
HyFlow: A High Performance Distributed Software
Transactional Memory Framework

Mohamed M. Saad
ECE Dept., Virginia Tech

Blacksburg, VA 24061, USA
msaad@vt.edu

Binoy Ravindran
ECE Dept., Virginia Tech

Blacksburg, VA 24061, USA
binoy@vt.edu

ABSTRACT
We present HyFlow — a distributed software transactional
memory (D-STM) framework for distributed concurrency
control. HyFlow is a Java framework for D-STM, with
pluggable support for directory lookup protocols, transac-
tional synchronization and recovery mechanisms, contention
management policies, cache coherence protocols, and net-
work communication protocols. HyFlow exports a simple
distributed programming model that excludes locks: using
(Java 5) annotations, atomic sections are defined as transac-
tions, in which reads and writes to shared, local and remote
objects appear to take effect instantaneously. No changes
are needed to the underlying virtual machine or compiler.
We describe HyFlow’s architecture and implementation, and
report on experimental studies comparing HyFlow against
competing models including Java remote method invoca-
tion (RMI) with mutual exclusion and read/write locks, dis-
tributed shared memory (DSM), and directory-based D-STM.
Our studies show that HyFlow outperforms competitors by
as much as 40-190% on a broad range of transactional work-
loads on a 72-node system, with more than 500 concurrent
transactions.

Categories and Subject Descriptors
D.1.3 [Software]: Concurrent Programming; H.2.4 [Systems]:
Transaction processing

General Terms
Design, Languages, Measurement, Performance

Keywords
Software Transactional Memory, Distributed systems, Dataflow,
Control Flow, Framework, Java

1. INTRODUCTION
Lock-based synchronization suffers from programmabil-

ity, scalability, and composability challenges [4]. Transac-
tional memory (TM) [4] is a promising alternative to lock-
based concurrency control. In addition to providing a sim-
ple programming model, TM provides performance compa-
rable to highly concurrent, fine-grained locking, and is com-
posable. Similar to multiprocessor TM, distributed STM

Copyright is held by the author/owner(s).
HPDC’11, June 8–11, 2011, San Jose, California, USA.
ACM 978-1-4503-0552-5/11/06.

(or D-STM) is an alternative to lock-based distributed con-
currency control. D-STM can be supported in any of the
classical distributed execution models, including a) control
flow [1], where objects are immobile and transactions invoke
object operations through RPCs; b) dataflow [11], where
transactions are immobile, and objects are migrated to in-
voking transactions; and c) a hybrid model (e.g., [2]), where
transactions or objects are migrated, heuristically, based on
properties such as access profiles, object size, or locality.
The different models have their concomitant tradeoffs.

We present HyFlow — the first ever D-STM framework
implementation. HyFlow supports both dataflow, control
flow, and hybrid execution models, and ensures distributed
transactional properties including atomicity, consistency, and
isolation. HyFlow’s architecture is module-based, with well-
defined APIs for further plugins. Default implementations
exist for all needed modules. The framework currently in-
cludes three algorithms to support distributed memory trans-
actions: the distributed transactional locking II (D-TL2) al-
gorithm [8], the distributed RMI-DSTM algorithm [9], and a
distributed variant of the UndoLog algorithm. A wide range
of contention management policies (e.g., Karma, Aggressive,
Polite, Kindergarten, Eruption) [10] are included in HyFlow.
Four directory protocols [3,5,12] are implemented in HyFlow
to track objects distributed over the network. HyFlow uses a
voting algorithm, the dynamic two phase commitment pro-
tocol (D2PC) [6], to support control flow transactional exe-
cutions. Network communication is supported using proto-
cols including TCP, UDP, and SCTP. We also implement a
suite of distributed benchmark applications in HyFlow, to
evaluate D-STM algorithms and protocols.

2. HYFLOW ARCHITECTURE
Figure 1 shows the nodal architecture of HyFlow. Five

modules and a runtime handler form the basis of the ar-
chitecture. The modules include the Transaction Manager,
Instrumentation Engine, Object Access Module, Transaction
Validation Module, and Communication Manager.

The HyFlow runtime handler represents a standalone en-
tity that delegates application-level requests to the frame-
work. HyFlow uses run-time instrumentation to generate
transactional code, like other (multiprocessor) STM such
as Deuce, yielding almost two orders of magnitude superior
performance than reflection-based STM (e.g. DSTM2).

The Transaction Manager contains mechanisms for ensur-
ing a consistent view of memory for transactions, validat-
ing memory locations, and retrying transactional code when

HyFlow Runtime

Transaction Manager

Object Access Module

Directory Manager Object

Proxy

Communication Manager

Migration

 Module

Cached/Local

 Objects Pool

.... Application

Level Threads

Transaction Validation

 Module

 Voting

 Protocol

Contention

 Manager

Java Classes

 Java

 Virtual

Machine

 (JVM)

 Instrumentation

 Engine

Figure 1: HyFlow Node Architecture

needed. Based on the object access profile and object sizes,
objects are migrated.

The Instrumentation Engine modifies class code at run-
time, adds new fields, and modifies annotated methods to
support transactional behavior. Further, it generates call-
back functions that work as “hooks” for Transaction Man-
ager events such as onWrite, beforeWrite, beforeRead, etc.

Every node employs a Transaction Manager, which runs
locally and handles local transactional code. The Transac-
tion Manager treats remote transactions and local transac-
tions uniformly. Thus, the distributed nature of the system
is seamless at the level of transaction management.

The Object Access Module has three main tasks: 1) pro-
viding access to the object owned by the current node, 2)
locating and sending access requests to remote objects, and
3) retrieving any required object meta-data (e.g., latest ver-
sion number). Objects are located with their IDs using the
Directory Manager, which encapsulates a directory lookup
protocol (e.g. [5]). Upon object creation, the Directory
Manager is notified and publishes the object to other nodes.
The Migration Module decides when to move an object to
another owner, or keep it locally. The purpose of doing so
is to exploit object locality and reduce the overall commu-
nication traffic between nodes.

The Transaction Validation Module ensures data consis-
tency by validating transactions upon their completion. It
uses two sub-modules: 1) Contention Manager. This sub-
module is consulted when transactional conflicts occur, to-
ward aborting or postponing one of the conflicting trans-
actions. However, when one of the conflicting transactions
is remote, the contention policy decision is made globally
based on heuristics; and 2) Global Voting handler. Validat-
ing control flow transactions requires a global decision across
all participating nodes, such as by a voting protocol (e.g.,
D2PC [6]). This sub-module is responsible for collecting
votes from other nodes and make a global commit decision.

Figure 2 shows the throughput of the different schemes at
10-90% read-only transactions, under increasing number of
nodes, which increases contention (with all else being equal).
We observe that HyFlow/D-TL2 outperforms all other dis-
tributed concurrency control models by 40-190%. Complete
details of HyFlow is available in [7].

3. CONCLUSIONS
We presented HyFlow, a high performance pluggable, dis-

tributed STM that supports both dataflow and control flow
distributed transactional execution. Our experiments show

 0

 100

 200

 300

 400

 500

10% 30% 50% 70% 90%

T
hr

ou
gh

pu
t (

T
ra

ns
ac

tio
ns

/S
ec

)

Reads Percentage

HyFLow/D-TL2
HyFLow/Undo-Log

RMI-RW
DSM
RMI

Figure 2: Bank benchmark throughput over 72 nodes.

that the dataflow model scales well, as it permits remote ob-
jects to move toward geographically-close nodes that access
them frequently, reducing communication costs. Control
flow is beneficial under non-frequent object calls or calls to
objects with large sizes. Our implementation shows that D-
STM, in general, provides comparable performance to clas-
sical distributed concurrency control models, and exports
a simpler programming interface, while avoiding dataraces,
deadlocks, and livelocks. HyFlow provides a testbed for
designing, implementing, and evaluating algorithms for D-
STM. HyFlow is publicly available at hyflow.org.

4. REFERENCES
[1] K. Arnold, R. Scheifler, J. Waldo, B. O’Sullivan, and

A. Wollrath. Jini Specification. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA.

[2] R. L. Bocchino, V. S. Adve, and B. L. Chamberlain.
Software transactional memory for large scale clusters.
In PPoPP ’08.

[3] M. J. Demmer and M. Herlihy. The Arrow distributed
directory protocol. In DISC ’98.

[4] T. Harris, J. Larus, and R. Rajwar. Transactional
Memory, 2nd edition. Synthesis Lectures on Computer
Architecture, 5(1):1–263, 2010.

[5] M. Herlihy and M. P. Warres. A tale of two
directories: implementing distributed shared objects
in Java. In JAVA ’99.

[6] Y. Raz. The Dynamic Two Phase Commitment
(D2PC) Protocol. In ICDT’95.

[7] M. M. Saad and B. Ravindran. Distributed
Hybrid-Flow STM: Technical Report. Dec.’10.

[8] M. M. Saad and B. Ravindran. Distributed
Transactional Locking II: Technical Report. Jan.’11.

[9] M. M. Saad and B. Ravindran. RMI-DSTM: Control
Flow Distributed Software Transactional Memory:
Technical Report. Feb.’11.

[10] W. N. Scherer III and M. L. Scott. Contention
management in dynamic software transactional
memory. In PODC’04.

[11] E. Tilevich and Y. Smaragdakis. J-Orchestra:
Automatic Java application partitioning. In
ECOOP’02.

[12] B. Zhang and B. Ravindran. Brief announcement:
Relay: A cache-coherence protocol for distributed
transactional memory. In OPODIS’09.

