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Abstract

We consider scheduling distributed real-time tasks
in unreliable (e.g., those with arbitrary node and
network failures) and untrustworthy systems (e.g.,
those with Byzantine node behaviors). We present
a distributed real-time scheduling algorithm called
LRTG. The algorithm makes two novel contribu-
tions. First, LRTG uses gossip for reliably propagat-
ing task scheduling parameters and for discovering
task execution nodes. Second, the algorithm guards
against potential disruption of message propagation
due to Byzantine attacks using a mechanism called
LASIRC. By doing so, the algorithm provides as-
surances on task timeliness behaviors, despite sys-
tem unreliability and untrustworthiness. Our per-
formance evaluation shows LRTG’s effectiveness.

I. Introduction

Some emerging, large-scale distributed real-time
systems are envisioned to use unreliable network
infrastructures— e.g., those without a fixed net-
work infrastructure, including mobile and wireless
networks. In such infrastructures, frequent and
arbitrary message losses and node failures make
directed communication inefficient. Furthermore, as
the number of nodes increases, keeping track of
routes or link states becomes less feasible. Despite
such communication uncertainties, applications de-
sire as strong assurances on end-to-end task time-
liness behaviors as possible.

An example large-scale, distributed real-time sys-
tem application context that motivates our work
is the U.S. DoD’s information age warfare trans-
formation vision called Network-Centric Warfare
(NCW) [1]. A ship may detect a threat in the
airspace, or be warned of it by another ship, an
aircraft, or a satellite. The threatened ship may
be unable to prosecute the threat due to cur-
rent limitations of its weapon systems (e.g., lack
of suitable weapon). Consequently, prosecution of
the threat may be assigned to a platform in the
vicinity (e.g., another ship, or an aircraft), which
may launch a weapon. Yet another platform in

the vicinity may guide the weapon to the target
until the engagement is complete. The pattern
of interactions is peer-to-peer, departing from the
hierarchical interaction pattern that has dominated
traditional battle management/command and con-
trol (BM/C2) operations. Threat detection, identi-
fication, tracking, weapons assignment, and weapon
guidance activities have time constraints, and the
most important ones must be satisfied despite
message losses and component failures, to achieve
acceptable mission measures of effectiveness.

Further exacerbating the end-to-end real-time
resource management challenge in such systems
is the possibility of malicious node behaviors due
to malicious insiders – infiltrated adversaries or
traitors who are authenticated and know encryp-
tion codes, etc. Such behaviors may include disrup-
tion of communications, and transmission of false
messages. Such malicious behaviors are referred to
as Byzantine ones [2]. A node exhibiting Byzantine
behaviors is called a Byzantine node. Byzantine
nodes are more difficult to deal with — in any
authentication process, they act just like other
nodes [3]. Therefore, a “healthy” (i.e., legitimate)
node cannot trust its peers — it does not know
whether another one is a friend, a traitor, or an
adversary. Further, Byzantine nodes may know
how Byzantine nodes are detected, and may be
intelligent in the sense that if they cannot protect
themselves from being detected, they will not at-
tack – i.e., behave maliciously. In this paper, we
use “Byzantine nodes” and “Byzantine attackers”,
interchangeably.

In this paper, we present an integrated solu-
tion called LASIRC-Aided Real-Time Gossip (or
LRTG) that provides probabilistic (end-to-end)
timeliness assurances in such unreliable and un-
trustworthy systems. LRTG includes two parts:
a gossip-based, Byzantine-tolerant message prop-
agation model/mechanism called LASIRC, and a
gossip-based distributed real-time scheduling algo-
rithm called RTG. Gossip has its origins in repli-
cated data management [4], was pioneered in [5]
for reliable multicast in wired networks, has been
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used to solve a variety of problems — examples
include information dissemination [6] and reliable
multicast [7]. End-to-end real-time scheduling has
been studied in the past (e.g., [8], [9]), but these are
limited to fixed (and reliable) network infrastruc-
tures. Support for timing assurances in unreliable
systems are considered in [10], [11], but they do
not provide end-to-end task timeliness assurances
or consider untrustworthy systems.

Our work builds upon our prior work in [11], [12],
which presents early version of RTG and LASIRC,
respectively. However, LRTG significantly distin-
guishes itself from the above two—it completely
changes the core component, gossip protocol, with
peer nodes continuously sending messages instead
of sending only once during message propaga-
tion processes. Besides, its gossip has much lower
and controllable message overhead that RTG-DS
does not provide. For the first time, LRTG gives
LASIRC mechanism real-time properties which is
essential in real-time scheduling. Besides, LRTG
illustrates firm theoretical analysis for LASIRC,
which is not presented before. Therefore, we argue
that LRTG is not a simple integration of our
former work, but a completely redesigned algo-
rithm to deal with the more complicated scheduling
environment—i.e., the unreliable and untrustwor-
thy distributed systems.

The rest of the paper is organized as follows: In
Section II, we discuss models and algorithm objec-
tives. Section III illustrates our gossip-based task
scheduling strategies. We discuss possible Byzan-
tine attacks in gossip protocols in Section IV. We
then present our Byzantine attacker detectors in
Section V. Sections VI describe the LASIRC model
and the mechanism. We present and analyze LRTG
algorithm in Section VII and VIII, respectively.In
Section IX, we report on our experimental (simula-
tion) studies. We conclude the paper in Section X.

II. Models and Algorithm Objectives

A. Task Model

We model a distributed task as being composed
of a sequence of subtasks or sections, where a sec-
tion constitutes the portion of the task’s execution
on a node. If the task models a series of nested,
remote method invocations, then a section con-
stitutes a maximal length sequence of contiguous
method executions on a node. If the task models
a series of chained, publication and subscription
events, then a section constitutes the execution of
a subscription/publication service on a node.

We call the initial section of a task as the task’s
root. The node hosting the root is called the task’s
root node. A task’s most recent section — i.e., the

task’s current execution locus — is called the task’s
head, and the node hosting the head is called the
task’s head node.

We assume that the number of sections of a task
is known. Also, the execution time estimates of the
sections are also assumed to be known.

The application is thus comprised of a set of
tasks, denoted T = {T1, T2, . . .}.

B. Timeliness Model and Utility Accrual Scheduling
Each task’s time constraint is specified using a

time/utility function (or TUF) [13]. A TUF speci-
fies the utility of completing a task as a function of
its completion time. Figure 1 shows example step
TUFs.

-
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Fig. 1. Step TUFs

A task Ti’s TUF is
denoted as Ui (t). In
this paper, we focus on
downward step TUFs,
and denote the maxi-
mum, constant utility of
a TUF Ui (), simply as
Ui. Each TUF has an
initial time Ii, which is the earliest time for which
the TUF is defined, and a termination time Xi,
which, for a downward step TUF, is its disconti-
nuity point. Ui (t) > 0, ∀t ∈ [Ii, Xi] and Ui (t) =
0, ∀t /∈ [Ii, Xi] , ∀i.

C. System Model
The system consists of a set of processing com-

ponents, generically referred to as nodes, denoted
N = {n1, n2, . . . nα}. Nodes may dynamically join
or leave the network, thus forming an ad hoc
network as in [1]. Node clocks are synchronized
using an algorithm such as [14]. We assume that the
network communication delay follows some non-
negative probability distribution—e.g., the Gamma
distribution as in [15]. Nodes may fail by crashing,
and messages may be lost, both arbitrarily. Besides,
some nodes may exhibit Byzantine behaviors, as
indicated in Section I and IV.

D. Objectives
Our goal is to schedule tasks with probabilis-

tic termination-time satisfactions — i.e., establish
probabilistically satisfied end-to-end timing assur-
ance for a task. Further, we desire to maximize the
sum of the tasks’ attained utilities, and minimize
the number of tasks that miss termination times.

III. LRTG Rationale

Since nodes may crash and messages may be lost,
task scheduling must (dynamically) recognize and
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reconcile with system dynamics. For example, once
a task completes at a node, referred to as the task’s
current head node, the next node to which task
execution progresses, referred to as the task’s next
head node, may crash, or may become unreachable.
Thus, we take the approach of the current head
node dynamically“discovering”the next head node,
once execution completes at the current head node.

We consider a gossip-style protocol for this dis-
covery, where the current head node randomly
selects a set of peer nodes and multicasts task
scheduling parameters in REQUEST (REQ) mes-
sages, for a finite number of synchronous gossip
rounds. Upon receiving a REQ message, a peer
node repeats the gossip process, if it is not the next
head node. Otherwise, it determines the feasibility
of executing the next task section and replies back
with its decision in REPLY (REP) messages. The
current head node waits for a decision, but adds
a deadline. If it does not receive a reply within
that deadline, it will consider the next head node
as crashed or unreachable and the task is regarded
as failed.

Gossip-based algorithms offer a scalable, robust,
fault-tolerant, and probabilistically-reliable mes-
sage propagation design paradigm for large-scale,
unreliable systems — informed nodes simply “gos-
sip” to randomly selected targets, without requir-
ing any confirmation regarding message reception.
Despite these attractive features, these algorithms
incur relatively high message overheads. However,
for message propagation in large-scale, unreliable
networks, this problem is not that serious. First,
the randomness nature of gossip reduces the (lower-
layer) overhead for gathering, storing, and updating
massive amounts of information in a vast network—
e.g., gossip makes nodes update their link state ta-
bles less frequently. Second, gossip is robust against
a class of Byzantine attacks (e.g., black hole at-
tacks [2]).

IV. Byzantine Attacks in Gossip
Protocols

A. Byzantine Attack Types

If a node receives but does not forward gossip
messages, the behavior is referred to as a Black
Hole attack. In addition, two or more attackers may
collude together to form a larger “Black Hole”. We
call these two attacks as Black Hole Class (BHC)
attacks.

A Message-Faking (MF) attack is more harmful,
since it propagates incorrect information, trying to
mislead others to make a wrong decision. For in-
stance, a node may send a REQ message requesting
a remote service. If an MF attacker replies with

a “NO” instead of the correct answer “YES”, the
sender will incorrectly abort a waiting task. If the
attacker replies a “YES” for a “NO”, the sender has
to keep the ineligible task and hold all its locked
resources, thereby delaying the execution of eligible
tasks, which degrades timeliness optimality.

B. Gossip Message Structures
A REQ message contains a task’s end-to-end

scheduling parameters, the original sender’s (the
current head node) identifier (ID), the selected
target node identifier (ID), the requested service ID
(SID), the set of gossip fan out numbers (Fr), and
the number of gossip rounds (R). A REP message
contains the original sender’s (the next head node)
ID, the selected target node’s ID, SID, the set
of Fr, R, and the scheduling decision (“YES” or
“NO”).

C. Byzantine Attacks in Message Propagation
BHC attackers stop forwarding messages, trying

to slow or even cease message propagation. They
are easy to deal with, since gossip is robust to
message losses.

For MF attacks in REQ message propagation,
if an MF attacker spreads a fake SID, it can
activate an irrelevant receiver to gossip back, and
thus increase the message overhead in the network.
If the attacker spreads a fake REP message, it
may tempt the sender to give wrong responses. An
important feature of gossip is that every node will
eventually receive the (attacker’s fake) messages,
with a high probability. If the real next head node
gets a fake REP message, it may easily identify the
attacker (by comparison with the original sender’s
ID). Thus, “intelligent” attackers will not initiate
such attacks in REQ message propagation.

Fig. 2. Byzantine Attacks in REP Message Propagation

Figure 2 shows BHC and MF attacks in REQ
and REP propagation, respectively. Unlike in REQ
message propagation, an “intelligent” attacker can
fake REP messages in REP message propagation
without being identified by others. Though the real
next head node can finally receive fake REP mes-
sages, it cannot identify the initiator (the original
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sender is itself). It is quite possible that the direct
sender is an intermediate node, which is a victim
cheated by the MF attacker.

V. Byzantine Attacker Detection

Gossip-based algorithms are robust to BHC at-
tacks. In this section, we focus on designing MF
Attacker Detectors (MFADs).

MFAD utilizes MF attackers’ feature of faking
SID in REQ message propagation, or faking the
answer in REP message propagation. To initiate
MF detection, a healthy node (a node that is not
an MF attacker) must run its own MFAD before
others.

Algorithm 1: Initiating MF Attacker Detector
Node i puts its own SID in “REQ” messages;1

Node i sets R = 1;2

At 1st gossip round: Broadcast “REQ” messages;3

After 1st gossip round: Check SID in every received4

“REQ” message;
if SID is changed then5

Identify this message sender as an MF attacker;6

To detect MF attackers in REQ message prop-
agation, the initiator broadcasts REQ messages,
but includes its own SID and sets the number of
gossip rounds R to 1. MF attackers will change this
SID. Since R = 1, an attacker must broadcast fake
REQ messages to all other nodes. Therefore, the
initiating MFAD can easily identify an MF attacker
by checking the SID in every received REQ mes-
sage. For activated MFADs on other healthy nodes,
since they receive the initial REQ message, they can
identify MF attackers by comparing every received
REQ with the one from the initiator. MFADs are
described in Algorithms 1 and 2.

Algorithm 2: Activated MF Attacker Detector
At the first gossip round: Receive “REQ” messages1

from the initiating MFAD;
At the second gossip round: Broadcast “REQ” messages2

once;
After the second gossip round: Compare service ID in3

every received “REQ” message with the one in the
original message;
if the service ID is changed then4

Identify this message sender as an MF attacker;5

To detect MF attackers in REP message prop-
agation, the initiator broadcasts REP messages,
includes its preset answer (e.g., “YES”), and sets
R = 1. MF attackers will reverse the answer (e.g.,
“NO”). Since R = 1, an attacker must broadcast
fake REP messages to all other nodes. Similar to
REQ MFADs, both initiating and activated MFAD
can easily identify an MF attacker. Since these

two detection processes are similar, we do not
separately show REP MFADs.

If an activated MFAD does not receive the orig-
inal REQ or REP message from the initiator, it
cannot identify any MF attacker later. If an MFAD
does not receive a one-time-broadcast REQ or REP
message from another node, it cannot regard that
node as an MF attacker. Therefore, the effective-
ness of MFADs depends on the message loss ratio.

VI. LASIRC Model and Mechanism

MFADs cannot exhaust MF attackers if the mes-
sage loss ratio is larger than zero, which is common
in unreliable networks. Since gossip is robust to
message losses and node failures, it is relatively
easy to deal with hiding BHC attackers. However,
gossip cannot handle hiding MF attackers, which is
more dangerous. Therefore, it is necessary to design
a gossip-based propagation model/mechanism to
defend MF attacks.

A. LASIRC Model
As described in Section IV-B, it is easy to identify

an MF attacker that fakes SID in REQ message
propagation. In addition, another MF attack in-
creases communication overhead, but it does lit-
tle harm to the real REQ message propagation.
Therefore, we focus on modeling node behaviors in
REP message propagation. We first introduce new
definitions for nodes participating in REP message
propagation:

Definition 1 (Healthy Node). A node that is not
an MF attacker.

Definition 2 (Host (H)). A node that has received
one or more REP messages.

Definition 3 (Launcher (L)). The initiating sender
of the REP messages.

Definition 4 (Attacker (A)). An MF attacker that
tries to spread a fake answer.

Definition 5 (Susceptible (S)). A healthy node that
has not received any REP message.

Definition 6 (Infective (I)). A healthy host that
has a fake answer.

Definition 7 (Removed (R)). A healthy host that
knows the correct answer, or always sends correct
REP messages.

Definition 8 (Consumer (C)). The initiating
sender of REQ messages.

We refer to this model as the LASIRC model,
integrating the six actor’s acronyms from Defini-
tions 3–8.
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B. LASIRC Mechanism

Algorithm 3: Launcher
Initialize REP message rep;1

GOSSIP(rep);2

We now describe the LASIRC mechanism. Algo-
rithm 3 shows how a launcher works. A launcher is
a next head node. It holds the correct answer, so it
cannot be infected by an MF attacker. The GOS-
SIP() procedure invoked in line 2 of Algorithm 3 is
shown in Algorithm 4.

An MF attacker is activated when receiving a
REP message. If the sender is another attacker,
it follows the answer. Otherwise, it reverses the
answer (e.g., “NO” for a “YES”). Algorithm 5 de-
scribes MF attackers.

Algorithm 4: Gossip Emission [GOSSIP()
Function]
On gossiping a message msg:1

while R != 0 do2

Every gossip round Γ, randomly select F targets;3

R = R – 1;4

for each m ∈ [1, . . ., F ] do5

SEND(targeti, msg);6

Algorithm 5: MF Attacker
On receiving a REP message rep:1

if the sender is not an MF attacker then reverse2

the answer in rep;
GOSSIP(rep);3

Algorithm 6 shows healthy node behaviors. A
susceptible turns into a removed if its first received
message is an antibiotic (from a removed or an
identified attacker), or turns into an infective if
that message is a virus (from an infective or an
MF attacker).

Consumer behavior in LASIRC is shown in Al-
gorithm 7. A consumer behaves like other healthy
nodes during gossip rounds. After gossip finishes, if
it still cannot identify itself as a removed (knowing
the correct answer), it will count the number of
the same answers in received REP messages. If
the consumer is optimistic, it will regard that MF
attackers occupy less than half of the total number
of nodes. Thus, it will select the answer in most
received REP messages. Otherwise, the consumer
is pessimistic, and it will select the answer in less
received REP messages.

VII. The LRTG Algorithm

The LRTG algorithm follows three steps to
schedule tasks in unreliable distributed systems

Algorithm 6: Susceptible, Infective, and Re-
moved
On receiving the first REP message rep:1

GOSSIP(rep); //Become a Removed if rep is a2

Vaccine; become an Infective if rep is a Virus
On receiving another REP message with the same3

message ID:
if the sender has sent REP message before then4

if the answer changes then5

adopt answer in new REP message;6

//Identify the sender has changed from an
infective to a removed
reverse the answer in rep;7

GOSSIP(rep); //Change from an infective8

to a removed

if the sender is an identified MF attacker then9

if the answer in the first rep is the same as the10

one in this attacker’s message then
reverse the answer in rep;11

GOSSIP(rep); //Change from an infective12

to a removed

Algorithm 7: Consumer
In gossip: Act as other healthy nodes do in Algorithm 61

After gossip finishes:2

if the consumer has not identified itself as a removed3

then
select the answer in most(less) received REP4

messages; //Optimistic (Pessimistic) consumer

with possible Byzantine attacks. These steps in-
clude 1) building local TUF, 2) constructing local
schedule, and 3) determining a task’s next head
node.

A. Building Local TUF
LRTG decomposes a task’s end-to-end TUF into

local TUFs for the task sections, based on the
execution time estimates of the sections and the
task’s termination time. Let a task Ti arrive at a
node nj at time t. Let Ti’s total execution time
of all the remaining task sections (including the
local section on nj) be Eri, the total remaining
slack time be Sri, the number of remaining task
sections (including the local section on nj) be Nri,
and the execution time estimate of the local section
be Eri,j . LRTG computes a local slack time LSi,j

for Ti :

LSi,j =

{
Sri

Nri−1 Nri > 1
Sri 0 6 Nri 6 1

(1)

The algorithm computes LSi,j in a way that allows
the remaining task sections to have a fair chance
to complete. The network communication delay
incurred by LRTG for the gossip rounds must be
limited to at most LSi,j .

The local termination time for a task Ti is given
by LXi,j = t+Eri,j +LSi,j . The local termination
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time is used by the algorithm to test for sched-
ule feasibility, while constructing local task section
schedules.

B. Constructing Local Schedule

Scheduling sections on a node to maximize the
total accrued utility is NP-hard [16]. Thus, we con-
sider heuristics called Potential Utility Density (or
PUD). For a section Si at time t, its PUD is given
by PUDi(t) = Ui/Elri(t), where Elri(t) is Si’s re-
maining local execution time at t. Thus, a section’s
PUD measures its return on “time investment.”
LRTG constructs local schedules at two scheduling
events: 1) a message arrival that signals the release
of a section (or a section’s handler) for execution;
and 2) completion of a section’s execution.

When invoked, the algorithm first sorts all sec-
tions in the non-increasing order of their PUDs.
The sorted sections are then examined, highest
PUD first, and inserted into a tentative schedule.
The tentative schedule is maintained in the or-
der of non-decreasing section termination times,
and tested for feasibility. A schedule is said to be
feasible, if the predicted completion time of each
section in the schedule does not exceed its local
termination time. If the schedule is infeasible, the
inserted section is removed. The process is repeated
until all sections are examined. The section with the
earliest termination time first executes. Algorithm 8
describes this procedure.

Algorithm 8: Local LRTG Scheduling Algo-
rithm [Local SCHEDULE( )]
Create an empty schedule φ;1

Let t be the time of the scheduling event;2

Sort sections in ready queue according to PUDs;3

for each section in decreasing PUD order do4

Insert section in φ at its termination time position5

(maintaining φ’s increasing termination-time
order);
if schedule is infeasible then6

Remove section from φ;7

Select earliest-deadline section from σ for execution;8

C. Determining the Next Head Node

Definition 9. Gossip Round r: Denotes the rth

gossip time interval, at the beginning of which nodes
send messages. All messages are assumed to arrive
at their destination nodes when the round r ends,
with a high probability.

We assume that the message delay follows a non-
negative distribution, e.g., the Gamma distribution,
as in [15]. Many distributions have infinite tails, and
therefore, to determine the length of a gossip round,

application users need to decide a termination time
point tend, after which message arrivals can be
ignored. This is done by determining a threshold
on the message arrival ratio, which is referred to as
Θ. For instance, if Θ = 98%, we can determine the
relative tend in a given distribution. The length of
a gossip round is then equal to the time interval
between the round start time point (the value is
often 0) and tend in the distribution function.

Definition 10. Ir : Denotes the number of total
informed nodes at the end of gossip round r.

Definition 11. Ur : Denotes the number of unin-
formed nodes at the end of gossip round r.

Definition 12. Fan out, Fr: The number of mes-
sages a node sends to target nodes at the beginning
of round r.

Let N denote the total number of nodes in
the system. We compute the expected number of
uninformed nodes at the end of gossip round r as:

Ur = Ur−1 × (1− Fr

N − 1
)Ir−1 (2)

When Fr ¿ N − 1, we have:

Ur = Ur−1 × exp (
−Fr × Ir−1

N − 1
) (3)

The fan out and the number of messages issued
during gossip round r (Mr), are given by:

Fr =
N − 1
Ir−1

× ln(
Ur−1

Ur
) (4)

Mr = Fr × Ir−1 = (N − 1)× ln(
Ur−1

Ur
) (5)

Different from gossip protocols with fixed fan out
number at each round, here, Fr can be adjusted on
an application-specific basis.

In gossip protocols, a message is supposed to be
sent at the beginning of a round, and arrive at
its destination before the end of the same round
(with a high probability). This message should not
be counted in the next round. Thus, the number
of messages existing at the same time is much less
than the total number of messages. In addition, ran-
domly selecting gossip targets uniformly distributes
the messages across the network, and thereby re-
duces the likelihood for network congestion.

VIII. Algorithm Analysis

Let ∆t denote the time length of a gossip round,
and `1, `2, and `3 denote the number of successful
contacts made by one infective, attacker, and host
per time unit, respectively. We have:

`1 =
αβF

∆t
, `2 =

αβF (1− η)
∆t

, `3 =
αF

∆t
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where α is the message loss rate, β indicates
whether a contact message is the first arrival, η
is the immunity rate, and F is the gossip fan out
number.

Let γ1, γ2, and γ3 denote the number of suc-
cessful immunized nodes made by one removed,
launcher, and attacker per time unit, respectively.
We have:

γ1 =
αβF

∆t
, γ2 =

αF

∆t
, γ3 =

αβFη

∆t

Let N1 and N2 denote the number of attackers
and healthy nodes, respectively. Let Sn, In, and Rn

denote the number of susceptibles, infectives, and
removed after gossip round n, respectively. Let In

and Sn denote the number of activated and non-
activated attackers, respectively. The discrete-time
deterministic LASIRC model is:

Sn+1 = Sn×(
1− `1∆tI+`2∆tIn + γ1∆tRn + γ2∆t + γ3∆tIn

N

)

(6)

Sn+1 = Sn

(
1− `3∆t (In + Rn + In)

N

)
(7)

In+1 = In

(
1− γ2∆t + γ3∆tIn

N

)
+

(
`1∆tInSn + `2∆tInSn

N

)
(8)

In+1 = In +
(

`3∆t(In + Rn + In)Sn

N

)
(9)

Rn+1 = Rn +
1
N
×

(
γ1∆tRnSn + γ2∆tSn+

γ3∆tInSn + γ2∆tIn + γ3∆tInIn

)
(10)

It is clear that N1 = Sn + In, N2 = Sn + In + Rn,
and N = N1 + N2 for all time.

Theorem 1. limn→∞ Sn = 0, limn→∞ In = N1.

Proof: Let g(S) denote the right side of Sn+1

in (7):

g(S) = S

(
1− `2∆t

I + I + R

N

)
(11)

Note that:

g′(S) = 1− `2∆t

(
N1 + I + R

N

)
. (12)

Thus, g′(S) < 1 or g(S) < S for S ∈ (0, N1]. It
follows that Sn is a strictly decreasing sequence
bounded below by zero and must approach a fixed
point of g on [0, N1]. The only fixed point of g on
[0, N1] is g(0) = 0; hence, limn→∞ Sn = 0. Since
In = N1 − Sn, we have limn→∞ In = N1.

Theorem 2. limn→∞Sn = 0, limn→∞In = 0,
limn→∞Rn = N2.

Proof: From Definition 5, limn→∞Sn = 0. Let
h(I) denote the right side of In in (8):

h(I) = I

(
1− γ2∆t + γ3∆tI

N

)
+

`1∆tSI

N
+

`2∆tSI

N
.

(13)
Note that:

h′(I) = 1 +
`∆t(S − I)

N
− γ2∆t

N
− γ3∆tI

N
− `2∆tI

N
(14)

h′′(I) = −`∆t

N
(15)

Case 1. When I = 0, if h′(I) > 1, then h(I) > I. It
follows that In is initially an increasing sequence.
Since h′′(I) < 0, h′(I) strictly decreases to be 1
and then less than 1. Thus, h(I) stops increasing at
some point on [0, N2], and then strictly decreases to
a fixed point on [0, N2]. Suppose, this fixed point
is larger than 0. Then, Rn will increase to infinity,
which is a contradiction. Thus, fixed point is 0.

Case 2. When I = 0, if h′(I) ≤ 1, then h(I) ≤ I.
Since h′′(I) < 0, In is a strictly decreasing sequence
to the fixed point zero. There is no infection.

From Cases 1 and 2, limn→∞In = 0. Thus,
limn→∞Rn = N2.

Theorem 3. If all nodes are underloaded and there-
fore, the section schedules constructed at all nodes
are feasible (Section VII-B), then LRTG probabilis-
tically bounds task termination time satisfactions.

Proof: Let a task execute through m+1 nodes.
Since each node is underloaded, each task section
can be successfully finished. The probability of
satisfying task termination times is the probability
of successfully completing all communication pro-
cesses. Determining the next head node includes
two steps. First, the head node gossips REQ mes-
sages. Second, the next head node gossips REP
messages back.

The message REQ propagation follows the SI
(Susceptible-Infective) model in epidemiology [17].
Let a node that receives a REQ message be an
infectious individual. From the SI model:

S̃n+1 = S̃n − λn∆tS̃n (16)

Ĩn+1 = Ĩn + λn∆tS̃n (17)

where S̃n and Ĩn are the number of non-infectious
individuals and infectious individuals at round n,
respectively, and λn is the force of infection [17].

The second step follows the LASIRC model. The
number of removeds is:

Rn+1 = Rn +
1
N

(
γ1∆tRnSn + γ2∆tSn

+ γ3∆tInSn + γ2∆tIn + γ3∆tInIn

)
(18)
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Let p be the largest number of rounds that a
head node must wait for a reply. Let p1 and p2

be the number of rounds needed to notify the next
head node and receive a correct reply, respectively
(p1 + p2 = p). A section k’s probability to satisfy
its time constraint is:

psk
=

Ĩp1

N

Rp2

N2
(19)

Clearly, p1 ≥ 0 and p2 ≥ 0. Thus, the probability
PSd for a task d to successfully complete through
m + 1 head nodes, and that for a task set D, PSD,
is given by:

PSd
=

∏

1≤k≤m

psk
PSD =

∏

d∈D

PSd
(20)

IX. Experimental Studies

A. Effectiveness of LASIRC Mechanism
In this simulation study, we focused on

Byzantine-tolerant properties. We simulated
the LASIRC mechanism in a 100-node system, in
which every node is reachable to others.

LASIRC is robust to BHC attacks. For MF at-
tacks, we compared LASIRC with the Susceptible-
Infective (SI) mechanism, which represents the
common gossip protocol without considering MF
attackers. MFADs cannot detect all MF attackers
if MLR is larger than 0. Therefore, we need the
LASIRC mechanism to deal with the remaining MF
attackers after MFAD detection. The number of
rounds (R) and the fan out number (F ) was 10.
Since LASIRC is combined with LRTG, our at-
tained result also holds under different Fr patterns
and larger systems.

Figure 3 shows Infective Ratio (IR; the ratio
of number of infectives to the number of healthy
nodes) along with the MF attacker number (N)
and R, respectively. In Figure 3(a), We observe
that as R increases, at the first round, LASIRC’s
IR moderately increases from 0 to 12.84%, while
SI’s IR dramatically increases from 0 to 74.52%.
This is because, LASIRC MFADs enable nodes to
identify a number of MF attackers. In compari-
son, SI does not have MFADs, and nodes imme-
diately get infected. In later rounds, we observe
that LASIRC’s IR quickly decreases to near zero
(IR = 0.01% when R = 9), while SI’s IR almost
remains unchanged (IR = 82.35% when R = 9).
With Algorithms 6 and 7, LASIRC turns infectives
into removeds. SI does not have such algorithms, so
its number of infectives keeps increasing till there
is no susceptible.

In figure 3(b), we observe that SI’s IR dramati-
cally increases as N increases (IR = 88.76% when
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Fig. 3. Infective Ratio under LASIRC/SI Model

N = 35). However, LASIRC’s IR slightly increases
and then decreases to almost zero (IR = 1.07%
when N = 35). This shows the effectiveness of
LASIRC MFADs — if there are more MF nodes,
MFADs identify more MF attackers. This is why
LASIRC’s IR decreases when N increases.

B. Overall Performance Evaluation

We evaluated LRTG’s overall performance in a
700-node unreliable system, and compared it with
the gossip-based algorithm RTG-DS in [11]. RTG-
DS does not change Fr during gossip. Besides, it
does not use the LASIRC mechanism.

In the previous experiments, we verified that
LRTG is robust to message losses, node failures,
and BHC attacks. We focused on dealing with
MF attacks in this section. We set tasks to exe-
cute through four nodes. In Figure 4, we observe
that when the number of MF attackers increases,
LRTG’s SR gently decreases. At the same time,
RTG-DS’s SR decreases in a much more dramatic
way — if there are 15 MF attackers in the system,
RTG-DS’s SR drops to 20.57%, while LRTG’s SR
is still above 90%. Thus, even if MF attackers
only occupy a small ratio in a large-scale system,
it can have a significant impact on scheduling
performance. However, with LASIRC, LRTG can
effectively deal with MF attackers.
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X. Conclusions

LRTG uses gossip for reliably propagating task
scheduling parameters and for discovering task ex-
ecution nodes, despite message losses and node
failures, with acceptable message overheads. The
algorithm’s LASIRC mechanism guards against po-
tential disruption of message propagation due to
Byzantine attacks including BHC and application-
level message-faking attacks. We show that LRTG
provides probabilistic assurances on timeliness be-
haviors. Our experiments shows its effectiveness.
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