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Abstract—Formally verifying functional and security prop-
erties of a large-scale production operating system is highly
desirable. However, it is challenging as such OSes are often
written in multiple source languages that have no formal seman-
tics — a prerequisite for formal reasoning. To avoid expensive
formalization of the semantics of multiple high-level source
languages, we present a lightweight and rigorous verification
toolchain that verifies OS code at the binary level, targeting ARM
machines. To reason about ARM instructions, we first translate
the ARM Specification Language that describes the semantics
of the ARMvS ISA into the PVS7 theorem prover and verify
the translation. We leverage the radare2 reverse engineering tool
to decode ARM binaries into PVS7 and verify the translation.
Our translation verification methodology is a lightweight formal
validation technique that generates large-scale instruction em-
ulation test lemmas whose proof obligations are automatically
discharged. To demonstrate our verification methodology, we
apply the technique on two OSes: Google’s Zircon and a subset
of Linux. We extract a set of 370 functions from these OSes,
translate them into PVS7, and verify the correctness of the
translation by automatically discharging hundreds of thousands
of proof obligations and tests. This took 27.5 person-months to
develop.

Index Terms—Formal Verification, Linux OS, Google Zircon

I. INTRODUCTION

Operating systems are among the most critical parts of a
computer system. Faults in their kernels, for example, may
leave the entire machine vulnerable to serious functional and
security failures. Thus, they require high levels of reliability.
Formal verification techniques can help achieve high levels of
reliability. However, formally verifying that an OS behaves as
expected is challenging [1]-[3]. For instance, many production
operating systems are large (e.g., in the hundred thousand LOC
range or even bigger). This requires solving many compu-
tationally challenging problems for formal verification tools,
such as extracting the control flow and function call graphs
from code, capturing code semantics, and validating those
semantics against their original intended meanings, among
others. Prior work demonstrates that this often requires many
person-years of work [3], [4]. For example, the seL4 OS
verification effort, which involved 10K source LOC, took
20 person-years [5]. Moreover, OS source code is commonly
written in languages (e.g., C) that lack formal semantics —
a prerequisite for formal reasoning over code properties at
the source level. Furthermore, many OSes are written in a
combination of a high-level language such as C and low-
level assembly code, and often include library code, which

may be written in (yet) another language. Thus, verification
efforts must formalize the semantics of all languages used —
a daunting task.

Operating systems, similar to many large-scale software
systems, quickly become legacy. Enterprise-class organizations
and open-source communities that develop OSes often invest
significant resources. Due to this investment, such code bases
are rarely discontinued; rather, they are continuously enriched
with new functionality, patched to add new security features,
and ported to new hardware and maintained, all over long
life cycles. Any formal verification technique that targets such
software must inevitably deal with code maintenance: how to
cost-effectively verify when changes are made?

These difficulties have, by and large, caused many large-
scale production OSes (e.g., Linux, Android) to be out of
scope of formal verification techniques. In this paper, we
consider formally verifying OS code at the binary level. Binary
verification sidesteps some of the difficulties of source code-
level verification, such as the necessity for formal semantics
of multiple source languages. However, binary verification
comes with its own set of challenges, such as lack of type
information, data structures, and control-flow information.
These difficulties make it hard to reason about code properties
at the binary level. Translating the binary into a higher level
of abstraction that is easy to reason about (e.g., high-order
logic in a theorem prover)would circumvent such difficulties.
However, this requires verifying the integrity of the translation.

Formal verification using theorem proving techniques is
known to provide the highest levels of assurance [1], [6], [7]. It
can establish a program’s correctness using abstract theorems
that are independent of the size of the state space, increasing
effectiveness for verifying large code bases [1], [7]. However,
state-of-the-art in theorem proving-based verification has by
and large focused on verifying at the source code level. For
example, the seL4 effort [1], [2], which uses theorem proving,
assumes that complete high-level source code of the OS is
available to the verifier in a subset of the C language, called
Cop. [4] presents a verification toolchain that targets a typed
assembly language, which is transformed into a typed machine
language to generate a safe binary. [3] presents the formal
proof for a compiler called CompCert, but restricts it to a
subset of C called C-light [8]. [9] presents an approach for
designing a new OS kernel from scratch that is verifiable using
SMT solvers, but the approach scopes out verifying legacy
operating systems. [10] establishes that seL4’s binary code is



equivalent to its Cy source, but is restricted to the already
verified selL.4’s C; code.

It is compelling to develop a theorem prover-based verifica-
tion toolchain that can formally verify OS binary code. Such
an approach must overcome significant challenges. First, since
the toolchain’s input is binary code, reasoning about properties
of the code will depend on the target machine architecture.
Therefore, building the toolchain must start with a valid formal
model of the target machine’s instruction set architecture (ISA)
in a theorem prover. This problem is significant by itself [11]-
[15]. However, it is a critical step toward building a trustworthy
decoder that can decode binary streams into their machine
instruction representations, enabling verification of program
binaries (for that machine) in a subsequent phase. Second, the
formalization of the targeted ISA’s should be elegant, readable,
and as close as possible to their machine-vendor-specific
representations [11], [13], [14]. This can reduce verification
costs. To address these challenges, we present a verification
toolchain that utilizes the analytic power of state-of-the-art
reverse engineering tools such as radare2 [16] and the rigor of
a powerful interactive theorem prover, PVS7 [17]. We focus on
a subset of the ARMvS A64 ISA as the target architecture. The
rationale behind this choice is that ARM recently introduced
the ARM Specification Language (ASL) in machine-readable
form [18], [19]. ASL supports dependent types that are also
supported in PVS7. Moreover, ARM reports that ASL has
been extensively tested (e.g., millions, in some cases billions,
of test suites) [19].

Our verification toolchain and workflow are illustrated in
Figure 1. To reason about ARMvS instructions, we first trans-
late ASL into PVS7 (Section II). We introduce a new logical
framework that captures the precise operational semantics
of ARMVS instructions in PVS7 with a small trust base.
The framework uses PVS7’s parameterized generic theory
declarations and dependent types, which enables an almost
one-to-one translation between ASL and PVS7.

To verify the ASL to PVS7 translation, we developed a
lightweight formal validation technique, folded into a tool
that generates large-scale instruction emulation, test lemmas
and their proof scripts in PVS7, whose proof obligations are
automatically discharged (Section IIT). We built this tool on top
of the Unicorn CPU emulation framework [20] and our ASL
to PVS7 formal model. The approach incorporates generic the-
ories to reduce the cost of proofs of the test lemmas, resulting
in savings of thousands of proof LOC. We leverage the radare2
reverse engineering tool to decode ARM binaries and lift them
into PVS7 models (Section IV). We reuse the formal semantics
of ARMVS instructions, combined with a formal translation of
program control flow and function call graphs to build up the
formal semantics of code. We develop an efficient validation
technique for the radare2 to PVS7 translation (Section V).
The approach relies on using ASL to extract what we call
reverse decoding dictionaries. We also develop a methodology
to validate control flow translation integrity from radare2 to
PVS7. To demonstrate our verification methodology, we apply
the technique on two OSes: Google’s Zircon and a subset of
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Fig. 1: Toolchain Workflow. r2= radare2, tr= Translation, D=
Data transfer, Fx= Theories Export, VA= Validation.

Linux. We extracted 127 functions from the Zircon binary,
translated them into PVS7, and validated the translation along
with 243 functions from Linux. To the best of our knowledge,
this is one of the first works that attempts to formalize system
software containing such large amounts of source code.

II. FORMALIZING ARMV8.3 A64 IN PVS7

We present a new theoretical framework to capture the
imperative nature of ASL in PVS7. We first summarize three
features of PVS7 that we use to build our framework. Then
we discuss how we use them to capture ASL semantics.

A. Dependent Types, Theory Parameters, and Generic Theo-
ries of PVS7

Dependent type declarations and theory parameters of PVS7
simplify the formalization and reasoning at the binary level as
it allows efficient representation of polymorphic bit vectors
that are common in binary analysis. In PVS7 notation, a
theory name is declared first; then the keyword Theory is
followed by the theory parameter (if they exist). After that,
the developer can declare other elements such as constants and
variables. For instance, the bit vector type in the PVS7 library
is declared in a theory called bv. This theory has the parameter
n, which is a natural number that represents the length of
the vector. In particular, bv: Theory [n : Nat] is a
parametric theory in which we can see the type declaration
bvec([n] Type = [ below(n) —> bit]. Here, the
type bvec [n] is said to be a dependent type on the theory
parameter n. In this theory, it is defined as a function from
the type of all natural numbers that are less than n to the type
bit, which is either O or 1. As a result, one can declare
two constants of multiple bit vector instances of different
lengths only by instantiating the parameter n appropriately.
A theory may use more than one parameter. Nonetheless, they
have to be instantiated fully each time a parametric theory
is used. Partial instantiations are not allowed. To solve this
problem, PVS7 provides an enhanced mechanism for generic
theory declarations. A generic theory in PVS7 allows users



to build formal modules in an objected-oriented style and use
them efficiently as many times as they desire. Specifically,
a new theory “Object” can be generated from a generic one
using theory declarations. For instance, to declare two new
theories, say B and C, from a previously declared theory,
say A, that has two unspecified constants, say al, a2 of
type bit vector of length n, one can efficiently use two
lines of PVS7 code: B : Theory = A with {{ al
bv[2] (0b01) }} and C Theory = A with {{
al := bv[3](0b1l01), b:= bv[2] (0b10)}} tode-
clare B and C. Here, B is declared as a theory that is
identical to A except al is a constant of the concrete value
bv[2] (0b01). Observe that B partially instantiates A as a2
is left unspecified. C, however, fully instantiates A, as both al
and a2 are instantiated with concrete values. Also, note that
al has been populated with two bit vector values of different
lengths in the declaration of B and C.

B. Imperative Aspects of ASL in PVS7

Our basic idea is to build a generic parametric theory for
each instruction of ASL in PVS7. Then we load them with
concrete values to produce different instances of bytecode. To
explain our approach, we first briefly discuss the ASL code
structure. ASL is a machine-readable specification language
developed by ARM [21] that replaces 6K pages of ARM
manual [22]. It is imperative and supports dependent types,
exceptions, conditionals, as well as loops. We restrict our
formalization to a subset of the ARMvVS8.3-A64 architecture
that we identified to be used frequently in our verification
targets (Zircon and Linux). The subset belongs to the following
instruction classes: Data Processing (Immediate),
Data Processing (Register), Loads, Stores, and
Branches. These instruction classes are specified in XML
files. The files also use a shared library of common
functions that are declared independently in the Shared
Pseudocode Functions XML file. Each instruction

[31 [30:29| 28:24| 23:22|21]|20:16|15:11]|10:5[4:0]
>|sf |0 0 | 01010| shift| O|Rm | imm6| Rn |Rd |
3 opc N

Listing 1: ASL-XML ands-log-shift bits diagram

XML file consists of three major parts: i) a diagram that illus-
trates the bit format of each instruction, (such as Listing 1);
ii) a decoding part in which variables are declared, initialized,
or assigned values that are extracted from the diagrams and
iii) an operational part which computes the post-state.

C. Mapping from ASL to PVS7

Each instruction is expected to operate on some information
extracted from the current machine state; all instructions’
generic theories have an arm-state as a theory parameter.
This parameter captures the machine’s pre-state p before
executing the current instruction. The class of this parameter
is called arm-state. We implement arm-state as a
generic theory. This theory has unspecified types and constant
declarations. We declare s as the machine state type which is

a record type with fields representing all 31 general purpose
registers X (n), the stack pointer SP, PSTATE registers,
the program counter PC, and a memory function Mem. Ac-
cording to our targets, Mem is defined from natural numbers
to bvec[64] with fixed normal access type and 8 as access size.
The first challenging part of the translation of ASL into PVS7
is to correctly obtain the bit format of each instruction

1 diag: Type+ =

> [# sf:bvec[1],opc: bvec[2],Fixedl:bvec[5],shift:bvec

[2] ,N:bvec[1],Rm: bvec[5], imm6:bvec[6], Rn:
bvec[5], Rd:bvec[5] #]

Listing 2: PVS and-log-shift bits diagram

(as shown in Listing 1) in the theorem prover. This is error-
prone and impractical if done manually. Thus, we directly
extract the diagrams from the XML files and translate them
into a PVS file. In XML, the diagrams include field names,
indices, and possibly some fixed values. We translate them into
a type called diag of PVS’s record type. PVS allows partial
updates for record types. For example, if x1 is a record that
has two fields of natural numbers a and b, then the expression
x2 = x1 with [a:= 5] means that x2 is identical to x1,
except that the value at field a is now 5. Fields of the diag
type are all dependent types on their indices, for which our
ASL to PVS translator automatically calculates the length of
each field. Listing 2 illustrates this. In each generic theory,
we define another unspecified constant called Diag of type
bvec[32]. We load Diag with the bit vector of interest
from the binary code using generic theory declaration. We
also define the symbolic version of the loaded value of Diag,
which we call v so that we can use it in the decoding part
of the generic theory. v’s type is dependent on two slicing
functions, bt and bt s. For example, in Listing 3, the expected
value of the field Rd is the slice 0-4 of the vector Diag, which
is identical with the ASL expectation

iv:diag=(# sf:=bt(Diag,31),opc:= bts(Diag,29,30),

» Fixed1l:= bts(Diag,24,28), shift:= bts(Diag,22,23),
sN:= bt (Diag,21) , Rm:= bts(Diag,16,20),

+imm6:= bts(Diag,10,15) , Rn:= bts(Diag,5,9),
sRd:= bts(Diag,0,4) #)

Listing 3: PVS ands-log-shift diagram load

(Listing 1). Moreover, we use v in the decoding and the opera-
tional parts of the ASL code. For instance, the ASL declaration
integer d UInt (Rd); can easily be declared in PVS
as d:int= UInt (5,v.Rd) where we implement UInt as
an (unsigned integer) function in PVS.

D. Operational Sequential Semantics

For the operational part of the ASL translation, we
define a new dependent type called ASL (p). This type
conveniently helps us to capture the state of the ASL
mutable variables, arm-state changes, side effects, and
the machine post state after executing the instruction. Our
idea is to define each statement of ASL code as dependent
on the previous one and the theory parameter p (the machine
pre-state). This allows us to produce an almost one-to-
one translation for each line of ASL code in PVS7 (see



Listings 4, 5). We use the standard throw function of PVS7
to throw exceptions when exceptions are raised in ASL. For
example, the ASL line of code if sf ==0& imm6<5>
1 then ReservedValue (); raises the exception
undefined-fault. Thus, we translate it to if v.sf =
bv[1l] (0b0) & (v.imm6 (5) = True) then throw

(Y ‘ReservedValue () .undefinedfault’’)else
stsl endif. ASL also has loops. In our model, functions
that contain loops in ASL are either represented

sts3: ASL(p)= sts2 with [operandl:= p.X(n)]
sts4: ASL(p)= sts3 with [operand2:=ShiftReg(64,p.X(

m), shift_type , shift_amount)]
: sts5: ASL(p)= if invert then sts4 with
4 [operand2:= NOT(sts4 .operand2) ]
else sts4 endif

6 sts6: ASL(p) =
with [result
operand2)],

Cond sts4 .op = LogicalOp_AND —> sts5
:= AND (sts5.operandl , sts5 °

sts4 .op =
:= OR (sts5.operandl ,

LogicalOp_ORR —>

sts5 with [result sts5 .
operand2)],

8 sts4 .op = LogicalOp_EOR —
sts5 with [result := XOR (sts5.operandl, sts5.
operand2)] EndCond

9% post state

0 pl:s = if sts6.setflags then p with [.PSTATE.NZCV:=

0 let result_63 = field (64, sts6.result, 63 ,63)

12 in bv[2](0b00) o IsZeroBit(64,sts6.result) o
result_63]

13 else p endif

4 post: s = pl with [.X(d) := sts6.result]

Listing 4: PVS ands-log-shift Operational

by classical tail recursion or by means of the standard for
function in PVS lib. Instructions that belong to the same class
may share a lot of the common operational code.

1 bits(datasize) operandl = X[n];
> bits(datasize) operand2 = ShiftReg(m,

shift_type , shift_amount);
:if invert then
4 operand2 = NOT(operand2);
scase op of when LogicalOp_AND
6 result = operandl AND operand?2;
when LogicalOp_ORR
8 result = operandl OR operand2;
9 when LogicalOp_EOR
10 result = operandl EOR operand?2;
11%Post state
nif setflags then PSTATE.<N,Z,C,V> =

13 result<datasize —1>:IsZeroBit(result): 00" ;
1+ X[d] = result;

Listing 5: ASL ands-log-shift Operational

The actual differences in these cases are in their diagrams.
We exploit this property in our translation to reduce the trust
base. In particular, we practically generate the diagrams and
most of the decode parts fully automatically from XML, while
we use a semi-automatic approach for the operational parts.
For instance, in the 1og—shift class of instructions, it was
sufficient to develop one of the instruction’s operational code
manually (=20 ASL LOC). The other seven instructions of
this class share identical operational code. Thus, the translator
will automatically copy the shared part to the rest of the mem-
bers and generate their generic theories, thereby potentially

minimizing the errors that may occur in a manual approach.
However, for some instructions such as Load and Store,
this approach might complicate the proofs as, in some cases,
large parts of the shared code might be unreachable due to
case analysis. Thus, for these cases we manually optimize the
formalization for each instruction to enhance the performance
of the proofs.

III. VALIDATION OF ASL TO PVS TRANSLATION
A. Test Case Generation

Our basic idea is to use large-scale litmus testing for each
formal instruction in our model. We use a CPU emulator called
Unicorn to generate large test suites. In Unicorn, one can
manually set the instruction bytecode and the pre-state values
for the registers as well as the boundaries of the memory
regions that will be used in the emulation. Unicorn reports
the post-state of the emulation as output. We automate this
process to generate a large number of test suites and map
the pre- and post-states into PVS7 lemmas. Then we generate
the proofs of the lemmas highly automatically. We refer to
our tool as UniVS7. Naive generation of a random string of
length 32 will not give us valid bytecode for emulation. To
address this problem, we extract the format of the bytecode
from ASL’s XML diagrams. We then use a constrained but
random generation of the slices that are parametric in the
diagrams. For instance, in Listing 1, we use standard bounded
random generation function of integer values. The function
follows a uniform distribution; we use it to generate the non-
fixed fields of XML diagrams such as d, m, n, and immé6,
and the values of Rd, Rn, and Rm. The integral values must
not exceed previously set conditions. For example, d must
not exceed 32, so we generate the values randomly in this
restricted domain. All integral values are then converted to
binary strings. We then concatenate the whole strings into
a single bit string. The resulting string is converted into
Unicorn bytecodes, which can then be emulated. For other
instructions such as load/store, test case generation is more
complex and requires additional mathematical insights. For
instance, we have to develop and solve an algebraic inequality
over the random variable such that we guarantee that the
generated values will belong to the designated memory region.
Otherwise, Unicorn will issue an error message, indicating that
the pre-defined memory boundaries have been violated and
no post-state can be generated. For example, assume that we
devote [0x10000 — 0x200000] to be the memory region
for emulation. Moreover, assume that we have to generate
a value, say z, for which an instruction will apply some
binary arithmetic to obtain a new address, such as Rn +
Sign-Extension (x). Before it runs the emulation, Uni-
corn must check that this new address belongs to the emulation
region. Hence, we have to solve the inequality 0x10000
<= Rn + Sign-Extension(x) <= 0x200000 for z.
Typically, the algebraic solution is a bounded interval on z,
which will represent the boundaries of the random generation
for x. In all generated test suites using this technique, we
detected no failures during Unicorn’s emulation.



1 ANDS_LOG_SHIFT_8A0A1C93: THEORY BEGIN
IMPORTING rsl@log_shift

sp: s = init with [ .X:= unicorn_pre_state ]

4

snew_test_obj: Theory = log_shift[p]{{

6 Diag:= 0b11001001001110000101000001010001 ,

addr:= 0x10000 }}

p.X with [.X:=

8

otestl: lemma let X_post=
unicorn_post_state ] in

10 let p2= p with [.X:= X_post]

3 new_test_obj.post = p2.post

b

13%UniVS7’s auto generated Proof—Lite

14 %o|— X_sts_TCCx : PROOF

15%|— testl _TCC1 : PROOF (eval—formula)

16%|— testl :PROOF (log—shift) QED

17END ANDS_LOG_SHIFT_8A0A1C93

in

scripts:

QED

Listing 6: ands_log_shift UniVS7 generic test format

1) Type Check Obligations: After test suites have been
generated, we automatically transform them into PVS7 in the
form of ftest lemmas. Each test is written in a new theory
that imports the generic theory of the instruction subject of
validation. We define a new object of the instruction with
a new value for the theory parameter p, which represents
the pre-state, and a new value for the Diag element of the
generic theory. UniVS7 will automatically populate p and
Diag with these values from the intermediate files. We write a
test lemma for each test theory that states that the post-state of
the instruction that was generated by our translator matches the
expected value of the post-state generated by Unicorn. These
lemmas must then be proved (by UniVS7), which we discuss
in the next subsection.

B. Proof Automation

We design our formalization so that instructions that belong
to the same class share most of the same proof scripts. For
instance, the script of Listing 6 (lines 13-16) can automatically
discharge tens of thousands of proof obligations generated for
2500 test theories for the entire ASL. ARMvS-A64 log-shift
class of instructions. To illustrate our proof mechanism that
achieves such a degree of automation, we discuss two types
of proof obligations that are generated by our tool UniVS7.
We exploit PVS7’s powerful dependent type mechanism to
generate and discharge the necessary proof obligations highly
automatically. For instance, in PVS7, if we have a concrete
instantiation of any dependent type to a constant, the PVS
type checker will attempt to generate and prove a proof
obligation that assures that the new concrete value passes
the dependent type membership conditions, called type check
correctness conditions (or TCCs). For example, suppose we
declare x in PVS7 to be a constant of type bvec[2],
which was later populated with the value 0b011. The type
checker will help us to discover this bug as it will generate an
unprovable TCC to show that UInt (x) < 4. However, if we
had populated x with a valid member of the type bvec[2],
then the corresponding TCCs will automatically be discharged.
UniVS7 will invoke the theorem prover to assure that the
loaded values in the model from the test generation phase pass

the type conditions of the record types that were obtained from
the ASL to PVS translation phase (see for example, Listing 2).
The type checker will automatically generate thousands of
proof obligations. Moreover, UniVS7 will install our proof
scripts, for example, Listing 6 (lines 13-16), to discharge them
for the entire test suit atomically.

1) Operational Lemma Proof Obligations: UniVS7 gener-
ates a second type of obligations that are also necessary for
proving the test lemmas, for example, Listing 6 (line 9). The
greater the number of lemmas UniVS7 proves, the greater is
the trust that we gain in the operational semantic translation
of ASL to PVS7. However, proving a large number of test
lemmas that mimic the behavior of an ARMv8 instruction in
any theorem prover is challenging. For example, an ARMv8
instruction may call, on average, one hundred functions that
may consist of thousands of LOC [23]. However, only part
of the PVS specification language is executable in its evalu-
ator [24]. Therefore, using only a one-step expansion mecha-
nism of a theorem prover may not be feasible [13]. To address
this challenge, we purposefully formalize most of the required
support functions of ASL using PVS7’s executable specifi-
cations. For example, for and-log—-shift instruction, the
functions ShiftReg, IsZeroBit, UInt, AND, OR, and
XOR are all implemented as executable functions. Moreover,
as illustrated in Section II-D, we label each statement of the
code with a symbol such as sts-1i, p, pl, and post. Thus,
to prove a test lemma according to our model, we only need
to apply expansions to the statement symbols and to the vector
v that receives the loaded binary from the constant Diag in
each test declaration, as explained in Section II-C (Listing 3),
as well as the field names for any instruction (for example,
see the log—shift proof strategy in Listing 7; lines 1-3

( defstep log—shift () (then
(expand—par "p” ”post” *pl” ”sts6” "sts5” stsd” ”

sts3” 7sts2” "sts1” "p” "X_sts” Zinit” 7d” "v” ”
n” “invert” “m” "shift_type” ”shift_amount”)
(eval—formula 1)) 77 77)

Listing 7: log-shift class proof strategy

the user defined strategy (expand-par) expands its param-
eters sequentially). These expansions will load the concrete
values in place of the symbols. The prover will then reduce
the proof problem into fast numerical functional evaluations
of the support functions that are called in the formalization
of the instruction (see Listing 7; line 3). These numerical
evaluations are too fast (millisecond scale) when compared to
lazy expansions. Using an executable evaluation of a formula
in a proof of a PVS lemma is called numerical reflection [25].
It is usually invoked using a proof strategy (eval-formula
in line 3 of Listing 7). Since members of the same class often
share these symbol names, UniVS7 can reuse the same Proof-
Lite script [7], [24], such as Listing 6 (lines 13-16), for all the
class members. This allows discharging tens of thousands of
test lemmas with only one proof command for each test suite.



IV. RADARE2 TO PVS7 TRANSLATION
A. Analysis of Zircon & Linux Instruction Classes

There are two questions that we have to answer before we
start the formalization of large legacy OS binary code such
as Zircon and Linux. First, which set of OS functions should
we start with? Second, to be most productive, how can we
increase reusability of our formalization of the instructions
(i.e., using the formalized instructions of one OS code in
reasoning about another OS code)? For the first question,
we decided to start with terminal functions. These functions
do not call other functions. They are invasive in our targets;
all non-terminal functions call some of them by definition.
Thus, they represent the starting point of the formalization
of functions in the target and include system calls. We also
added another filter on our verification space: we decided to
first extract terminal functions that don’t have cycles in their
control flow graphs. If our toolchain does not scale on such
functions, it is unlikely to scale on more complex ones, and
we may consider a change in our design. In our two targets
combined, the number of such functions is 370, with a total
size of ~1000 instructions. This is ~20% of the terminal
functions in the two targets. For a perspective, this is just
over a quarter of the size of the functions formalized in [10],
which required several person-years to develop. To answer
the second question, we conducted a statistical analysis on
a disassembled version of the two OS binary codes (=600K
instructions combined). We analyzed the number of functions
of each OS that use different classes of instructions. Figure 2,

I 418

g pcreladdr D 134

g | | 808

Z. addsub-imm | )

" L1189

= | | 518

@) log-shift 0123

E I 400 | S Zireon
addsub-shift ” 88 90 = Linux

200 400 600 800
Functions

Fig. 2: Instructions classes usage in Zircon and Linux.

which shows part of the results', reveals that the pcreladdr
instruction class appears in the formalization of 134 functions
of Zircon’s terminal functions, whereas it is used by 418
terminal functions in Linux. Our complete analysis revealed
that Zircon target uses 30 instruction classes and Linux target
uses 33 classes. We gave higher priority to formalizing the
instruction class with higher usage count across both targets.
We also analyzed the OS codes in the reverse direction: i.e.,
the set of instruction classes that are used by a given set of
OS functions. Our analysis revealed that a list of 10 classes
covered 100% of the 370 functions that we extracted from the

10ur artifacts are available at https:/github.com/ssrg-vt/renee-artifacts

two OSes. Thus, it was sufficient to restrict our ARMv8-A64
model (Section II-D) to these instruction classes.

B. Function Formalization in PVS7

1) Auto-Generation of ARM Decoder into PVS7 Logic:
Given the large number of bytecodes in our targets, we
require a reliable decoder that can decode a bytecode into its
instruction theory without errors. Manually writing a decoder
is highly error-prone. ASL contains all the bit patterns of
ARMvVS-A64 instructions. They are organized in machine-
readable tables that link a pattern into its corresponding
instruction’s XML file name. Thus, we extract these tables
from ASL and convert them into Python dictionaries. We then
develop a parser that matches a bit string with the bit pattern
from our dictionaries, thereby obtaining the correct decoding
of a bitstream. The parser produces a PVS7 instruction name
that is designed to be identical to the corresponding instruction
XML file and the PVS generic theory names that we generated
in the ASL to PVS translation (Section II).

1 GET_PIPE_INFO_FFFFFF80081119F8 [ (IMPORTING arm_state)
p:s ]:THEORY BEGIN

;movz.O: Theory= movz[p]
4 {{Diag:=b11010010100000000000000000000000 ,
addr:=0 xffffff80081119f8 }}

;»ret.lzTheory= ret [movz_0. post]
{{Diag:=b11010110010111110000001111000000 ,
addr:=0 xffffff80081119fc }}
8
9 B_post: s =
11%|— *_TCC#: PROOF (eval—formula) QED
2 END GET_PIPE_INFO_FFFFFF80081119F8

Listing 8: Generic theories based basic block translation

ret_1.post

The advantage of this technique is that we have a small
trust base. For instance, ARM has intensively tested ASL.
Thus, ASL is likely the most reliable specification of a
mainstream ISA ever published [21]. Our code to extract the
decoding dictionaries and match the bytecode pattern with the
instruction is only 350 (Python) LOC, which we add to the
trust base.

2) Basic Block Translation: Our radare2 to PVS7 translator
extracts the bytecodes and the addresses from radare2’s JSON
basic block representation of a given function (for example,
see Listing 9). Subsequently, the translator will translate
each basic block into a PVS7 theory with an arm-state
parameter (Listing 8). This parameter will capture the pre-
state of the machine before executing the block. Moreover,
the translator will generate a new PVS7 valid instance of the
object that represents that particular bytecode. The translator
does this by instantiating the generic theory’s Diag and addr
attributes from the JSON files. Furthermore, for continuity, we
pass the current instruction’s post state as the theory parameter
of the following instruction’s theory declaration. Finally, this
new block theory file will have its B_post element which
captures the machine post-state after executing the function.
For example, Listing 8 shows a basic block extracted from
Linux’s GET_PIPE_INFO function into PVS7. In lines 3 and



|  Oxffffffff00015530 |
| (fcn) sym.PciStdCapability :: PciStdCapability 40|
| ldr x2, [x0, 8]: \
s| adrp x1, Oxffffffff0010f000 ; |
| add x1, x1, 0x3f0 |
| str x1, [x0] |
| cbz x2, Oxffffffff00015554 ;[ga] |

| bl

10 f| t‘

11 . . .
| Oxffffffff00015544 | |0 xfFFffffO00015554 |
3| 1dr x1, [x2] | Jret \
4| mov x0, x2 [ ’
s | 1dr x1, [x1, 8] |

6 | br x1 |

. | ’

Listing 9: PciStdCapability::PciStdCapability radare2 CFG

6, we can see the familiar names movz and ret. The
translator adds the class name and an index to the end of
each instruction name. This disambiguates these names in the
theorem prover when they are used in the same PVS file. Line
1 of Listing 8 shows the arm-state theory parameter p.
Finally, line 9 presents the block’s post state.

3) Formal Translation of CFG: We adopt radare2’s con-
trol flow graph (CFG) representation in our model. In this
representation, we can see a function as a graph for which
the basic blocks are the nodes and the jumps between them
are the edges (for example,see Listing 9). After translat-
ing each basic block into a PVS7 file, our toolchain will
generate a PVS main theory file for each function (List-
ing 10). The file includes an import statement to each basic
block theory. In addition, the toolchain will extract each
path on the CFG and translate it into a possible post-state
of the main PVS file. For example, the Zircon function
PciStdCapability::PciStdCapability has three
basic blocks and two possible paths, represented in Listing 10
lines 7, and 12. The first path indexed by _post0 is inter-
preted as the leftmost path of Listing 9. However, it reads in a
backward direction (i.e., the innermost state is the first and the
outermost is the last). In particular, lines 8-10 indicate that,
after executing the basic block at FFFFFFF00015530, the
flow will pass the block’s post state B_post

1 PCISTDCAPABILITY_PCISTDCAPABILITY_MAIN [ (IMPORTING
arm_state ) p : s ] : THEORY

> BEGIN IMPORTING

s PCISTDCAPABILITY_PCISTDCAPABILITYFFFFFFFF00015530 ,

4+ PCISTDCAPABILITY_PCISTDCAPABILITYFFFFFFFF00015544 ,

s PCISTDCAPABILITY_PCISTDCAPABILITYFFFFFFFF00015554

6

7 PCISTDCAPABILITY_PCISTDCAPABILITY _post0 : s =

s PCISTDCAPABILITY_PCISTDCAPABILITYFFFFFFFF00015544 [

9 PCISTDCAPABILITY_PCISTDCAPABILITYFFFFFFFF00015530 [

wpl.B_post].B_post

11 %

12 PCISTDCAPABILITY_PCISTDCAPABILITY _postl : s =

13 PCISTDCAPABILITY_PCISTDCAPABILITYFFFFFFFF00015554 [

14+ PCISTDCAPABILITY_PCISTDCAPABILITYFFFFFFFF00015530 [

spl.B_post].B_post

16

17END PCISTDCAPABILITY_PCISTDCAPABILITY_MAIN
Listing 10: PciStdCapability::PciStdCapability PVS7 CFG

to the block at address FFFFFFF00015544.

V. RADARE2 TO PVS7 TRANSLATION INTEGRITY

Unlike single instruction validation, using a large test suite
of concrete emulations for the validation of a large piece of
code is computationally challenging due to state space explo-
sion. Therefore, for large code sizes, we develop a practical
yet rigorous validation technique called reverse dictionary,
which we use in two ways.

First, we use ASL in the reverse direction of the decoder we
call this technique Reverse Decoding Dictionary.
This tool parses PVS7 basic block models of each function
and extracts the names of the instructions, bytecodes, and the
addresses from the Diag and addr attributes, and stores
them in a dictionary. According to the decoder’s instruction
naming convention, the tool then retrieves the name of the ASL
instruction’s XML file. The tool then extracts the bit format
diagram from it. The XML bit format has fixed and variable
fields. Therefore, the tool does two assurance checks. First, it
matches the Diag bit vector with the XML bit format. The
bit vector must necessarily satisfy the pattern if the translation
is correct. This check ensures that the Diag instruction selec-
tions have not changed while transferring the data from radare2
to PVS7. Second, it reconstructs the bytecode by filling the
variable parts of the XML diagrams with the corresponding
slices from the extracted bit vectors of Diag, leaving the fixed
parts as is. The constructed bytecode is then compared with
the bytecode extracted from JSON. This check proves that the
entire bytecode has not changed while transforming the data
from radare2 to PVS7. Observe that extracting the Diag bit
vector from PVS7 and only matching it directly with radare2’s
bytecode does not ensure that our decoder (Section IV-B1) has
selected the right instruction PVS7 file names. Thus, both steps
are necessary to support the integrity of the translation. For
more efficiency, our tool checks these tests first in Python. For
additional formal assurance, the theorem prover, as illustrated
in Section III-A1, will produce and prove all the TCCs for
each instruction’s theory declaration.

Second, we also verify that the program control flow graph
did not change during the translation. We develop a technique
called CFG Reverse Dictionaries, wherein we parse PVS7
main files, as in Listing 10, and extract the control flow
paths. Since each path has a counterpart in the radare2 to
PVS7 translation tool, we compare the two paths and detect
any mismatch. In our case studies, we did not detect any
CFG mismatches, increasing our trust in the translated CFGs’
integrity. We also provide a test lemma for each branching
instruction for each basic block in PVS. We formalize a lemma
similar to those of Section III-B1. However, we do extract
the next addresses from radare2 and then prove in PVS7
that the post state program counter register will be updated
to the expected destination address. Also our validation tool
assures that the addresses in radare2 are identical to their PVS7
counterparts.



VI. VERIFICATION STATISTICS

In the targets, there was a total of five languages used at
higher levels such as C, C++, assembly, and some Python
and Shell scripts, totaling 171K high-level source LOC to
analyze. Translating such large code to a formal language is
out of the scope of any known formal method techniques.
Our approach, in contrast, enables the possibility of extracting
functions of interest from a target code and then automatically
formalizing it based on its structure. For example, we extracted
all functions (from both targets) that have a tree structure for its
CFG and terminal functional call graph. Thus, the conversion
step into a JSON IR representation has resulted in 25K JSON
LOC, which is practically feasible to parse.

On a machine with Intel Core 17-4910MQ processor running
at 2.9 GHz with 15.6 GiB memory, our toolchain parses these
LOCs efficiently and produces a type-checked PVS7 model
in less than two hours (= 9300 LOC PVS7 and Proof-Lite
scripts). For instance, the Linux sample was translated in ~ 16
minutes and it was type-checked in ~ 48 minutes ( ~ 6950
PVS7 and Proof-Lite scripts ), where as Zircon’s translation
time was ~ 10 minutes and its type-check time was ~ 35
minutes ( ~ 2253 PVS7 and Proof-Lite scripts ). In addition
to ASL, we also trust the reverse engineering tool and the
CPU emulator. Given our time and resource constraints, for
appropriate scoping of our work, we chose to put these tools in
our trust base. The remainder of our trust base includes ~ 1430
LOC of Python and shell scripts. These scripts automate the
entire analysis that we do in our toolchain, such as parsing
~ 0.6 million LOC, searching for the targeted functions, and
translating them into PVS7.

UniVS7 tests lemmas and the discharged TCCs are ~ 55K,
distributed into 30 test suites, in average each test suite ran in
=~ 20 minutes; each test suite contains ~ 1800 test cases. We
use these tests to validate our semi-automatic ASL to PVS7
translation (Section III).

VII. PAST AND RELATED WORK

Translation verification has been extensively studied in
the past. This literature can be broadly classified into two
categories: verified compilation [26] and translation valida-
tion [27], [28].

In the first approach, formal semantics for the source
and destination languages are constructed at a high-level of
abstraction such as HOL, and often specified inside a theorem-
prover. A refinement relation is then established between spec-
ifications written in the two languages, using prover-generated
proofs. A refinement between the specifications implies that
every behavior of one specification is allowed by the other,
essentially implying that the specifications are (behaviorally)
equivalent. (Establishing a direct refinement between the two
specifications is often difficult; in such cases, intermediate
languages are usually introduced). Examples of this approach
include [26], [29].

In the second approach, the output of each translation
is shown to be equivalent to the corresponding input, in a
post-translation validation phase. This equivalency is often

established through a simulation relationship [30]-[32]. The
fundamental difference between these efforts and ours is that
we do not require the existence of the source code or its formal
semantic model. In addition, the source codes of our targets
are out of scope of these past efforts due to their large size
and use of multiple languages.

Although originally, translation verification approaches have
focused on source code, subsequent efforts have targeted
binary code using precise formalized instruction set seman-
tics (e.g., [23], [33], [34], [12], [13]). In general, these ap-
proaches are generic, require external specialized specification
languages, and the theorem-prover translations are monadic,
and only partially human-readable [12], [13], which increases
verification costs. In contrast, our work is specific to ASL
and PVS7, is not monadic, fully human-readable, and does
not require other intermediate languages. [10] verifies that
the binary and the source of an already formally verified OS
kernel, seL4, have equivalent behaviors; the work uses SMT
solvers for translation verification. This work is also restricted
to a subset of C, Cy.

VIII. CONCLUSIONS

We presented a methodology and a toolchain for translating
functions from large binary codes, targeting the ARMvS
architecture, and formalizing them inside a theorem-prover.

Our translation verification methodology involves generat-
ing large-scale instruction emulation test lemmas, whose proof
obligations are automatically discharged. We demonstrated
our methodology and toolchain on Google’s Zircon OS and
a subset of Linux: we extracted 370 functions from these
OSes, translated them into PVS7, and verified the correctness
of translation by automatically generating thousands of proof
obligations and tests. Our work demonstrates the feasibility of
formalizing binary codes of large OSes with sources written
in multiple languages and no formal semantics, with relatively
low cost and a small trust base. Currently, our work has several
limitations, all of which can be addressed in future work.
We only formalized a subset of ARMv8.v3-A64 instructions
(used in our targets’ selected functions). We are also restricted
to terminal functions (essential to formalizing almost all
other functions). Additionally, we scope out concurrency, non-
determinism, and dynamically linked libraries. In the near
future we plan to add functions with loops and function calls.
Finally, we do not model system mode instructions since their
ASL code is not currently fully open-source.
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