
HydraVM: Extracting Parallelism from
Legacy Sequential Code Using STM

Mohamed M. Saad, Mohamed Mohamedin, and Binoy Ravindran
ECE Dept., Virginia Tech, Blacksburg, VA 24061, USA

{msaad,mohamedin,binoy}@vt.edu

Abstract
We present a virtual machine prototype, called HydraVM,
that automatically extracts parallelism from legacy sequen-
tial code (at the bytecode level) through a set of techniques
including code profiling, data dependency analysis, and ex-
ecution analysis. HydraVM is built by extending the Jikes
RVM and modifying its baseline compiler, and exploits soft-
ware transactional memory to manage concurrent and out-
of-order memory accesses. Our experimental studies show
up to 5× speedup on the JOlden benchmark.

1. Introduction
Many organizations with enterprise-class legacy software
are increasingly faced with a hardware technology refresh
challenge due to the ubiquity of chip multiprocessor (CMP)
hardware. This problem is significant when legacy code-
bases run into several million LOC and are not significantly
concurrent (often intentionally designed to be sequential to
reduce development costs, while exploiting Moore’s law
of single-core chips). Manual exposition of concurrency is
largely non-scalable for such codebases. In some instances,
sources are not available due to proprietary reasons, intellec-
tual property issues (of integrated third-party software), and
organizational boundaries. This motivates techniques and
tools for automated concurrency refactoring.

Past efforts on parallelizing sequential programs can
be broadly classified into speculative and non-speculative
techniques. Non-speculative techniques, which are usually
compiler-based, exploit loop-level parallelism, and differ on
the type of data dependency that they handle (e.g., static ar-
rays, dynamically allocated arrays, pointers) [4, 13, 16, 27].

Speculative techniques can be broadly classified based
on 1) what program constructs they use to extract threads
(e.g., loops, subroutines), 2) whether they are implemented
in hardware or software, 3) whether they require source
codes, and 4) whether they are done online, offline, or both.
Of course, this classification is not mutually exclusive.

Parallelization using thread-level speculation (TLS) hard-
ware has been extensively studied, most of which largely fo-
cus on loops [10, 11, 15, 20, 24, 26, 31–33]. Automatic and
semi-automatic parallelization without TLS hardware have
also been explored [9, 12, 13, 18, 27].

Transactional memory (TM) has recently emerged as a
powerful concurrency control abstraction [19]. With TM,
code that read/write shared memory objects is organized

as transactions, which speculatively execute, while log-
ging changes made to objects–e.g., using an undo-log or
a write-buffer. When two transactions conflict (e.g., read-
/write, write/write), one of them is aborted and the other
is committed, yielding (the illusion of) atomicity. Aborted
transactions are re-started, after rolling-back the changes–
e.g., undoing object changes using the undo-log (eager), or
discarding the write buffers (lazy). Besides a simple pro-
gramming model, TM provides performance comparable to
lock-based synchronization [29] and is composable. Mul-
tiprocessor TM has been proposed in hardware (HTM), in
software (STM), and in hardware/software combination.

Motivated by TM’s advantages, several recent efforts
have exploited TM for automatic parallelization. In par-
ticular, trace-based automatic/semi-automatic paralleliza-
tion is explored in [5, 6, 8, 14], which use HTM to han-
dle dependencies. [25] parallelizes loops with dependen-
cies using thread pipelines, wherein multiple parallel thread
pipelines run concurrently. [22] parallelizes loops by run-
ning them as transactions, with STM preserving the program
order. [30] parallelizes loops by running a non-speculative
“lead” thread, while other threads run other iterations spec-
ulatively, with STM managing dependencies.

In this paper, we exploit STM for automated concurrency
refactoring. Our basic idea is to optimistically split code (at
the bytecode level) into parallel semi-independent sections,
called superblocks [17]. For each superblock, we create a
synthetic method that contains the code for the superblock
and receives variables accessed by the superblock as param-
eters, and returns the exit point of the superblock. This syn-
thetic method is executed in a separate thread, and is run as
a memory transaction, while relying on STM to detect and
resolve memory conflicts (between the superblocks).

Thus, each transaction has its own memory that it ac-
cesses or modifies. When the transaction is invoked, a copy
of all variables is made and is sent to the method. Upon
successful completion of the transaction, this copy is then
merged back with the master memory version. In short, our
memory model is lazy-commit with write-buffer implemen-
tation. To distinguish between multiple copies of an object,
an identifier is added to the header of an object, which is
unique in all copies of the object. We define a successful
execution of an invoked superblock as when 1) it does not
cause a memory conflict with another superblock with an

1

older chronological order, and 2) it is reachable in a future
execution of the program.

We build these techniques into a virtual machine (VM)
called, HydraVM, by extending the Jikes RVM [1] and mod-
ifying its baseline compiler.

To handle potential memory conflicts, we develop ByteSTM,
which is a VM-level STM implementation, which yields the
following benefits: 1) Significant implementation flexibil-
ity in handling memory access at low-level (e.g., registers,
thread stack) and for transparently manipulating bytecode
instructions for transactional synchronization and recovery;
2) Higher performance due to implementing all TM building
blocks (e.g., versioning, conflict detection, contention man-
agement) at bytecode-level; and 3) Easy integration with
other modules of HydraVM (Section 3.4). To preserve the
program order, each transaction must wait until its preceding
code in the original program has been executed to commit.
Toward this, ByteSTM suspends completed transactions till
their valid commit times are reached. Aborted transactions
discard their changes and are either terminated (i.e., a pro-
gram flow violation or a misprediction) or re-executed (i.e.,
to resolve a data-dependency conflict).

We experimentally evaluated HydraVM on a set of bench-
mark applications, including a subset of the JOlden bench-
mark suite [7]. Our results reveal speedup of up to 5×.

Our work is different from past STM-based paralleliza-
tion works in that we consider entire programs (not just loops
such as [22, 30]), and automatically identify parallel sections
(i.e., superblocks) by compile and run-time program analy-
sis techniques, which are then executed as transactions. Ad-
ditionally, our work targets arbitrary programs (not just re-
cursive such as [6]), is entirely software-based (unlike [6]),
and do not require program source code.

HydraVM is publicly available at www.hydravm.org.

2. Overview
Adaptive Optimization System (AOS) [1] is a general VM
architecture that allows online feedback-directed optimiza-
tions. In HydraVM, we extend the AOS architecture to en-
able parallelization of input programs, and dynamically re-
fine parallelized sections based on execution. Figure 1 shows
HydraVM’s architecture, which contains six components:
• Profiler: performs static analysis and adds additional in-

structions to monitor data access and execution flow.
• Inspector: monitors program execution at run-time and

produces profiling data.
• Recompilation: recompiles bytecode into machine code

and reloads classes definitions at run-time.
• Knowledge Repository: a store for profiling data.
• Builder: uses profiling data to reconstruct the program

as multi-threaded code, and tunes execution according to
data access conflicts.

• TM Manager: does transactional concurrency control to
guarantee safe memory and preserves execution order.

Builder

 Runtime

Measurements

Recompilation

Profiler
TM Manager

Figure 1. HydraVM Architecture

HydraVM works in three phases. The first three phases
focus on detecting parallel patterns in the code, by inject-
ing the code with hooks, monitoring code execution, and
determining memory access and execution patterns. This
may lead to slower code execution due to inspection over-
head. Profiler is active only during this phase. It analyzes
the bytecode and instruments it with additional instructions.
Inspector collects information from generated instructions
and stores it in the Knowledge Repository.

The second phase starts after collecting enough informa-
tion in the Knowledge Repository about which blocks were
executed and how they access memory. The Builder compo-
nent uses this information to split the code into superblocks,
which can be executed in parallel. New version of the code is
generated and is compiled by the Recompilation component.
The TM Manager manages memory access of the execution
of the parallel version, and organizes transaction commit ac-
cording to the original execution order. The manager collects
profiling data including commit rate and conflicting threads.

The last phase is tuning the reconstructed program based
on thread behavior (i.e., conflict rate). The Builder evalu-
ates the previous reconstruction of superblocks by splitting
or merging some of them, and reassigning them to threads.
The last two phases work in an alternative way till the end
of program execution, as the second phase represents a feed-
back to the third one.

HydraVM supports two modes: online and offline. In the
online mode, we assume that program execution is long
enough to capture parallel execution patterns. Otherwise, the
first phase can be done in a separate pre-execution phase,
which can be classified as offline mode.

We now describe each of HydraVM’s components.
2.1 Bytecode Profiling
First, HydraVM accepts program bytecode and converts it

to architecture-specific machine code. We consider the pro-
gram as a set of basic blocks, where each basic block is a
sequence of non-branching instructions that ends either with
a branch instruction (conditional or non-conditional) or a re-
turn. Thus, any program can be represented by a graph in

2

www.hydravm.org.

e

g

f

e

g

f

h i

j b

e

g

f

e

g

f

h i

j bb j

a k

Figure 2. Matrix Multiplication Execution Graph

1 f o r (I n t e g e r i = 0 ; i < DIMx ; i ++)
2 f o r (I n t e g e r j = 0 ; j < DIMx ; j ++)
3 f o r (I n t e g e r k = 0 ; k < DIMy ; k ++)
4 X[i] [j] += A[i] [k] ∗ B[k] [j] ;

Figure 3. Matrix Multiplication Example

which nodes represent basic blocks and edges represent the
program control flow – i.e., an execution graph (see Fig-
ure 2). Basic blocks can be determined at compile-time.
However, our main goal is to determine the context and fre-
quency of reachability of the basic blocks – i.e., when the
code is revisited through execution. To collect this informa-
tion, we modify Jikes RVM’s baseline compiler to insert ad-
ditional instructions (in the program bytecode) at the edges
of the basic blocks (e.g., branching, conditional, return state-
ments) that detect whenever a basic block is reached. Addi-
tionally, we insert instructions into the bytecode to 1) stati-
cally detect the set of variables accessed by the basic blocks,
and 2) mark basic blocks with input/output operations, as
they need special handling in program reconstruction. This
code modification doesn’t affect the behavior of the origi-
nal program. We call this version of the modified program,
profiled bytecode.

2.2 Superblock detection
With the profiled bytecode, we can view the program exe-

cution as a graph with basic blocks and variables represented
as nodes, and the execution flow as edges. A basic block
that is visited more than once during execution will be rep-
resented by a different node each time. The benefits of exe-
cution graph are multifold: 1) Hot-spot portions of the code
can be identified by examining the graph’s hot paths, 2) static
data dependencies between blocks can be determined, and 3)
parallel execution patterns of the program can be identified.

To determine superblocks, we use a string factorization
technique: each basic block is represented by a character
that acts like an unique ID for that block. Now, an execution
of a program can be represented as a string. For example,
Figure 3 shows a matrix multiplication code snippet. An
execution of this code for a 2x2 matrix can be represented as
the string abjbhcfefghcfefghijbhcfefghcfefghijk. We
factorize this string into its basic components using a variant
of Main’s algorithm [21] that we have developed (our variant

Threads

Executor

Collector

Superblocks

jobs queue

Reconstructed Program

Figure 4. Program Reconstruction as a Producer-Consumer
Pattern

is described in [28]). The factorization converts the matrix
multiplication string into ab(jb(hcfefg)2hi)2jk. Using this
representation, combined with grouping blocks that access
the same memory locations, we divide the code into a set of
nested calls, where each call execute a group of basic blocks,
which becomes a superblock.

Thus, we divide the code, optimistically, into independent
parts called superblocks that represent subsets of the execu-
tion graph. Each superblock doesn’t overlap with other su-
perblocks in accessed variables, and represents a long se-
quence of instructions. I/O instructions are excluded from
superblocks, as changing their execution order affects the
program semantics, and they are irrevocable (i.e., at trans-
action aborts).

2.3 Code Reconstruction
Upon detection of candidate superblocks for paralleliza-

tion, the program is reconstructed as a producer-consumer
pattern. In this pattern, two daemons threads are active,
producer and consumer, which share a common fixed-size
queue of tasks. The producer generates jobs and adds them
in the queue, while the consumer dequeues the jobs and ex-
ecutes them. HydraVM uses a Collector module and an Ex-
ecutor module to process the superblocks: the Collector has
access to the generated superblocks and uses them as jobs,
while the Executor executes the superblocks by assigning
them to a pool of core threads.

Figure 4 shows the overall pattern of the generated pro-
gram. Under this pattern, we utilize the available cores by
executing the superblocks in parallel. However, doing so re-
quires handling of several issues such as:
• Threads may finish in out of original execution order.
• The execution flow may change at run-time causing some of the

assigned superblocks to be skipped from the correct execution.
• Due to the differences between execution flow in the profiling

phase and the actual execution, memory access conflicts be-
tween concurrent accesses may occur. Also, memory arithmetic
(e.g., arrays indexed with variables) may easily violate the pro-
gram reconstruction (see example in Section 3.2).

To tackle these problems, we execute each thread as a trans-
action. A transaction’s changes are deferred until commit. At
commit time, a transaction commits its changes if and only
if: 1) it did not conflict with any other concurrent transaction,
and 2) it is reachable under the execution.

3

A
B

C
A

B

C

A
B

C

(a) (b) (c)

Figure 5. Parallel execution pitfalls: (a) normal sequential
execution, (b) possible parallel execution scenario, and (c)
TM execution.

2.4 TM Managed Parallelization
To ensure data consistency, we use STM. Memory access

violations are detected and resolved by STM through trans-
actional conflict detection, abort, roll-back, and retry. Pro-
gram order is maintained by deferring the commit of trans-
actions that complete early till their valid execution time.

Consider the example in Figure 5, where three superblocks
A, B, and C are assigned to different threads TA, TB , and
TC and execute as three transactions tA, tB , and tC , respec-
tively. Superblock A can have B or C as its successor, and
that cannot be determined until run-time. According to the
parallel execution in Figure 5(b), TC will finish execution
before others. However, tC will not commit until tA or tB
completes successfully. This requires that every transaction
must notify the STM to permit its successor to commit.

Now, let tA conflict with tB because of unexpected mem-
ory access. STM will favor the older transaction in the
original execution and abort tB , and will discard its local
changes. Later, tB will be re-executed. A problem arises
if tA and tC wrongly and unexpectedly access the same
memory location. Under Figure 5(b)’s parallel execution
scenario, this will not be detected as a transactional con-
flict (TC finishes before TA). To handle this scenario, we
extend the life time of transactions to the earliest transaction
starting time. When a transaction must wait for its prede-
cessor to commit, its life time is extended till the end of its
predecessor. Figure 5(c) shows the execution from the TM
perspective.

2.5 Reconstruction Tuning
TM preserves data consistency, but it may cause degraded

performance due to successive conflicts. To reduce this, the
TM Manager provides feedback to the Builder component
to reduce the number of conflicts. We store the commit rate,
and the conflicting scenarios in the Knowledge Repository
to be used later for further reconstruction. When the commit
rate reaches a minimum preconfigured rate, the Builder is
invoked. Conflicting superblocks are combined into a single
superblock. This requires changes to the control instructions
(e.g., branching conditions) to maintain the original execu-
tion flow. The newly reconstructed version is recompiled and
loaded as a new class definition at run-time.

3. Implementation
3.1 Detecting Real Memory Dependencies

y = 1 y1 = 1
y += 2 y2 = y1 + 2
x = y x1 = y2

Figure 6. Static Single Assignment form Example

Recall that we use bytecode as the input, and concurrency
refactoring is done entirely at the VM level. Compiler op-
timizations such as register reductions and variable substi-
tutions increase the difficulty in detecting memory depen-
dencies at the bytecode-level. For example, two independent
basic blocks in the source code may share the same set of lo-
cal variables or loop counters in the bytecode. To overcome
this problem, we transform the bytecode into the Static Sin-
gle Assignment form (SSA) [2]. The SSA form guarantees
that each local variable has a single static point of defini-
tion, which significantly simplifies analysis. Figure 6 shows
an example of the SSA form.

Using the SSA form, we inspect assignment statements,
which reflect memory operations required by the basic
block. At the end of each basic block, we generate a call
for a touch operation that notifies the VM about the vari-
ables that were accessed in that basic block. We intention-
ally designed the data dependency algorithm to ignore some
questionable data dependencies (e.g., loop index). This gives
more opportunities for parallelization, since if at run time, if
a questionable dependency occurs, the STM will detect and
handle it. Otherwise, such blocks will run in parallel and
greater speedup is achieved.

3.2 Misprofiling
We rely on our analysis on online profiling for detect-

ing execution flow, which mainly depends on the input in
the profiling phase. This input may not reflect some run-
time aspects of the program flow (e.g., loops limits, biased
branches). To illustrate this, we return to the matrix multipli-
cation example in Figure 3. Based on the profiling using 2x2
matrices, we construct the execution graph shown in Fig-
ure 2. Now, assume that we have the following superblocks
ab, jbhi, hcfefg, and jk, and we need to run this code for
matrices 2x3 and 3x2. The Collector will assign jobs to the
Executor, but upon the execution of the superblock jk, the
Executor will find that the code exits after j and needs to
execute bhi. Hence, it will request the Collector to schedule
the job jbhi in the incoming job set. Doing so allows us to
extend the flow to cover more iterations. Note that the entry
point must be send to the synthetic method that represents
the superblock, as it should be able to start from any of its
basic blocks (e.g., jbhi will start from b not j, as j already
executed before).

3.3 Method Inlining
Method inlining is the insertion of the complete body of a

method at every place that it is called. In HydraVM, method
calls appear as basic blocks, and in the execution graph, they
appear as nodes. Thus, inlining occurs automatically as a
side effect of the reconstruction process. This eliminates the
time overhead of invoking a method.

4

Another interesting issue is handling recursive calls. The
execution graph for recursion will appear as a repeated
sequence of basic blocks (e.g., abababab . . .). Similar to
method-inlining, we merge multiple levels of recursion into
a single superblock, which reduces the overhead of manag-
ing parameters over the heap. Thus, a recursive call under
HydraVM will be formed as nested transactions with lower
depth than the original recursive code.

3.4 ByteSTM
ByteSTM is an STM that operates at the bytecode level

and is integrated into HydraVM. We modified the Jikes
RVM to support TM by adding instructions, xBegin and
xCommit, which are used to start and end a transaction,
respectively. Each load and store inside a transaction is done
transactionally: loads are recorded in a read signature and
stores are sand-boxed; stores are stored in a transaction-local
storage, called the write set. The address of any variable (ac-
cessible at the VM level) is added to the write signature. The
read/write signature is represented using a Bloom filter [3]
and used to detect read/write or write/write conflicts.

Each superblock has an order that represents its logi-
cal order in the sequential execution of the original pro-
gram. To preserve the data consistency between superblocks,
STM must be modified to support this ordering. Thus, in
ByteSTM, when a conflict is detected between two su-
perblocks, we abort the one with the higher order. Also,
when a block with a higher order tries to commit, we force
it to sleep until its order is reached. ByteSTM commits the
block if no conflict is detected.

When attempting to commit, each transaction checks its
order against the expected order. If they are the same, the
transaction proceeds and updates the expected order. Other-
wise, it sleeps and waits for its turn. After committing, each
thread checks if the next thread is waiting for its turn to com-
mit, and if so, that thread is woken up.

3.5 Parallelizing Nested Loops
Nested loops are generally difficult for parallelization, as

it is difficult to parallelize both inner and outer loops. In Hy-
draVM, we handle nested loops as nested transactions us-
ing the closed-nesting model [23]: aborting a parent trans-
action aborts all its inner transactions, but not vice versa,
and changes made by inner transactions become visible to
their parents when they commit, but those changes are hid-
den from outside world till the highest level parent’s commit.

Consider our earlier matrix multiplication example. We
have an outer transaction jbhi, which invokes a set of inner
transactions hcfefg after the execution of the basic block b.

4. Experimental Evaluation
Benchmarks. To evaluate HydraVM, we used five appli-
cations as benchmarks. These include a matrix multipli-
cation application and four applications from the JOlden
benchmark suite [7]: minimum spanning tree (MST), tree
add (TreeAdd), traveling salesman (TSP), and bitonic sort

Table 1. Profiler Analysis on Benchmarks
Benchmark Matrix TSP BiSort MST TreeAdd
Avg. Instr. per BB. 4.29 4.2 4.75 3.7 4.1
Basic Blocks 31 77 24 52 10
Superblocks 3 12 5 3 4
Jobs 1001 1365 1023 12241 8195
Max Nesting 2 5 2 1 3

 0

 1

 2

 3

 4

 5

 6

Matrix TSP BiSort MST TreeAdd

S
pe

ed
up

2 Processors
4 Processors
6 Processors
8 Processors

Figure 7. HydraVM Speedup

(BiSort). The applications are written as sequential applica-
tions, though they exhibit data-level parallelism.

Testbed. We conducted our experiments on an 8-core
multicore machine. Each core is an 800 MHz AMD Opteron
Processor, with 64 KB L1 data cache, 512 KB L2 data cache,
and 5 MB L3 data cache. The machine ran Ubuntu Linux.

Evaluation. Table 1 shows the result of the Profiler analy-
sis on the benchmarks. The table shows the number of basic
blocks, superblocks, and the average number of instructions
per basic block. The lower part of the table shows the num-
ber of executed jobs by the Executor, and the maximum level
of nesting during the experiments.

Figure 7 shows the speedup obtained for different number
of processors. For matrix multiplication, HydraVM recon-
structs the outer two loops into nested transactions, while
the inner-most loop is formed into a superblock because of
the iteration dependencies. In TSP, BiSort, and TreeAdd,
each multiple level of recursive call is inlined into a single
superblock. For the MST benchmark, each iteration over the
graph adds a new node to the MST, which creates inter-
dependencies between iterations. However, updating the
costs from the constructed MST and other nodes presents
a good parallelization opportunity for HydraVM.

5. Conclusions
We presented HydraVM, a JVM that automatically refactors
concurrency in Java programs at the bytecode-level. Our ba-
sic idea is to reconstruct the code in a way that exhibits data-
level and execution-flow parallelism. STM was exploited as
memory guards that preserve consistency and program or-
der. Our experiments show that HydraVM achieves speedup
between 2×-5× on a set of benchmark applications.

5

References
[1] M. Arnold, S. Fink, D. Grove, M. Hind, and P. F. Sweeney.

Adaptive optimization in the jalapeno jvm. In Proceed-
ings of the 15th ACM SIGPLAN conference on Object-
oriented programming, systems, languages, and applications,
OOPSLA ’00, pages 47–65, New York, NY, USA, 2000.
ACM. ISBN 1-58113-200-X. doi: http://doi.acm.org/10.1145/
353171.353175. URL http://doi.acm.org/10.1145/

353171.353175.

[2] G. Bilardi and K. Pingali. Algorithms for computing the static
single assignment form. J. ACM, 50(3):375–425, 2003.

[3] B. H. Bloom. Space/time trade-offs in hash coding with allow-
able errors. Commun. ACM, 13:422–426, July 1970. ISSN
0001-0782. doi: http://doi.acm.org/10.1145/362686.362692.
URL http://doi.acm.org/10.1145/362686.362692.

[4] W. Blume, R. Doallo, R. Eigenmann, J. Grout, J. Hoeflinger,
and T. Lawrence. Parallel programming with polaris. Com-
puter, 29(12):78–82, 1996.

[5] B. Bradel and T. Abdelrahman. Automatic trace-based par-
allelization of java programs. In Parallel Processing, 2007.
ICPP 2007. International Conference on, page 26, sept. 2007.
doi: 10.1109/ICPP.2007.21.

[6] B. J. Bradel and T. S. Abdelrahman. The use of hardware
transactional memory for the trace-based parallelization of re-
cursive java programs. In Proceedings of the 7th International
Conference on Principles and Practice of Programming in
Java, PPPJ ’09, pages 101–110, New York, NY, USA, 2009.
ACM. ISBN 978-1-60558-598-7. doi: http://doi.acm.org/10.
1145/1596655.1596671. URL http://doi.acm.org/10.

1145/1596655.1596671.

[7] B. Cahoon and K. S. McKinley. Data flow analysis for soft-
ware prefetching linked data structures in java. In Proceed-
ings of the 2001 International Conference on Parallel Ar-
chitectures and Compilation Techniques, PACT ’01, pages
280–291, Washington, DC, USA, 2001. IEEE Computer So-
ciety. ISBN 0-7695-1363-8. URL http://dl.acm.org/

citation.cfm?id=645988.674177.

[8] B. Carlstrom, J. Chung, H. Chafi, A. McDonald, C. Minh,
L. Hammond, C. Kozyrakis, and K. Olukotun. Executing java
programs with transactional memory. Science of Computer
Programming, 63(2):111–129, 2006.

[9] B. Chan and T. Abdelrahman. Run-time support for the
automatic parallelization of java programs. The Journal of
Supercomputing, 28(1):91–117, 2004.

[10] M. Chen and K. Olukotun. Test: a tracer for extracting
speculative threads. In Code Generation and Optimization,
2003. CGO 2003. International Symposium on, pages 301–
312. IEEE, 2003.

[11] P. Chen, M. Hung, Y. Hwang, R. Ju, and J. Lee. Compiler
support for speculative multithreading architecture with prob-
abilistic points-to analysis. In ACM SIGPLAN Notices, vol-
ume 38, pages 25–36. ACM, 2003.

[12] J. Choi, M. Gupta, M. Serrano, V. Sreedhar, and S. Midkiff.
Escape analysis for java. ACM SIGPLAN Notices, 34(10):1–
19, 1999.

[13] A. Deutsch. Interprocedural may-alias analysis for pointers:
Beyond k-limiting. In ACM SIGPLAN Notices, volume 29,
pages 230–241. ACM, 1994.

[14] D. Dice, M. Herlihy, D. Lea, Y. Lev, V. Luchangco,
W. Mesard, M. Moir, K. Moore, and D. Nussbaum. Appli-
cations of the adaptive transactional memory test platform. In
Transact 2008 workshop, 2008.

[15] Z. Du, C. Lim, X. Li, C. Yang, Q. Zhao, and T. Ngai. A cost-
driven compilation framework for speculative parallelization
of sequential programs. ACM SIGPLAN Notices, 39(6):71–
81, 2004.

[16] M. Hall, J. Anderson, S. Amarasinghe, B. Murphy, S. Liao,
and E. Bu. Maximizing multiprocessor performance with the
suif compiler. Computer, 29(12):84–89, 1996.

[17] W. M. W. Hwu, S. A. Mahlke, W. Y. Chen, P. P. Chang,
N. J. Warter, R. A. Bringmann, R. G. Ouellette, R. E. Hank,
T. Kiyohara, G. E. Haab, J. G. Holm, and D. M. Lavery. The
superblock: An effective technique for vliw and superscalar
compilation. The Journal of Supercomputing, 7:229–248,
1993. ISSN 0920-8542. URL http://dx.doi.org/10.

1007/BF01205185. 10.1007/BF01205185.

[18] M. Lam and M. Rinard. Coarse-grain parallel programming
in jade. In ACM SIGPLAN Notices, volume 26, pages 94–105.
ACM, 1991.

[19] J. R. Larus and R. Rajwar. Transactional Memory. Morgan
and Claypool, 2006.

[20] W. Liu, J. Tuck, L. Ceze, W. Ahn, K. Strauss, J. Renau, and
J. Torrellas. Posh: a tls compiler that exploits program struc-
ture. In Proceedings of the eleventh ACM SIGPLAN sym-
posium on Principles and practice of parallel programming,
pages 158–167. ACM, 2006.

[21] M. G. Main. Detecting leftmost maximal periodicities. Dis-
crete Appl. Math., 25:145–153, September 1989. ISSN 0166-
218X. doi: 10.1016/0166-218X(89)90051-6. URL http:

//dl.acm.org/citation.cfm?id=82349.82359.

[22] M. Mehrara, J. Hao, P.-C. Hsu, and S. Mahlke. Parallelizing
sequential applications on commodity hardware using a low-
cost software transactional memory. In Proceedings of the
2009 ACM SIGPLAN conference on Programming language
design and implementation, PLDI ’09, pages 166–176, New
York, NY, USA, 2009. ACM. ISBN 978-1-60558-392-1. doi:
http://doi.acm.org/10.1145/1542476.1542495. URL http:

//doi.acm.org/10.1145/1542476.1542495.

[23] J. E. B. Moss and A. L. Hosking. Nested transactional mem-
ory: model and architecture sketches. Sci. Comput. Pro-
gram., 63:186–201, December 2006. ISSN 0167-6423. doi:
10.1016/j.scico.2006.05.010. URL http://portal.acm.

org/citation.cfm?id=1228561.1228567.

[24] C. Quiñones, C. Madriles, J. Sánchez, P. Marcuello,
A. González, and D. Tullsen. Mitosis compiler: an infras-
tructure for speculative threading based on pre-computation
slices. In ACM Sigplan Notices, volume 40, pages 269–279.
ACM, 2005.

[25] A. Raman, H. Kim, T. R. Mason, T. B. Jablin, and D. I.
August. Speculative parallelization using software multi-
threaded transactions. In Proceedings of the fifteenth edition

6

of ASPLOS on Architectural support for programming lan-
guages and operating systems, ASPLOS ’10, pages 65–76,
New York, NY, USA, 2010. ACM. ISBN 978-1-60558-839-
1. doi: http://doi.acm.org/10.1145/1736020.1736030. URL
http://doi.acm.org/10.1145/1736020.1736030.

[26] L. Rauchwerger and D. Padua. The lrpd test: speculative run-
time parallelization of loops with privatization and reduction
parallelization. SIGPLAN Not., 30:218–232, June 1995. ISSN
0362-1340. doi: http://doi.acm.org/10.1145/223428.207148.
URL http://doi.acm.org/10.1145/223428.207148.

[27] R. Rugina and M. Rinard. Automatic parallelization of di-
vide and conquer algorithms. In ACM SIGPLAN Notices, vol-
ume 34, pages 72–83. ACM, 1999.

[28] M. M. Saad, M. Mohamedin, and B. Ravindran. HydraVM
Project : Technical Report. Technical report, ECE Dept.,
Virginia Tech, January 2012. URL http://www.hydravm.

org/hydra/wiki/Publications.

[29] B. Saha, A.-R. Adl-Tabatabai, R. L. Hudson, C. Cao Minh,
and B. Hertzberg. McRT-STM: a high performance software
transactional memory system for a multi-core runtime. In
PPoPP ’06, pages 187–197, Mar 2006.

[30] M. Spear, K. Kelsey, T. Bai, L. Dalessandro, M. Scott,
C. Ding, and P. Wu. Fastpath speculative parallelization. Lan-
guages and Compilers for Parallel Computing, pages 338–
352, 2010.

[31] J. Steffan and T. Mowry. The potential for using thread-
level data speculation to facilitate automatic parallelization.
In High-Performance Computer Architecture, 1998. Proceed-
ings., 1998 Fourth International Symposium on, pages 2–13.
IEEE, 1998.

[32] J. Tsai and P. Yew. The superthreaded architecture: Thread
pipelining with run-time data dependence checking and con-
trol speculation. In Parallel Architectures and Compilation
Techniques, 1996., Proceedings of the 1996 Conference on,
pages 35–46. IEEE, 1996.

[33] P. Wu, A. Kejariwal, and C. Caşcaval. Compiler-driven depen-
dence profiling to guide program parallelization. Languages
and Compilers for Parallel Computing, pages 232–248, 2008.

7

