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ABSTRACT
�e datacenter is becoming fully heterogeneous, integrating multi-
ple OS-capable CPUs of di�erent Instruction Set Architectures in
separate machines. �ese machines present diverse performance
and power consumption pro�les and we show that signi�cant po-
tential bene�ts for both metrics can be expected, should these
machines be able to cooperate in the processing of datacenter, multi-
programmed workloads. We advocate that this cooperation should
be enabled at the level of the OS, relieving the programmer from
any e�ort related to the heterogeneity of the managed machines.
We propose a distributed OS architecture running on a fully het-
erogeneous computer cluster, enabling this cooperation through
three main components: the abstraction of the entire cluster in a
single system image, a distributed shared memory system, and a
heterogeneous scheduler.
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1 INTRODUCTION
Processing speed must keep on increasing. However, it can no
longer be done at the expense of an increased power consumption.
In the meantime, datacenters are becoming increasingly heteroge-
neous, integrating multiple, OS-capable, processors based on di�er-
ent Instruction Set Architectures (ISAs). While x86 has been for a
long time the main ISA in the datacenter [23], ARM [1, 3, 11, 17, 29]
and PowerPC [22] are currently gaining traction. �is leads to the
notion of fully heterogeneous datacenter [13, 21, 30]. Each integrated
type of machine has its own performance and power consumption
pro�le for certain classes of applications, and even for speci�c
phases in a single application execution lifetime. �is has been
shown in the heterogeneous Chip Multi-Processor (CMP) commu-
nity [35], and we demonstrate that it is also valid in a computer
cluster. E�cient distribution and migration of workloads among
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machines of di�erent types is necessary to leverage the �exibility
brought by this heterogeneity. Currently, heterogeneous machines
with di�erent ISAs are already present in datacenters. However,
they do operate separately. We foresee signi�cant performance and
power consumption gains by having these machines cooperating
towards the completion of multi-programmed workloads. We argue
that all these issues can and should be tackled at the operating sys-
tem level, without signi�cant e�ort from application programmer,
in order to maximize the solution acceptance.

In this position paper, we propose to implement an OS archi-
tecture aiming to enable e�cient processes and threads mapping/
migration in a fully heterogeneous computer cluster, in order to
maximize a workload performance and/or to minimize its power
consumption.

�e OS architecture we propose is based on three main concepts.
First, we advocate for a distributed, multi-kernel operating sys-
tem running on a heterogeneous computer cluster providing a
single system image of the cluster to the programmer. Multi-
kernel systems already communicate through message passing
and well-de�ned interfaces, making them a good �t for distributed
implementation on heterogeneous machines. �e single system
image abstracts the complexity from working with several heteroge-
neous nodes, and increases programmability. In addition, it permits
datacenter-oriented applications to seamlessly share resources such
as �lesystem or IPC, a feature well needed in current environments
[36]. Second, an e�cient Distributed Shared Memory (DSM)
system should be implemented at the operating system level, al-
lowing on-demand address space transfer during task migration
between heterogeneous machines, as well as the distribution of a
task threads across multiple heterogeneous machines; all of this
while conserving the convenient shared memory programming
model. Finally, such a system brings the need for a task scheduler
aware of the heterogeneity of the managed cluster, and capa-
ble of taking e�cient decisions based on the a�nity of the workload
towards speci�c machines. In addition to OS-level components,
compiler toolchain support is also needed to provide multi-ISA
binaries with the ability to execute/migrate at runtime on/between
heterogeneous machines.

We propose to implement these concepts by augmenting the
Popcorn Linux [4, 6] OS. Based on Linux, Popcorn is currently capa-
ble of migrating tasks between the arm64 and x86 64 architectures
(back and forth) in a two machine setup. We propose to enable
Popcorn to run at the scale of a heterogeneous cluster.

In this paper we focus on native execution without the use of
virtualization. While some virtualization technologies [7, 15] allow
for cross-ISA migration, the performance impact is high and unac-
ceptable in many situations. Other virtualization applications such
as containers allow to ease the management of computer clusters
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and are widely used in datacenter today. However, these technolo-
gies do not support cross-ISA migration. More generally, while it is
going down, virtualization overhead is still a concern in large scale
datacenters [36].

Our focus is also made on native shared memory applications.
Exploring performance and power consumption bene�ts for dis-
tributed applications such as MPI jobs is an interesting research
direction, however we believe that shared memory applications
present a strong programmability argument compared to distributed
applications.

It should be noted that heterogeneity in terms of performance
and power consumption pro�les can also be found in a cluster that
is homogeneous from the ISA standpoint. �e di�erences between
machines characteristics in such an environment might not be as
strong as when considering multiple ISAs, and thus would be the
bene�ts to reap from exploiting such a cluster. Even though, to
obtain these bene�ts from such a set of machines, the components
of the system proposed in this paper will still be needed.

�is paper is organized as follows: in Section 2, we make the
case for a fully heterogeneous computer cluster in which machines
of di�erent ISAs cooperate in processing a datacenter workload. In
Section 3, we detail our system proposal, before concluding.

2 THE CASE FOR HETEROGENEOUS
COLLABORATION

Static Job Mapping. For a given workload, di�erent types of ma-
chines will exhibit di�erent performance and power consumption
behaviors due to the workload characteristics, de�ned according to
multiple metrics: potential parallelism inherent in workloads, need
for fast sequential processing, needs in terms of memory latency
or bandwidth, disk or network I/O latency, etc.

We ran standard benchmarks on a set of heterogeneous ma-
chines, equipped with the following processors: (1) A desktop-class
Intel Xeon E5-1650 [18] with 6 cores clocked at 3.5 GHz; (2) a server-
class Cavium �underX [12] with 2 GHz clock frequency, both in
single node (48 cores) and dual node (96 cores) versions; (3) an
APM XGene [24] with 8 cores clocked at 2.4 GHz. �ese machines
have di�erent ISAs: x86 64 for the Xeon, arm64 for the Cavium
and XGene. �ey also exhibit strongly di�erent pro�les in terms of
power consumption and various performance related characteris-
tics such as clock frequency, number of cores, cache size, etc. We
used the popular NPB OpenMP (class B and C) and PARSEC (native
inputs) suites. We also performed a simple I/O test using the dd
command to read on each machine a 512 MB �le mounted on a NFS
�lesystem served from a remote machine.

Concerning the best performance, the Xeon is the best machine
in 48% of the benchmarks because of its high clock frequency, fol-
lowed by the dual Cavium (41%) because of its high core count.
Concerning the energy consumed, the single Cavium arrives �rst
(56%) as it is a good core count/power consumption trade-o� fol-
lowed by the Xeon (41%). XGENE gives the best power consumption
only for the dd benchmark that is not CPU intensive. From these
results, we can draw several conclusions. First, considering each
metric, there is no ideal machine that would always yield
the best results for the entire set of benchmarks. Second, for
one particular benchmark, very o�en the machine o�ering

Sequential phase: ~ 62 sec.

Parallel phase: ~ 9 sec.

Parallel phase: ~ 21 sec.

Sequential phase: ~ 17 sec.

Dual node Cavium ThunderX Xeon E5-1650

Figure 1: Phases in the PARSEC blackscholes

the highest performance is not the one yielding the lowest
energy, showing that going faster does not necessarily translate
into lower energy consumption. Moreover, this second observation
shows that according to the metric one wants to optimize (perfor-
mance/power), tasks should be mapped to di�erent machine types.
�ese conclusions show that the gains brought by a fully heteroge-
neous cluster promise to be signi�cant, assuming an e�cient static
job mapping.

Leveraging Time A�nity through Task Migration. Some
of the benchmarks from the suites we considered exhibit multiple
phases in their execution lifetime. We de�ne a phase as a portion of
a program lifetime during which the program shows some a�nity
towards a speci�c type of machines for a particular metric (e.g.,
performance, power consumption, etc.). Some programs are con-
stituted of multiple phases, and in each phase the a�nity for one
metric goes to a di�erent machine.�e concept of program phases
has already been investigated in the chip multiprocessor commu-
nity. Research in that �eld de�nes the program phases according to
low level parameters extracted from hardware performance coun-
ters, such as instructions per cycle or CPU cache misses [31–33, 35].
Such phases are micro-phases and the migration overhead in a clus-
ter will be longer than in a CMP. �us, it will be di�cult to exploit
such phases. We propose to work on macro-phases, de�ned accord-
ing to high-level machine characteristics: number of cores, clock
frequency, NUMA memory organization, etc. �ey are signi�cantly
longer than micro-phases.

To illustrate the concept of macro-phases, we take the blacksc-
holes benchmark from the PARSEC suite as an example. �e power
consumption observed over time for that benchmark on the Xeon
and the dual Cavium are represented in Figure 1. �e benchmark
exhibits some strongly sequential initialization and deinitialization
phases on both machines. We con�rmed that by monitoring the
CPU activity, showing that only one core is active (utilized at 100%).
�e second phase of the workload is a highly parallel one, using all
the cores and leading to the maximum power consumption on both
platforms. �e sequential phase is considerably faster (3.6X) on
the Xeon due to its high single threaded processing power. For the
parallel phase, it is more than twice faster on the Cavium because
of its high number of threads. Assuming a zero-cost migration time,
one can estimate that for this benchmark, executing the right phase
on the right machine would yield a 32% execution time reduction
compared to an only Xeon execution, and a 63% execution time
reduction / 76% energy consumption reduction compared to an
only Cavium execution.
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Preliminary results indicate that such sequential and parallel
phases can be found in other benchmarks. �e analysis presented
here is made according to the relation between the potential for
parallelism of a phase, and the number of cores in a machine. One
can imagine other types of program/phases to machine a�nity
such as memory access pa�ern of a program according to the mem-
ory hierarchy organization of a machine (in particular the NUMA
characteristics of some machines); or low idle power consumption
on I/O intensive workloads.

Space distribution: Splitting�reads on ISAs. a Distributed
Shared Memory (DSM) system is needed to provide e�cient on-
demand address space transfer in the case of a task migration be-
tween heterogeneous machines. Such a DSM implementation will
provide the additional bene�t of enabling the distribution of threads
from the same application over multiple machines of di�erent ISA.
In the next paragraphs, we discuss the potential bene�ts to be
gained in doing so. As cross-ISA migration on phase boundaries
could be de�ned as a�nity in time, distributing threads of an appli-
cation over di�erent ISAs would be leveraging a�nity in space.

�is raises the following question: Would certain applications
bene�t of having some of their threads executing one one ISA, and some
other threads on another ISA?. Some applications spawn threads
that perform similar work (for example the thread pool model),
and it is very probable that there is no space a�nity in that case:
indeed, because all threads have the same behavior, the a�nity
would probably go to a single machine. However, space a�nity
might arise when the work performed by the threads is signi�cantly
di�erent.

An interesting example would be a Database Management Sys-
tem (DBMS). DBMS divides the entire query processing into several
tasks, such as query parsing, index lookup, index building, logging,
storage management, and so forth. �ese tasks are handled by ded-
icated threads that communicate each other via messaging queue.
�is DBMS design maximizes the query processing capacity by
pipelining tasks, improves its scalability, and provides the �exibil-
ity. Due to the diversity between these tasks, these threads should
exhibit di�erent characteristics, showing a�nity towards di�erent
ISAs.

Another potential bene�t brought by the capability to distribute
threads among ISAs would be �ne-grained power capping or re-
source management in a heterogeneous cluster, when it is possible
to migrate a single thread of one application to free some cores
on a powerful machine for an upcoming job with a strong a�nity
toward that machine, or to accommodate a power cap.

3 SYSTEM MODEL
Hardware Organization. To provide the heterogeneity in a data-
center, an intuitive approach is to keep the homogeneity (in terms
of ISA) within a rack but to allow the heterogeneity between
racks. Each rack is comprised of a number of machines having
the same ISA, computational power, and con�gurations, whereas
di�erent racks may run on di�erent ISA and exhibit di�erent per-
formance/power consumption pro�les.

In other words, the heterogeneity is provided on a per-rack
granularity. �is approach is simple and easy to apply to datacenter
environments. However, we argue that this per-rack granularity

cannot fully utilize the bene�ts of the �ne-grained ISA a�nity
nor thread migration. Indeed, in order to take advantage of the
�ne-grained ISA a�nity through thread migration, the migration
overhead between heterogeneous nodes should be low enough
not to o�set the bene�t. However, in the per-rack heterogeneous
con�guration, the distance between two heterogeneous nodes is
important as inter-rack interconnects have narrow bandwidth and
long latencies, making crossing the rack boundary costly. �us, it
might be di�cult or infeasible to capitalize the bene�t from the
per-rack heterogeneous con�guration.

In this sense, we claim that the heterogeneity should be provided
within a rack. We de�ne our heterogeneous rack model as follows.
�e rack contains a given number of bundles. A bundle is de�ned as
a group of heterogeneous nodes that are connected each other via a
high-speed low-latency, point-to-point interconnect technology. In
a concrete example of the heterogeneous rack we have built, a bun-
dle consists of one Xeon E5-2620v4 server connected to a dual-node
Cavium �underX server [12] using a point-to-point interconnect
over PCIe using Dolphin PXH810 [14]. �e PCIe interconnect pro-
vides 56 Gb/s bandwidth and a stable low latency without switching
latency, which is essential to lower the thread migration overhead.
In addition, a Xeon Phi 7120p [19] is installed on a PCIe 16x slot
in the Xeon server as a co-processor. �is con�guration provides
us with diverse heterogeneity from various aspects; di�erent ISAs
(x86 64, K1OM, and arm64), core counts (16, 61, and 96), single-core
performance, energy e�ciency, interconnect speed, etc.

�is bundle is the building block for the heterogeneous rack.
We believe this tightly coupled model is indispensable to keep the
networking latency low between heterogeneous machines during
the performance-critical thread migration and memory consistency
protocols. Currently, our rack system is con�gured with eight bun-
dles (8 Xeon servers, 8 Cavium servers, 8 Xeon Phis). All servers
in the rack are connected via In�niBand using a Mellanox SX6036
switch to communicate each other. We envision this rack as be-
ing a building block example for the heterogeneous datacenter by
deploying an additional switching layers between multiple racks.

Figure 2 illustrates the organization of our proposed system.
While we currently consider only two servers and one co-processor
in a bundle, we plan to investigate on di�erent con�gurations
comprising additional nodes of various ISAs such as Power8, SPARC,
and Intel Knight’s Landing.

Systems So�ware. As discussed in the literature [10, 34], con-
verting a regular shared memory program wri�en for a single-node
system to a distributed model, using for example the message pass-
ing interface (MPI), requires a huge amount of e�ort, impairing the
programmability. Furthermore, the diverse heterogeneity aspects
between nodes will pose more complexity on top of the reduced
programmability. �is will prevent users and systems from fully
utilizing the advantages of the heterogeneous system, and thus
will reduce the acceptance of the proposed solution. In this sense,
we argue that the OS is the proper level to integrate systems so�-
ware managing the complexity of having heterogeneous machines
within a rack, and to abstracts that complexity from the application
programmer and the system administrator.

As the operating system for a heterogeneous rack-scale system,
we will extend our previous work called Popcorn Linux [5, 9]. Pop-
corn Linux is an open-source project based on the Linux Kernel.
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Figure 2: System organization of the proposed heterogeneous rack system

Originally, it aimed to run replicated Linux kernels on each core in
a multi-core machine. Based on the feature that provides a single
system image over multiple kernels, the project was extended to
span over multiple machines having di�erent ISAs. As a multi-
kernel, Popcorn Linux is particularly well suited for a distributed
implementation at a larger (rack) scale, as kernels already com-
municate with message-passing through well de�ned interfaces.
Currently, Popcorn Linux supports Xeon-Xeon Phi and Xeon-ARM
XGene con�gurations, i.e. pairs of machines. In particular, Popcorn
Linux is able to migrate tasks between the x86 64 and the arm64
architectures with a sub-second latency [4]. Note that this number
does not contain the address space transfer latency that happen
on-demand a�er migration time.

Popcorn Linux lacks features such as migrating a thread to a
machine running the same ISA, spanning a process over more than
two machines, and so forth. �ese features are not only critical
for the multiple nodes setup but also required to capitalize from
the heterogeneity in the rack. �us, we are extending the current
Popcorn Linux to support these features on various heterogeneous
con�gurations.

In order to provide �exible thread migration within a rack com-
prised of many heterogeneous nodes, we are primarily extending
the memory consistency protocol that Popcorn Linux currently
implements. Currently, Popcorn Linux only deals with the case for
two hosts; a page that does not exist in the current node is in the
other node. In this case, the page is brought to the node via the
interconnect to resume the execution. �e system calls that ma-
nipulate a virtual memory area layout (e.g., mmap, munmap, etc.) are
played at the home location of the current thread. �is minimalist
feature for the distributed execution has been the major bo�leneck
even in the two-node setup.

To tackle that limitation, we are working on implementing
a per-process level distributed shared memory (DSM) protocol
in the kernel space. DSM is a long-discussed concept since the
1990’s [2, 8, 20, 28]. Although the promising strong point of DSM
is that users can run regular shared memory applications without

modi�cation on several nodes in a distributed way, DSM did not
gain much popularity outside of the research area at that time. One
of the main reasons for this was the low performance of complex
DSM protocols over slow interconnect technologies. Indeed, DSM
protocols keep the consistency of pages by exchanging data over the
network. �us, the bandwidth and latency of the interconnect are
critical to the system performance. In 1990s and 2000s, commodity
interconnect technologies were not fast enough to guarantee the
desirable performance. Some devices providing fast interconnects
were very expensive so that they cannot be applied to a rack-scale
computing environment. However, these days, the interconnect
speed has increased considerably. For example, PCI Express v4.0
is designed to provide 16Tb/s [27]. Such a high interface perfor-
mance helps to close the bandwidth gap between the memory
bus and peripheral interconnects. Also, recent research discussing
the DSM topic in modern interconnect setups shows promising
results [16, 25, 26].

Another important point about DSM concerns coping with fail-
ures of nodes. While this is not the primary focus of the research
presented here, we plan to address this issue through regular check-
pointing of DSM-enabled processes address spaces. We foresee that
solutions based on replication will introduce overheads that could
be very high. On the contrary, given the type of workloads we focus
on (long running, compute intensive jobs) regular checkpointing
overhead should be acceptable.

Based on these premises, we are reviving the case for the DSM
in the rack-scale computing. We expect that the tightly coupled
con�guration in the bundle helps to minimize the overhead to
communicate data for DSM protocol.

To fully utilize the cores abstracted into a single system image,
the system requires a heterogeneous scheduler that assigns processes
and threads to heterogeneous cores sca�ered in the rack, according
to multiple metrics such as the a�nity of a thread (or the current
macro-phase a thread executes) towards certain ISA, and the current
system load. We anticipate that the strong heterogeneity will make
the design of the job scheduler a very challenging issue. Followings
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are a number of questions that need to be answered in designing
such a scheduler.

First, where will the scheduler run? It could be ran on a single
machine, or in a distributed fashion among the nodes. In either
case, one need to consider communication costs of exchanging
scheduling information. We plan to design the scheduler in a dis-
tributed way. Second question is: where should an upcoming job �rst
be dispatched? We are also working on predicting the ISA a�nity
for a job based on past behavior, or on information that can be
extracted from the binary. We also consider embedding a�nity
information in the binary at compile time. Another question is:
how to assess migration cost? �e cost to migrate a thread will not
be static given that the DSM protocol complicates the thread migra-
tion. �e scheduler should thus estimate the bene�t or overhead to
migrate a thread.

A �nal question is: how to assess at runtime the value of the param-
eters based on which scheduling decisions will be taken? Following
our example with the PARSEC blackscholes benchmark that exhibits
several phases in terms of needs for parallelism or fast sequential
processing power, an intuitive idea is as follows: Detecting that an
application currently executing on a high number of slow cores
(for example a Cavium) should be migrated to another machine
and given less but faster cores (for example a Xeon) can easily be
done by checking CPU activity: a good indicator of that scenario
would be an application using 100% of a single core, as it is the case
with the �rst phase of blackscholes. Detecting the inverse scenario,
i.e. an application currently executing on a small number of cores
that is in need for more parallel execution units, i.e. more cores,
we still plan to monitor CPU activity. In addition, assuming cores
are dedicated to applications, we plan to investigate monitoring
the number of context switches for the application’s threads on
these CPUs. A high number of context switches combined with
a high CPU usage might indicate the fact that the application has
currently more active threads than its number of assigned cores,
and it should bene�t from a migration to a high core count machine
such as the Cavium.

�e design of the job scheduler is still an open question for now,
and we will investigate on these cases and try to �nd reasonable
answers to them.

4 CONCLUSION
In order to leverage the potential bene�ts in terms of performance
and power consumption for the fully heterogeneous datacenter, we
advocate for OS support using a multi-kernel providing a single
system image, DSM support and heterogeneous scheduling.

�is work is supported in part by ONR under grant N00014-16-
1-2711 and AFOSR under grant FA9550-16-1-0371.
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