shimizu, Atsushi Hori, and Yutaka Ishikawa. 2014.
Interface for Heterogeneous Kernels: A Framework to Enable Hybrid OS Designs
targeting High Performance Computing on Manycore Architectures. 2014 21st
International Conference on High Performance Computing (HiPC) (2014), 1-10.
SK Hynix. 2013. H5TQ4G63AFR Datasheet. https://www.skhynix.com/products.
view.do?vseq=881&cseq=74.

TrendForce Corp. 2019. DRAM Exchange. https://www.dramexchange.com/.
Vijay Vasudevan, David Andersen, Michael Kaminsky, Lawrence Tan, Jason
Franklin, and Iulian Moraru. 2010. Energy-efficient cluster computing with FAWN:
Workloads and implications. In Proceedings of the 1st International Conference on
Energy-Efficient Computing and Networking. ACM, 195-204.

Vinod Kumar Vavilapalli, Arun C Murthy, Chris Douglas, Sharad Agarwal, Ma-
hadev Konar, Robert Evans, Thomas Graves, Jason Lowe, Hitesh Shah, Siddharth
Seth, et al. 2013. Apache hadoop yarn: Yet another resource negotiator. In Pro-
ceedings of the 4th annual Symposium on Cloud Computing. ACM, 5.

Ashish Venkat and Dean M Tullsen. 2014. Harnessing ISA diversity: Design of a
heterogeneous-ISA chip multiprocessor. ACM SIGARCH Computer Architecture
News 42, 3 (2014), 121-132.

David G Von Bank, Charles M Shub, and Robert W Sebesta. 1994. A unified
model of pointwise equivalence of procedural computations. ACM Transactions
on Programming Languages and Systems (TOPLAS) 16, 6 (1994), 1842-1874.

D. Williams and R. Koller. 2016. Unikernel Monitors: Extending Minimalism
Outside of the Box. In 8th USENIX Workshop on Hot Topics in Cloud Computing
(HotCloud 16). USENIX Association, Denver, CO, USA. https://www.usenix.org/
conference/hotcloud16/workshop-program/presentation/williams

R. Wisniewski, T. Inglett, P. Keppel, R. Murty, and R. Riesen. 2014. mOS: An
Architecture for Extreme-Scale Operating Systems. In Proceedings of the 4th
International Workshop on Runtime and Operating Systems for Supercomputers
(ROSS ’14). ACM Request Permissions, New York, New York, USA, 1-8.

Xen Wiki. 2015. Xen Project Best Practices. https://bit.ly/2HpVYQs, Online,
accessed 01/10/2019.

Liang Zhang, James Litton, Frank Cangialosi, Theophilus Benson, Dave Levin, and
Alan Mislove. 2016. Picocenter: Supporting Long-lived, Mostly-idle Applications
in Cloud Environments. In Proceedings of the Eleventh European Conference on
Computer Systems (EuroSys °16). ACM, New York, NY, USA, Article 37, 16 pages.

https://clearlinux.org/documentation/clear-containers
https://clearlinux.org/documentation/clear-containers
https://www.hpe.com/us/en/servers/moonshot.html
https://www.hpe.com/us/en/servers/moonshot.html
https://www.skhynix.com/products.view.do?vseq=904&cseq=74
https://www.skhynix.com/products.view.do?vseq=904&cseq=74
https://www.micron.com/support/tools-and-utilities/power-calc
https://www.micron.com/support/tools-and-utilities/power-calc
https://www.scaleway.com/pricing/
https://www.skhynix.com/products.view.do?vseq=881&cseq=74
https://www.skhynix.com/products.view.do?vseq=881&cseq=74
https://www.dramexchange.com/
https://www.usenix.org/conference/hotcloud16/workshop-program/presentation/williams
https://www.usenix.org/conference/hotcloud16/workshop-program/presentation/williams
https://bit.ly/2HpVYQs

	Abstract
	1 Introduction
	2 Motivation
	3 Design
	3.1 HEXO: Assumptions and Scope
	3.2 System Overview
	3.3 Multi-ISA Unikernel Semantic Migration
	3.4 Datacenter Integration and Scheduler

	4 Implementation
	4.1 Porting HermitCore to ARM
	4.2 Semantic Heterogeneous Migration
	4.3 Scheduling Infrastructure

	5 Evaluation
	5.1 Migration Overhead
	5.2 Consolidated Scenarios

	6 Related Works
	7 Conclusion
	References

