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Abstract
Hardware resource fragmentation is a common issue in

data centers. Traditional solutions based on migration or
overcommitment are unacceptably slow, and modern com-
mercial or research solutions like Spot VM may reduce or
evict VM’s resources anytime. We propose an alternative so-
lution that does not suffer from these drawbacks, the Aggre-
gate VM.We introduce a new distributed hypervisor design,
the resource-borrowing hypervisor, which creates Aggregate
VMs: distributed VMs that temporarily aggregate fragmented
resources belonging to different host machines, which re-
quire mobility of virtual CPUs, memory and IO devices. We
implement a prototype, FragVisor, which runs guest soft-
ware transparently. We also propose minimal modifications
to the guest OS that can enable significant performance gains.
We evaluate FragVisor over a set of microbenchmarks and
IaaS-style real applications. Although Aggregate VMs are
not a perfect fit for every type of applications, some work-
loads enjoy significant speedups compared to overcommitted
scenarios (up to 3.9x with 4 distributed vCPUs). We further
demonstrate that FragVisor is faster than a state-of-the-art
competitor, GiantVM (up to 2.5x).

CCSConcepts: •Computersystemsorganization→Dis-
tributed architectures; • Software and its engineering
→Virtual machines.
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1 Introduction
Hardware resource fragmentation in modern data centers

is a critical problem [12, 30, 39, 42, 45, 75, 86, 95]. It is due to
several factors: the broad variety of resource requirements
for jobs; an increase in the average amount of resources re-
quired per job [29, 67]; job placement constraints such as
software/hardware dependencies [87, 93]; and poor hard-
ware elasticity/inadequate support for heterogeneity [91].
Even considering optimized scheduling and placement meth-
ods [29, 45], or attempts to defragment resources through
migration, resource fragmentation still persists [39, 82, 91, 95].
Although disaggregated hardware [37, 46, 61, 62, 91, 95] ap-
pears to be a solution in the long term, it is not viable yet, and it
is alsonotapanacea: it requiresahardwarerefresh, acapital in-
vestment, andonlysolves theresource fragmentationproblem
for memory. Thus, even if cloud providers already attempted
to monetize fragmented resources – e.g., with Spot VMs [11,
41, 66], they are still seeking solutions to further increase
single-machine resource utilization without affecting the per-
formance of PrimaryVMs [12, 50, 63, 102], i.e., VMswith guar-
anteed resources. Spot VMs, as well as more recent works [12,
102], do not guarantee fixed performance, but only a certain
minimum amount of resources, and they can be evicted (VM
kill)withminimal/nonotification.Hence, theyarenot suitable
for Primary VMs’ workloads. Moreover, with such solutions
the data center scheduler still needs to exactly find a machine
with that minimum amount of resources available.

Idea. This paper approaches the problem of data center
resource fragmentation in a fundamentally different way: in-
stead of exploiting free resources at the granularity of a single-
machine, it aggregates fragmented resources available among
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multiple machines into a single distributed VM. To achieve
that, we introduce a new type of VM, the Aggregate VM. Dif-
ferently from previous works, it guarantees a certain fixed
number of resources at all timewithout eviction, but the guar-
anteed SLO is based on the type of workload. Therefore, this
paper is driven by the following questions: a) can Aggregate
VMs be a solution to the fragmentation problem, and at what
overhead? b) for what workloads, and at what SLO?

Toanswer thesequestions,we introducedanewdistributed
virtual machine monitor, the resource-borrowing hypervisor,
which providesAggregate VMs as first class VMs. This enables
the traditional unit of resource allocation in the cloud, the Vir-
tual Machine (VM), including processing units (virtual CPUs,
vCPUs), (pseudo-)physical memory, and I/O devices, to be
distributed over fragmented hardware resources belonging to
different physical servers. This distribution is transparent, i.e.,
in its basic form, it requires nomodification to guest software.
It is also temporary, to reflect the dynamic nature of fragmen-
tation, virtualized resources are “mobile” between servers.

FragVisor.We built FragVisor, a resource-borrowing hy-
pervisor that runs on existing data center infrastructures,
creating and maintaining Aggregate VMs. Aggregate VMs
provide the exact number of resources requested by a user for
a VM, reducing the potential performance degradation ver-
sus solutions based on resource overcommitment, and elim-
inating the possibility of resource eviction of transient VMs
(Spot VMs, Preemptible VMs, Harvest VMs, etc). Moreover, it
also avoids downtimes due to potentially complex multi-VM
migrations. However, as a distributed VM, it presents some
unavoidable overheads when accessing remote resources.We
demonstrate that these slowdowns aremuch lower compared
to solutions based on resource overcommitment, focusing
on the CPU – a resource for which fragmentation has been
shown to be particularly problematic for VM allocation [12].

FragVisor is a distributed multi-hypervisor [80]. It extends
Linux/KVM to run among multiple machines and leverages
a Distributed Shared Memory (DSM) system to transparently
present to the guest a unified and consistent view of its phys-
ical address space. FragVisor allows a vCPU on one physical
machine to access memory as well as remote devices, such as
virtualdisks, fromothermachines. FragVisor is able toexecute
fully unmodified guest OSes, although some non-intrusive
modifications to the guest OSes can bring significant perfor-
mance improvements. More importantly, FragVisor does not
require any modification to legacy user-space software.

Innovation. To our knowledge, this is the first work that
considers the potentials of leveraging a distributed VM, the
Aggregate VM, to solve the resource fragmentation problem
in the data center. Although several distributed hypervisors
have been proposed in the past [8, 27, 89, 96, 104], those target
a fundamentally different goal: running scale-up workloads
on scale-out hardware.We focus instead on small- tomedium-
sized VMs that are common allocation units in IaaS. Further,

we also note that existing distributed VM systems lack mech-
anisms enabling resources mobility among physical nodes.

Similarly to such existing works, FragVisor relies on DSM
to provide a (temporary) distributed VM with a coherent
(pseudo-)physical memory view over several nodes. Histor-
ically, DSM has been known to scale poorly in workloads ex-
hibitingmedium to high levels ofmemory sharing [13, 26, 59].
Recent attempts at reviving DSM, even when they rely on
modern high-speed interconnects, still target workloads with
relatively low levels of sharing [55, 71, 104]. We observe that
in data center IaaS settings, several classical workloads are
made up of concurrent components executing in the same
VM and exhibiting very low degrees of sharing, e.g., web
server/language runtime/database stacks, serverless comput-
ing, etc.Our intuition is that for suchworkloads, anAggregate
VM can provide a similar SLO than a Primary VM.

To address the dynamic nature of fragmentation in the data
center, along with memory mobility (using DSM), an Aggre-
gate VM needs mobility of virtualized CPUs and I/O devices.
A cross-node vCPUmigration mechanism enables part of or
an entire VM to transparently move at runtime where hard-
ware resources become available, something not possible with
existing distributed hypervisors. This allows us to consolidate
a VM over time on as few servers as possible – ideally a single
one. We also exploit vCPUmobility and a distributed check-
point/restartmechanismto tackle fault resilience, exacerbated
by running a single VMonmultiplemachines. Finally, we pro-
pose a set of new techniques to support I/O device mobility,
including single- and multiple-queue I/O delegation [88] on
top of DSM,DSM-bypass I/O delegation, and distributed I/O.

Key Prototype Results. We prototyped FragVisor and
evaluated its performance on a computer cluster, over a set
of micro- and macro-benchmarks. Among others, the results
show that with four distributed vCPUs, an Aggregate VM
offers significant speedups for compute-bound (up to 3.9x)
and networking (up to 3.6x) applications, when compared
to overcommitment. FragVisor is also faster than a state-of-
the-art competitor, GiantVM [104]: up to 2.5x for compute
workloads, and 1.3x for network applications. When run-
ning shared-memory multithreaded applications on top of an
Aggregate VM, the SLO is impacted based on the degree of
sharing. FragVisor’s slowdown is generally acceptable (15%),
although it is not a panacea for workloads relying heavily on
shared memory, which may experience higher overheads.
Contribution. Thepapermakes the followingcontributions:
• We identify IaaS workloads that are less affected by run-
ning on a distributedVM. For those, the SLOofAggregate
VMs is similar to the one of Primary VMs;

• We propose theAggregate VM, a new approach to solve
fragmentation in the data center, avoiding resource evic-
tions.AnAggregateVM leverages idlehardwareresources
belonging to different nodes to reduce fragmentation;
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• We introduce the resource-borrowing hypervisor design, a
newdistributedhypervisor that providesAggregateVMs;

• We build FragVisor, an implementation of the resource-
borrowing hypervisor based on Linux/KVM, providing
the mobility of virtual CPU, memory, and devices, while
introducingnewdistributedhypervisormechanisms, and
guest kernel optimizations;

• We evaluate FragVisor, demonstrating its superior per-
formance over a baseline and a competitor.

Section 2 further motivates our work, and characterizes
several IaaS workloads’ suitability to run on an Aggregate
VM. Background material is revised in Section 3. We present
our architecture in Section 4, while Section 5 and Section 6
describe FragVisor’s design and implementation, respectively.
FragVisor is evaluated in Section 7, and contrasted with past
works in Section 8. Section 10 concludes.

2 Motivation

Fragmentation in the Data Center. Researchers fromMi-
crosoft recently stated that “Given Azure’s scale, even 1% in
fragmentation reduction can lead to cost savings in the order of
$100M per year” [45]. A study [42] analyzing traces on Face-
book and Bing clusters noted that fragmentation and overpro-
visioning are responsible for a 45% increase in job makespan.
The authors of a recent study [75], observing a cluster from
the Eolas [35] cloud provider, noted an average of 17% of the
physical resources wasted each day due to fragmentation. As
a result, data center operators are still looking for solutions to
reduce resource fragmentation [12, 50, 63, 102], and increase
their returns on the data center investments. At the same
time, commercial offers aiming at monetizing fragmentation
exist frommajor hyperscalers [11, 41, 66], namely transient
VMs (like Spot or Preemptible VMs), but those generate a
reduced revenue compared to Primary VMs. This is because
they cannot guarantee a certain constant level of provisioned
resources, if not a minimal one – lesser SLO, and can be killed.
As mentioned above, fragmentation is due to many fac-

tors [12, 30, 39, 42, 45, 75, 86, 87, 91, 93, 95]. An ideal VMplace-
ment algorithm that could solve fragmentation is known to
be a hard problem [39, 91, 95]. The same is true for attempt-
ing to “defragment” the data center by migrating running
jobs on a smaller subset of physical machines [95]: migration
has the additional downsides of requiring further data center
resources (pre-/post-copy [64, 82]) or involving unaccept-
able downtimes (checkpoint/restart). Thus, in practice, when
faced with the problem of accommodating more jobs on a
saturated but fragmented set of hosts, the provider can either
buy newmachines or overcommit resources by packingmore
jobs on already busy hosts. Both solutions are suboptimal:
buying newmachines involves additional financial costs at
a time when data center capital equipment costs are higher
than operating ones [24], and overcommitment may lead to
unacceptable performance degradation.
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Figure 1. Single-machine (non-distributed) over DSM
(distributed) execution time ratios as a function of the number
of DSM page faults per second for various applications. An
execution time ratio lower than 1 is a DSM slowdown.

Early Study: DSM, Sharing, and Scalability. An Aggre-
gate VM relies on DSM to implement virtualized memory
mobility, and to provide the guest with a coherent view of
a pseudo-physical address space. DSM is known to be slow
when data sharing is high [13, 26, 55, 59]. Therefore, we in-
vestigated the degree of data sharing among vCPUs when
running several IaaS workloads – with the goal of finding
workloads that would be minimally impacted when running
in a distributed VM sitting on multiple physical nodes.

To that aim, we run on an early prototype of our FragVisor
a set of applications including serial (NAS Parallel Bench-
marks [69])andscale-upmultithreadedworkloads (NPBOpen-
MP – OMP); a LEMP stack (Nginx/PHP/MySQL) in which the
time to generate anHTML page to answer a request varies be-
tween25and500ms, benchmarkedwithApacheBench; andan
instance of theOpenLambda FaaS computing framework [47].
We run the DSM on 2 and 4 nodes, and in each case we set the
followings equal to the number of nodes: the number of serial
NPB instances, the number of OpenMP threads, the number
of PHP workers, and the number of OpenLambda workers.
We measure the slowdown of running on top of DSM vs. a
non-distributed (vanilla Linux) setting.
The results are presented in Figure 1. The slowdown in-

creases with the level of sharing, or DSM contention – i.e.,
DSM faults per second. Applications showing low levels of
sharing perform similarly on DSM and on a single-machine
(from no slowdown, up to 45%): unsurprisingly, serial NPB
but also embarrassingly parallel OMPworkloads fall within
that category, as well as the FaaS infrastructure. Interestingly,
LEMP stacks with a page generation latency superior to 40ms
also exhibit a modest slowdown, (30% to no slowdown) when
running on DSM vs on a single-machine. On the other hand,
applications with high degrees of sharing, such as most OMP
benchmarks and high performance LEMP (page generation
< 40ms), suffer significantly when executing atop DSM (up to
95% slowdown).

186



EuroSys ’23, May 8–12, 2023, Rome, Italy H-R. Chuang, K. Manaouil, T. Xing, A. Barbalace, P. Olivier, B. Heerekar, and B. Ravindran

Thus, certain IaaS workloads’ performance will not be pe-
nalized when running atop an Aggregate VM – they will have
a similar SLO to Primary VMs.Hence, herein wemainly tar-
get such a subset of IaaS workloads, characterized by limited
sharing among threads – an Aggregate VM is not a general
solution, the SLO depends on the software running in the VM.
Yet, we observe that the amount of cloud/IaaS applications
presenting characteristics suitable for distributed execution
is non-negligible: for example, regarding LEMP, according
toW3Tech [99], WordPress (a LEMP stack) runs today more
than 40% of the Internet’swebsites. Regarding serverless com-
puting, expert estimate that its usage will skyrocket [51] in
the next years.

3 Background

Virtualization Technologies. Two virtualization architec-
tures arewidespread: Type-1, inwhich the hypervisor directly
runs on the hardware, e.g., Xen [20], andType-2, where the hy-
pervisor coexistswith or is anOS service, e.g. KVM [57].With
the latter, virtualized CPUs run as host OS threads, and their
physical address space (Guest Physical Addresses, GPAs) cor-
responds to the host OS threads’ address space (Host Virtual
Addresses, HVAs). In order to let the guest address its own vir-
tual memory (Guest Virtual Addresses, GVAs), a virtual mem-
ory management unit (vMMU) is needed. While the vMMU
was implementedusing shadowpage tables in software [9, 83],
today’s CPUs provide hardware vMMU – such as Extended
Page Tables (EPT) on Intel processors [70], which provide two
levels of hardwareMMUtranslations.Apage fault in theguest
OS can be handled by the guest MMU, but if there is no host
page backing it, the fault will be handled by the host MMU.
Regarding CPU virtualization, manufacturers introduced

a new execution mode for the guest VM itself. Each manu-
facturer has an instruction to switch execution mode, and a
data structure has to be filled before switching (e.g., VMX in
Intel) – which lists events that make the CPU exit virtual ma-
chine mode execution. We refer to this as “full virtualization”,
while virtualization without hardware support that requires
modification of the guest software is “paravirtualization”.
Virtualizing Devices. With the introduction of CPU and
memory hardware–assisted virtualization, manufacturers
also added hardware virtualization features to devices [32].
Yet, devices with hardware virtualization features support
only a limited number of VMs, or are expensive. In many
situations, paravirtualized hardware devices are preferred.

VirtIO [88] is the de-facto standard paravirtualized device
technology, and implements different classes of devices, in-
cluding network interface cards (virtio-net), storage devices
(virtio-blk), and consoles (virtio-console). A VirtIO device ap-
pears to the guest software as a PCIe device and requires the
software to instantiate at least a couple of in-memory ring
buffers– a transmission (TX) and a receiver (RX) ring . vHost is
anevolutionofVirtIO targetingType-2 virtualization, itmoves
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CPUs CPUs CPUs

Companion
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Figure 2.A resource-borrowing hypervisor aggregates slices
(yellow boxes) of physical resources from several physical
nodes into a distributedVM (dotted black box),which dynami-
callyadjusts its slicesbasedonresourceavailability (cf.AvsB).

a device emulationmechanisms from user- to kernel-space to
avoid the user-kernel switches, boosting performance [81].
VM Migration and Distributed Execution. VMs offer a
convenient abstraction for software mobility. VM state can
be extracted andmoved to another physical machine through
VMmigration [28].

Sometimes, instead of assigning the resources of a single
server tomultipleVMs, it is interesting to aggregate resources
ofmultiple servers intoasingle, larger,VM.Thishasbeendone
before [8, 27, 96, 104] (seeSection8)by introducingdistributed
protocols to aggregate hardware resources available on dif-
ferent physical machines. The Popcorn Linux project [16–
19, 23, 53, 78, 79, 90], and Kerrighed [54], also aggregate hard-
ware resources, but achieve that at the OS level rather than
at the hypervisor level.

4 Aggregate VMDesign and Architecture
With the goals of a) fast VM provisioning (faster than de-

layed execution), b) minimal VM overheads (lower than re-
source overcommitment and VMmigration, aiming at SLOs
similar to Primary VMs), c) guaranteed resources provision-
ing (no reduced resources, nor evictions contrary to transient
VMs), and d) data center-wide resource exploitation, we pro-
pose a new distributed hypervisor design that provisionally
aggregates “slices” of fragmented hardware resources belong-
ing to multiple physical machines into a single (distributed)
VM – the resource-borrowing hypervisor.
Design Principles. The resource-borrowing hypervisor is
based on the following design principles: a) aggregate at least
the hardware resources that are needed for a VM to run at
each instant; b) reduce over-provisioning; c) have minimal
overhead and interference with other VMs or applications; d)
be high-performance; and e) be (transparently) compatible
with existing software, i.e., guest OSes and applications.
Operational Principles. A resource-borrowing hypervisor
creates VMs aggregating hardware resources belonging to dif-
ferent server machines. Hence, as depicted in Figure 2, such
Aggregate VMs may exploit physical CPUs, RAM, and I/O
devices owned by different servers (M1, M2, M3 in Figure),
and it is dynamically reconfigurable to leverage resources on
different nodes for the same VM (cf. right and left of Figure 2).

187



Aggregate VM EuroSys ’23, May 8–12, 2023, Rome, Italy

When a resource-borrowing hypervisor creates an Aggre-
gate VM, a hypervisor instance is started on each physical
server involved in offering resources for that VM. Instances
manage subsets of hardware resources from various servers,
VM slices, which contribute to the whole VM.

One of the hypervisor instances is responsible for establish-
ing the connection among all, and is responsible for starting
the guest execution – thus, it should provide at least one vir-
tualized CPU. Such an instance will be startedwith additional
informationabout theother instances (e.g., hosts IPaddresses),
as well as the disk image(s), and eventually the kernel and
bootloader. We call this instance a bootstrap VM slice; other
instances are called companion VM slices. After the bootup
phase, all VM slices are peers. A VM slice may include virtual
CPUs, virtual RAM, and virtual devices of any type, such as
IO interfaces, accelerators, etc. However, a VM slice can be
composed of just memory (like previous work [33, 43, 76]);
or just a device, such as a GPU or TPU (like GPUDirect [58]).
SystemArchitecture. A resource-borrowing hypervisor is
a distributedmultiple-hypervisor [80]. Each VM slice runs on
top of a different hypervisor instance, while instances run on
different servers. Different hypervisor instances talk between
each other using a communication layer, based for example
on message-passing. The communication layer is exploited
by a set of distributed hypervisor services that provide the
illusion of a single VM among multiple hypervisors – the Ag-
gregate VM. To stick to the design and operational principles,
a resource-borrowing hypervisor implements the concept of
mobility of virtualized memory, CPU, and device. While all the
memory, CPUs, and devices of a VMmay be distributed and
presented as a single VM (all slices can access all resources),
the “temporary” aspect of borrowing demands formobility
– which in turn, demands several old and newmechanisms.
VM RAM (vRAM) mobility can be implemented with inter-
machine memory copy, or distributed shared memory (DSM).
VM CPUs (vCPUs) mobility can be implemented with thread
remote creation, or migration. VM devices mobility can be
implemented as proxying, delegation, tunnelling, etc. Finally,
not all resources assigned to a VM should be allocated to a
specific VM for its entire lifetime.
System Orchestration. Based on the scale of a data cen-
ter, what hardware resources among what nodes will be as-
signed to an Aggregate VM is decided either by the resource-
borrowing hypervisor itself, or by an external entity, such
as a data center scheduler/orchestrator, e.g. Protean [45]. In
the former case, the resource-borrowing hypervisor would
be pre-deployed on all machines of the data center, would
knows about the resource availability of every machine. In-
stead, when an external entity governs resource assignments,
the resource-borrowing hypervisor is not required to always
run on all machines of the data center, but only on the ones
with fragmented resources to share. A data center scheduler
is an example of external entity, which is anywaymonitoring

servers’usage, andknowsabout themanagedcluster’salready
allocated hardware resources and the resource requirements
of incoming tasks. However, this requires data center sched-
ulers tobeextendedbecausecurrent schedulers cannotexploit
partial/fragmented resources. In this case, the scheduler will
inform the resource-borrowing hypervisor to move a VM
slice (or part of it) between hypervisor instances (for power,
performance, demand of new resources, reliability, etc).
Reliability. Running a VM on top of multiple physical ma-
chines is less reliable than running a VM on top of a single
machine. In other words, assuming one machine is 99.9% reli-
able, two are 99.8%, three are 99.7%, etc. However, it is not just
the hardware to guarantee a specific reliability, but also the
software [94]. Hence, a single software stack running among
several machines, like in an Aggregate VM, may be more re-
liable than a software stack per machine [97]. From the point
of view of the hardware, a resource-borrowing hypervisor
cannot change hardware’s reliability, but it can exploit state-
of-the-art hardware monitoring and logging subsystems (e.g.,
Intel MCA/AER) to preemptively force-migrate a VM slice
from a likely-to-fail server to another. Other fault-tolerance
techniques such as periodic checkpointing and restart on
failure can further be used.

5 FragVisor
FragVisor is an implementation of the resource-borrowing

hypervisor targeting a Type-2 full virtualization architec-
ture for traditional monolithic UNIX-like OSes. It is designed
around common state-of-the-art data center hardware, where
servers – compute nodes with multicore CPUs and acceler-
ators – are mainly interconnected via high-speed network(s).
Therefore, FragVisor’s communication layer is based on mes-
sage-passing, which in order to avoid user-kernel switches
and maximize performance is located in the host kernel, sim-
ilarly to bespoken multiple-kernel OSes [17, 22]. Hypervisor
services run in a distributed fashion atop the communication
layer, strictly in kernel space, again for performance reasons.
Note that different services may require different consistency
level to maintain their distributed state and provide mobility.
In the data center, FragVisor does not make any decision

itself about what machines will be used by an Aggregate VM
– i.e., FragVisor has no placement-like capability. This should
be the role of a data center scheduler/orchestrator, such as
Protean [45]. We suggest extending, but not changing, exist-
ing schedulers. We propose a prototype orchestrator and a
policy in Section 6.5.

5.1 Distributed Pseudo-Physical Memory
To provide virtualized memory mobility as well as the il-

lusion of shared memory among machines (single system),
FragVisor moves memory blocks between different machines.

ModernType-2 hypervisors hold the guest pseudo-physical
address space (virtualized memory) as a subset of the virtual
address space of a host user-space application, the VMM. To
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make such part of the address space available to the guest
OS, consistently among different machines, as well as mobile,
FragVisor adopts DSM. Parts of the address space that do
not belong to the guest pseudo-physical memory area, but
to emulated devices, are handled outside the DSM protocol
(see Sect. 5.3). Software DSM has been criticized in the past,
mainly due to its consistency overheads and poor scalability.
Indeed, we already disclosed that because of DSM an Aggre-
gate VMmay not provide the same SLO as a Primary VM, but
there exist certain workloads that are less or not impacted by
DSM. Also, faster networks are increasingly available in data
centers [49], speeding up DSM, motivating it even further.
Anyway, to alleviate criticism, FragVisor introduces several
DSM optimizations, including a contextual DSM protocol,
and run-time NUMA topology updates, presented below.
ContextualDSM. The hypervisor knows a lot about the con-
tent of the guest physical address space, especially aboutCPU-
dependent memory areas, including the position of the page
table, interrupt table, etc. InSMPOSes, theseare sharedamong
all CPUs, and are highly used. Therefore, it is of the utmost im-
portance to avoid the DSM protocol from slowing down their
access. We propose a contextual DSM protocol that leverages
information about the memory content to reduce DSM traffic.
NUMATopology Updates. Modern OSes use NUMA infor-
mation to optimize operations such as scheduling and mem-
ory allocation. With the goal of reducing DSM traffic, FragVi-
sor informs the guest software about the non-uniform access
latencies due to DSM by exposing a NUMA topology that re-
flects the placement of hardware resources on different server
machines. Such NUMA topology is updated at runtime.

5.2 Distributed vCPU

To enable virtualized CPUmobility, a FragVisor Aggregate
VM runs vCPUs as distributed threads over the guest pseudo-
physical memory, which is kept consistent among vCPUs
using DSM. Each vCPU has its own set of registers, a local
interrupt controller, and a timer (e.g., x86’s local APIC timer).
There is usually no shared state among different vCPUs if not
for processor-wide registers, such as someMSR registers in
x86. These are kept consistent among hypervisor’s instances.

CPUs notify each other via IPI, including MSI. Thus, each
hypervisor instance keeps track of the machine where each
vCPU is using a vCPU location table. IPIs are turned into mes-
sages to hypervisor instances.

Finally, live slice migration, necessary for consolidation or
fault-tolerance purposes, requires thread migration [18, 19,
53] to move a running vCPU between different servers.
Distributed vPIC. Other than the CPU local interrupt con-
troller, one or more non-local interrupt controllers may ex-
ist in a VM (e.g., x86’ IO-APIC). Since a non-local interrupt
controller is usually an interrupt broker, and interrupts are
converted into messages, this may be kept as non-replicated
on the machine with the highest number of physical devices.

5.3 Delegated Virtual Devices
In FragVisor, virtual device access is mainly based on the

conceptofdelegation, i.e., guestVMsoftware runningonaVM
slice should be able to access any device exposed by theAggre-
gate VM, but the actual communication with the physical de-
vice happens only on the hypervisor instance running on the
same physical server as the device. This guarantees mobility.

Devicesmaycommunicatewith theCPUeitherviamemory-
mapped IO or IO ports.We focused on the former. Specifically,
we support PCIe-based devices by establishing a distributed
PCIe root complex and devices emulator. Many PCIe devices,
including the virtual ones we support, instantiate ring buffers
in vRAM. Should these buffers be managed by the DSM, the
high amount of contention they create will significantly hurt
performance. Thus, in FragVisor devices are using per-CPU
TX/RX queues when possible, and we introduce DSM-bypass.
Multiqueue VirtIO. To limit our engineering efforts, we
focus on paravirtualized hardware (VirtIO-based), but our de-
sign can be trivially extended. Herewe explain howFragVisor
supports virtio-net, but the same applies to virtio-blk, etc.
A paravirtualized network device exposes TX/RX ring

buffer pairs that the guest uses to enqueue/dequeue pack-
ets. Because these ring buffers are on theVMvirtual RAM, the
DSM protocol maintains them consistent across hypervisor
instances. To reduce DSM traffic, vCPUs running on differ-
ent physical nodes should avoid accessing the same TX/RX
pairs. Hence, FragVisor adopts multiqueue [100] technology
(supported by most OSes), where each TX/RX pair, is mapped
to a different vCPU and hypervisor instance.
This solution allows VM slices that do not own a network

device to delegate the transmission of network packets to
other VM slices by simply writing a packet on DSM, and then
sending an interrupt to notify a new packet has been written.
DSM-bypass. However, adopting multiqueue is not enough:
the synchronization operations made on both ends of a com-
munication channel generate a high DSM overhead. Thus, as
anoptimizationwebypass theDSMforTX/RXpairs.Wemake
the paravitualized network device on each VM slice writing
and reading the related TX/RX pairs, and send or receive the
information to or from theVMslicewith the physical network
card. Thus, for a TX event, the paravirtualized network device
piggybacks the network packet(s) – that is read from themem-
ory, to the TX interrupt sent to the VM slice with the physical
network card. Thus, the DSM is excluded from the data path.

6 Implementation
We implemented a prototype of FragVisor based on the

Linux kernel v4.4.137. To avoid reinventing the wheel, we
based our implementation on different Linux kernel compo-
nents from the Popcorn Linux project [17, 55]1, including

1Whenwe started FragVisor, the latest stable Popcorn Linux was based on
Linuxkernel v4.4.137.Hence, FragVisorLinuxkernel is basedonsuchversion.
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Figure 3. Implementation of FragVisor vs a normal VM.

thread and process migration, kernel-level DSM, and themes-
saging layer, whichwe either extended or rewrote. Our target
Type-2 hypervisor is Linux/KVM for Intel x86-64 platforms,
and we extended kvmtool (commit c57e001) as the user-space
VMM for creating and managing guest VMs. Our implemen-
tation is made of 7,642 LoC (excluding comments) in the OS
kernel, 5,637 LoC in the kvmtool, plus another several thou-
sands LoC in automation scripts2. Figure 3 compares our
prototype to a classic hypervisor.
All our distributed/delegated mechanisms rely on FragVi-

sor’s communication layer, which exploits Remote Direct
Memory Access (RDMA) over high-speed InfiniBand to min-
imize inter-server messaging overheads. This required an
almost-complete rewriting of Popcorn Linuxmessaging layer.
6.1 Distributed VMMemory
The kernel-level DSM of Popcorn Linux [55, 90] has been

rewritten to fully support the IVY’s invalidation-based DSM
protocol [60], contextual DSM, and NUMA topology updates.
The DSM handles the memory consistency for most of

kvmtool’s address space, including the guest’s virtual RAM
(pseudo-physicalmemory).Moreover, unlike traditionalDSM
systems that handle host page table faults only, our DSM also
handlesEPTfaults. In fact, traditionalDSMsystemsonly inval-
idate the host page table bymaking the page table entry (PTE)
non-present, and flushing the corresponding TLB. However,
with a second level of translation, ourDSMneeds to invalidate
EPT’s shadow PTEs (SPTEs) and flush the secondary TLB.
A guest OS page fault requires a GVA to GPA translation.

If an entry exists in the guest’s page table, the guest will then
access the GPA. However, accessing a GPAwhose page is not
present on a machine causes a host page fault. If a GPA to
host physical address (HPA)mapping exists in the EPT (main-
tained by the hypervisor), the VM directly accesses the HPA
without causing a VM exit. Otherwise, a VM exit happens,
due to an EPT violation. This is reported to the DSM that
eventually fetches the page, if it exists, from other nodes.
Troubleshooting DSM Traffic. When traditional software
for SMP runs on FragVisor, it may show additional overheads.
To debug that, our DSM tracks, for each page fault, the guest
physical and virtual addresses,which are then correlatedwith
the source code if possible.
2In addition to the components borrowed from the Popcorn Linux project.

Learning frompreviousworks [8, 27, 52, 96, 104], we traced
the guest VM executing different applications on Linux. That
helped identify several uncorrelated kernel data structures
thatwereplaced in the samememorypageandcreatingunnec-
essary DSM traffic due to false sharing. We patched the guest
OS kernel to solve the problem, reducing the DSM traffic3.
Optimizations. By tracing, we identified another source of
DSM traffic: hardware dirty bitmanagement. The EPT subsys-
tem can be configured to additionally set dirty bits in its own
translation, which generates additional DSM traffic. Hence,
we disabled dirty bit tracking – anyway, this is already taken
care of by the DSM itself, thus redundant in this project.
FragVisor implements the notion of contextual DSM. For

example, for page tables, in order to reduce the network traffic
forTLB shootdown it piggybacks the page tablemodifications
with the shootdown interruptmessage– reducingDSMtraffic.

FragVisor implements NUMA topology updates. Namely,
static APIC tables show one NUMA zone per VM slices, when
VM slices move, coalesce or split, we trigger an ACPI System
Resource Affinity Update notification [98] to reflect changes.

6.2 Migrating vCPUs
Our prototype either lets the Bootstrap VM slice create all

vCPU threads and then migrates those vCPU threads to Com-
panion VM slices, or creates remote vCPUs threads (at boot
time only). This allowed us to reuse part of the existent Pop-
corn taskmigration code to distribute vCPUs amongmultiple
machines. To provide distributed vCPUs, we augmented task
migration to account for additional vCPU-related state and
metadata as described before – most doesn’t need to be kept
consistent among machines. Finally, the prototype maintains
for each VM slice a replicated array that tracks the position of
everyvCPUand isupdatedateachmigrationevent.This is fun-
damental to implement mobility and inter-server messaging.
Interrupts. vCPU threads are the recipients of interrupts. In
the prototype, we modified the hypervisor for interrupt dis-
patching in order to check if the target vCPU is local or remote.
If it is remote, a message with the description of the interrupt
event is sent to another VM slice instance via the communi-
cation layer. Otherwise, the traditional code path is followed.

6.3 Distributed VMDevices
We rewrote most virtio-based and emulated kvmtool de-

vices (all but 9p, balloon,VESA) in order towork atop our com-
munication layer. Thus, a device physically located within a
specificVMslice can be used by all slices of the corresponding
VM. For performance reasons we targeted the kernel imple-
mentation of virtio, which is vhost. However, because kvmtool
doesn’t support multiqueue with vhost, we had to write a
patch to extend it4. As kvmtool doesn’t support virtio-GPU,
we cannot showcase the feature of borrowing an accelerator.
However, this is just a technical limitation, advantages of
3This patch is available open-source.
4Submitted to the Linux kernel mailing list.
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such technology has been already commercially proved, e.g.,
NVIDIA GPUDirect [77].
Network. The prototype leverages Linux’s vhost-net. While
our distributed PCIe layer takes care of the physical PCIe ad-
dress ranges, the DSM replicates the TX/RX pairs on physical
memory, and multiqueue reduces DSM traffic. With DSM-
bypass, TX/RX pairs are not replicated. We also need to prop-
erly handle the notifications between the guest and the host
in a distributed environment. Thus, each node has to install
the corresponding file descriptors (ioeventfd andMSI irqfd)
to notify the guest and host to access TX/RX pairs.
When the guest VM sends a network packet, it enqueues

the packet’s information on a TX ring buffer, and passes its
index to the hypervisor. FragVisorwill deliver the event to the
VM slice with the physical device, which will fetch the packet
using DSM.With DSM bypass, the packet is sent by the hy-
pervisor to its destination through the communication layer.

Similarly,whenapacket for the guestVM is received, vhost-
net copies it into the guest memory, and injects an IRQ based
on the TX/RX pair number. The VM slice managing that IRQ
will move in the packet using DSM. With DSM bypass, the
packet is sent to theVMslicemanaging that IRQ,which copies
the data into guest memory.
Storage. The current prototype is capable of using virtual
RAMas a backing storage (tmpfs), or vhost-blk. tmpfs exploits
DSMfor consistency,while the vhost-blkworks like the vhost-
net implementation, including multiqueue, and DSM bypass.
SerialConsole. Remotenodescanprinthostuser-spaceKVM
logs. To achieve this, each thread migrated to a remote node
has to reopen a PTY. Furthermore, the system has only one
pseudo-terminal worker thread emulating a serial UART chip.

6.4 Distributed Checkpoint/Restart
Inaneffort tooffer someformof fault tolerance inFragVisor,

we implemented distributed VM Checkpoint/Restart (C/R).
We first enabled traditional C/R system in kvmtool that orig-
inally did not support it. We then integrated C/R with FragVi-
sor. FragVisor accepts C/R requests via UNIX sockets. Once
a request is received, our kvmtool stops all running vCPUs by
broadcasting signals to all vCPU threads, then it saves virtual-
izedmemory, CPU, and devices state to files. Another signal is
sent to all the vCPU threads to continue VM execution. vCPU
states are transferred to the node requesting the checkpoint.

6.5 Scheduler/Orchestrator Extension
To investigateVMorchestrationwithFragVisor,wefirst im-

plemented a basic homogeneous-cluster Best-Fit FIFO (BFF)
VM-scheduler inspired by previous works [29, 45, 48, 56].
It tracks free resources of each machine in a cluster, while
machines update the scheduler for VM terminations and cur-
rent load. We then extended this BFF scheduler into FragBFF,
which handles Aggregate VMs in this way:
(a) When BFF fails to allocate a VM it forwards the alloca-

tion to FragBFF. FragBFF searches for the minimum or

maximum (2 different policies) amount of nodeswith frag-
mented resources to satisfy the allocation, and starts an
Aggregate VM on such nodes – it does not try to achieve
resource balancing among nodes, which is something we
will address in future work. If not enough resources are
available, the scheduler delays the VM placement.

(b) On termination of any VM co-located with at least an
Aggregate VM’s slice, FragBFF evaluates if the resources
released by the terminated VM can be allocated to one
(or more) of such Aggregate VM’s slices, and eventually
triggers a FragVisor migration, thus consolidating more
VM slices of a VMon a single node. One FragBFF policy fa-
vors minimizing the overall cluster fragmentation, while
the other minimizes the number of nodes on which an
Aggregate VM runs at any time.

(c) when all resources of an Aggregate VM reside on a single
node, the VM is given back to the BFF scheduler.

We believe this can be integrated in a production scheduler
because open-source ones [56] enable policy extensions, but
orchestrators may need rewriting to trigger migrations.

7 Evaluation

In Section 2 we already demonstrated that the SLO of soft-
ware running into an Aggregate VM depends on the type of
workload, specifically on the level of sharing – due to the
dependency on DSM. Herein, we will further highlight that,
while answering (1) if an Aggregate VM can be used to solve
fragmentation (at least compared with overcommitment); (2)
what are the eventual overheads (to motivate our solution vs
delayed-allocation, migration, etc.); (3) how FragVisor, and
its mechanisms, quantitatively differ from previous work.

Testbed.To evaluate FragVisor, we createdAggregate VMs
on a computer cluster composed of multiple identical servers
equippedwith aXeonE5-2620 v4 (2.1GHz) and 32GBof RAM.
Servers are interconnected via an InfiniBand switch using
Mellanox Connect-X4 adapters (56 Gbps). Each server runs
baremetal Debian Linux Jessie 8.10 and our modified Linux
kernel based on vanilla v4.4.137 – the host kernel. VMs are
created with enough RAM to satisfy the various workloads
they execute and use a ramdisk as the root filesystem, if not
indicated differently. Unless stated otherwise, FragVisor VMs
use our optimized Linux kernel (also based on v4.4.137) as
the guest kernel. In most experiments we vary the number of
vCPUs per VM and their distribution among hosts. For all ex-
periments, vCPUs are pinned on pCPUs.We used cgroups for
capping resources usage (isolation) between different VMs on
each node. However, further performance isolation can be po-
tentially achieved exploiting microarchitectural extensions,
such as RDT/CAT on Intel x86 processors [73, 103].

An additional server, acting as a client or a load generator
in the experiments, runs stock Linux Ubuntu 16.04.

Tests.We use microbenchmarks to evaluate (a) the cost of
accessing remote memory and I/O, i.e., memory and device
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Figure 4.DSM overhead (EPT faults) by level of sharing.

mobility (DSM-backed and DSM-bypassed network or stor-
age delegation); as well as (b) the overhead of our distributed
checkpointing mechanism. We evaluate (c) the overall per-
formance of Aggregate VMs running on FragVisor executing
real-world compute-/memory-intensive (NAS Parallel Bench-
marks [69], PARSEC [84]) and I/O-intensive benchmarks rep-
resentative of modern data center workloads (LEMP server,
serverless framework). For such real-world workloads, we
compare when possible the performance of an Aggregate
VM on FragVisor vs. a distributed VM on GiantVM [104] –
the state-of-the-art open-source distributed hypervisor, and
a single-machine (non-distributed) VM – using kvmtool. Fi-
nally, we demonstrate the benefits of (d) our version of Linux
specialized for distributed execution atop of FragVisor, aswell
as (e) our vCPUmigrationmechanism– cf. CPUmobility, trig-
gered by a cluster scheduler, including what decisions such
scheduler takes when extended to support Aggregate VMs.

Severalpapers [34, 44] alreadyshowthebenefitsofmemory
borrowing. Hence, we herein omit such evaluation, and focus
on CPU borrowing, as CPUs are the scarcest resource [12].

Test Measurements.Wemainly report execution time of
experiments, and their ratios. At the same time, we recorded
the CPU, memory, and IO usage of the physical machines.
We noticed that differently from GiantVM, FragVisor do not
consume any additional machine CPU resources other than
the pCPUs onwhich vCPUs are running – this is because of Gi-
antVM’s leverages helper threads in QEMU. Hence, FragVisor
does not add any interference to other pCPUs [63] potentially
running Primary VMs – not possible for GiantVMwithout af-
fecting the performance of other VMs, or reducing the numbers
of VMs on a server.We report the best numbers for GiantVM,
either with helper threads co-located on the same pCPUs as
vCPUs, or on additional pCPUs.

7.1 Microbenchmarks

DSM Fault Traffic. The DSM overhead in FragVisor takes
the form of relatively costly EPT faults due to its consistency
protocol. We designed a microbenchmark to understand that
overhead.We created a programwhere each thread reads and
writes in a loop at a configurablememory location in an array.
By tuning this location and running a single instance of the
programamong several vCPUs, each on a different server/VM
slice, we create 3 test scenarios: (1) true sharing – all threads
access the same location, (2) false sharing – all threads access
a different location but on the same page, (3) no sharing –

Figure 5.Operations per second achievable with Overcom-
mit or FragVisor for different levels of concurrent writes.

threads access locations in different pages. We ran the ex-
periment on Aggregate VMs with 2 to 4 vCPUs – the most
common sizes [45], and measured the loop execution time.

Results are shown in Figure 4, with the loop execution time
on the Y-axis normalized to the “no sharing” scenario. When
remote memory is accessed, the execution time increases lin-
early with the number of nodes involved, i.e., it doubles for
2 nodes, triples for 3, etc. As expected, false and true sharing
cases result in the same behavior. This gives a performance
upper bound when running code with a lot of sharing.
DSM Concurrent Writes. Concurrent writes generate the
highest DSM overhead for the consistency protocol imple-
mented. Herein we showwhen a FragVisor’s Aggregate VM
with a vCPU per server, can accomplish more work than an
overcommitted VMwith all vCPUs on one pCPU of a server.
We developed a synthetic multithreaded benchmark that

creates one thread per vCPU, each thread implements a loop
that writes to a predefined memory location – there is no
synchronization. We consider the following four cases when
using 4 vCPUs: (a) no-sharing – each vCPUwrites to a differ-
ent page; (b) low-sharing – two vCPUs write on a page, and
other two vCPUswrite to another page; (c) moderate-sharing
– three vCPUs write on a page, and the fourth one on another
page; (d) max-sharing – all vCPUs write to the same page.
All threads are using SCHED_OTHERwith the highest priority.
The results for FragVisor are shown in Figure 5. We repeated
the same experiment in the case of Overcommit, where we
targeted cache line granularity instead of page granularity.
Clearly, overcommit executes multiple vCPUs on a single

pCPU and the total amount of operations is always constant
– the maximum that a pCPU can do. Differently, FragVisor
enables vCPUs to run on different pCPUs. Thus, the amount
of operations is somewhat proportional to the number of
pCPU used, but it suffers from DSM overheads already on
Low-sharing. Finally, themaximum total traffic generated (on
the 56 Gbps interconnect) by this experiment is 8 MB/s (64
Mbps), for Max-sharing.
I/O Delegation Overhead. Another overhead of FragVisor
is network I/O delegation. To evaluate that, we compare the
network throughputof aNGINXwebserverwhere theworker
runs (1) on a vCPU that is local to the host’s virtual switch
used to communicate with the client (local I/O) and (2) on
a vCPU that is on a remote node (delegated I/O). The client
runs ApacheBench [4] on a node on the same 1Gb network
– simulating a request from outside the datacenter. It sends
1000 requests with 10 concurrent connections to the web
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server. We vary the served web page/object size and get re-
quest throughput. We present numbers for both delegation
mechanisms, i.e., DSM-backed and DSM-bypass.

Results are in Figure 6. On the Y-axis themeasured through-
put is normalized to that of a vanilla Linux VM. DSM-backed
delegated I/O is slow, due to a high DSM contention on the
ring buffers used for delegation: the slowdown is on average
53x for request sizes below 4 kB. Increasing the request size
helps to amortize the slowdown, however it is still of 19x for
a size of 256 kB. Bypassing the DSM leads to a significant per-
formance boost: the slowdown is only of 3.5x for sizes below
4 kB, and becomes negligible when the size increases. The
throughput of FragVisorwhenperforming local I/O is also the
same as Linux’s. These results demonstrate the efficiency of
bypassing the DSMwhen delegating I/O in a distributed VM.

Similarly, our storage I/O delegation, which has been eval-
uatedwith fio on SATA III SSD, shows the same behavior. The
achievable bandwidth with one thread for local and remote
(delegated) requests, with and without DSM, is shown in Fig-
ure 7. Interestingly, increasing the number of threads does
not change the trends observed on that Figure.
Checkpointing Performance. To evaluate the overhead in-
troduced by our distributed checkpointing mechanism, we
created several Aggregate VMs varying the amount of RAM
(10, 20 and 30 GB) and the number of vCPUs (2, 3 and 4) al-
located, each CPU being placed on a physically distinct host.
We compared the time to take a checkpoint in FragVisor ver-
sus in non-distributed vanilla VMs of similar characteristics.
Before taking the checkpoint, to distribute the memory, we
run on each vCPU one instance of NPB IS class C (700 MB
dataset size).We found the overhead of FragVisor over vanilla
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Figure 8.Multi-process NPB, Aggregate VM on FragVisor
vs. overcommitting on 1 (top), 2 and 3 (bottom) pCPUs.
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Figure 9.Multi-process NPB: FragVisor vs. GiantVM.

is always 10% or less.We observed that themain bottleneck is
the disk, a traditional SATA SSD with a 500 MB/s throughput.
As a result, accessing remotememory from the checkpointing
node in the case of FragVisor does not weight much in the
total checkpointing time.

7.2 Real-World Applications

Without an Aggregate VM, a commonway to pack more
jobs on a saturated but fragmented cluster, with no possibil-
ity of VM evictions, is to overcommit resources [102] per-
machine. Even Burstable VMs overcommit system resources
for limited amount of time. We evaluated FragVisor with
real-world applications by comparing the performance of
Aggregate VMs on FragVisor versus (1) single-machine VMs
with overcommitted vCPUs, and (2) a distributed VM (an Ag-
gregate VMwithout “mobility” features) running on top of
GiantVM[104].Wevaried the number of vCPUs to be 2, 3, and
4 – these are the most common VM sizes in data centers [45].
In the case of the distributed VMs (FragVisor and GiantVM),
each vCPU runs on a different host. Indeed, Spot VMs and
other recentworks [12, 102] also exploit idle cluster resources,
but they are subject to evictions. We believe such approaches
that guarantee only minimal resources can be fairly approx-
imated to overcommitment when no evictions happen.
Serial HPC Applications (No Sharing). We ran the NPB
suite, selecting for each benchmark a data set size that would
result in an execution time of at minimum 10 seconds. For
each benchmark and VM type, we run in parallel one instance
of the serial version of the benchmark for each vCPU and
measure the total execution time of this set of instances.
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Figure 10. Optimized and not-optimized guest kernel
speedup vs Vanilla Linux.

The results are shown in Figure 8. The y-axis represents
FragVisor’s Aggregate VM speedup normalized to overcom-
mitting casewhere a traditional VM’s vCPUs are overcommit-
ted on a single, two, and three pCPUs (different sub-graphs).
Overcommitting allows fitting additional jobs on a saturated
(and potentially fragmented) cluster [102]. Adopting an Ag-
gregateVMbrings significant speedups compared toovercom-
mitting: compared to consolidating on 1 pCPU, they range
from1.8x to 3.9x, andmost applications see their performance
scaling close to linearly with the number of vCPUs. However,
such scaling is not as pronounced for IS and, to a lesser ex-
tent, FT.We noticed that these applications include amemory
allocation phase whose execution time is non-negligible com-
pared with the computation phase length. We estimate that
their performance behavior is due to DSM contention that re-
sults from kernel data structure synchronization during that
allocation phase. When comparing with over-committing on
2 and 3 pCPUs, naturally Aggregate VM’s speedups are lower,
generally being around 1.75x. Note that there is no increase in
speedup going from 3 to 4 vCPUs (i.e., adding one instance of
the benchmark)when compared to consolidating on 2 pCPUs:
this is expected– for relatively small numbersof long-running
jobs such as NPB, running 4 instances on 2 compute units
yields approx the same execution time as running 3 instances.

GiantVM does not implement the mobility features required
by an Aggregate VM, but can indeed run an Aggregate VM that
doesn’t move – i.e., a bare distributed VM. Figure 9 reports
the results of comparing FragVisor to GiantVM. FragVisor is
faster, on average by 1.6x, for all benchmarks. More precisely,
although for most applications FragVisor is about 1.5x faster
than GiantVM independently of the number of vCPUs, for
IS and FT the performance difference is higher: FragVisor is
on average 2x faster than GiantVM for IS, and 1.8x for FT.
We found that the performance difference between FragVi-
sor and GiantVM to be due to several factors. GiantVM’s
DSM is implemented partially in user-space while ours lives
completely in the host kernel, avoiding costly user/kernel
transitions. Furthermore, FragVisor benefits of a guest kernel
optimized for distributed execution and exposes a NUMA
topology mapping of the physical nodes’ distribution.
Optimized Linux Guest. To measure the performance ben-
efits brought by our optimized version of the Linux kernel,
we ran that in a FragVisor Aggregate VM and compared it
with a non optimized kernel, normalized to overcommitment
on one pCPU (vanilla), using the NPB benchmarks.

Figure 11.Multithreaded Parsec slowdowns vs. Vanilla.

Results are in Figure 10. Despite the obvious speedups vs
overcommitment, the differences between the optimized and
non-optimized (noOpt) guest kernels are minimal. In fact,
our optimizations are more beneficial (up to 30% in IS) for
workloads with a larger amount of sharing and synchroniza-
tions – related to DSM traffic, as the recorded time focuses on
compute phase.
MultithreadedHPCApplications. Wealreadyshowedthat
the SLO provided by an Aggregate VM to scale-up workloads,
especially those with a lot of sharing, cannot be the same as
a Primary VM because of the DSM. Here we quantify the per-
formance degradation of HPC shared-memorymultithreaded
applications [21] when running in an Aggregate VM.We cre-
ated a VM with 4 vCPUs (most common size other than 2
vCPUs [45]) for FragVisor with and without optimized guest
kernel andGiantVM, each vCPUbeing located on a physically
distinct node. We launched the multithreaded version of the
PARSEC [84] benchmark suite, setting the number of threads
to 4.We compare the performance of FragVisor and GiantVM
to that of a vanilla non-distributed VMwith 4 vCPUsmapped
to 1 pCPU (overcommitment).

Figure 11 presents results. FragVisor can be up to 6.5x and
5.3x (non-optimized and optimized guest kernel) slower than
vanilla (Streamcluster), but on average is just 2.6x and 2.3x.
For a few benchmarks, Blackscholes, Ferret, and Freqmine,
distributed execution is up to 4x faster. FragVisor also per-
forms overall better thanGiantVM,whose average slowdown
is 4.5x, with a peak of 13.1x. We collected several statistics to
understand the different behavior of GiantVM and FragVisor,
includingnumberofpage faults andmessages,messages’ sizes
and latencies. GiantVM sends up to 300x more messages than
FragVisor (Freqmine), and message sizes are always small, on
average of 2 kB vs. 4 kB for FragVisor. This shows the higher
efficiency of FragVisor’s distributed protocol.
Network Application: LEMP Stack. LEMP [2] is an open-
source web stack consisting of NGINX [6], PHP [7], and
MySQL [5]. NGINXacts as a front-endHTTP server receiving
requests from clients. PHP is invoked in response to requests,
fetching back-end data andperforming various processing op-
erations to create web pages. MySQL is a database for storing
data for services – it is unused in this experiment.
We run the LEMP stack in an Aggregate VM as follows.

First, NGINX is configured with a single worker thread run-
ning on the vCPU that is local to the virtual switch used by
the VM to access the network (vCPU0), to avoid network

194



EuroSys ’23, May 8–12, 2023, Rome, Italy H-R. Chuang, K. Manaouil, T. Xing, A. Barbalace, P. Olivier, B. Heerekar, and B. Ravindran

0

1

2

3

4 2vCPU
3vCPU
4vCPU

Sp
ee

du
p 

fa
ct

or
ov

er
 c

on
so

li
da

ti
on

on
 1

 p
C

PU

0

0.5

1

1.5

Sp
ee

du
p 

fa
ct

or
ov

er
 G

ia
nt

V
M

25ms 40ms 250ms 500ms

25ms 40ms 250ms 500ms
Request processing time

Figure 12. LEMP stack result for FragVisor, normalized to
overcommitting (top) and GiantVM (bottom).

delegation overheads demonstrated in Section 7.1. Upon re-
ceiving a client request, NGINX invokes PHP which runs a
worker thread on each vCPU except the one running the NG-
INX thread. In other words, the 2 vCPUs configuration has
1 NGINX worker on the first vCPU, and 1 PHP worker on
the other. Similarly, the 3 vCPUs configuration has 1 NGINX
worker on the first vCPU and 2 PHP workers on the others.

We set the served page size to 2 MB, the average page size
on the web according to recent statistics [14]. Each request
triggers the execution of a PHP benchmarks that we adapted
from [1], realizing some string manipulation operations – a
common operation in PHP-enabled web servers. By varying
the amount of iterations of this benchmark, we can customize
the request processing time and observe its impact on the
performance. We vary that processing time from 25 ms to
500 ms, which is representative of modern servers’ response
times [31], averaging from 200 to 500 ms [72]. ApacheBench
(AB) is used as the client, running on the host node that runs
the pCPU where the vCPU running the NGINX worker is
mapped. AB is configured to make 100 requests with 10 con-
current connections. We collect the reported throughput in
requests per second and compare the results of an Aggregate
VM on FragVisor, or on GiantVM, to an overcommitment
scenario where all vCPUs run on a single pCPU.
The results are presented in Figure 12, where FragVisor’s

and GiantVM’s throughputs are normalized to the overcom-
mitment case. With short processing times, our system does
not performwell due to expensive communication between
NGINX and PHPworkers (local socket within the guest), as
the communicating processes run on two separate physical
machines. Starting from 40 ms of processing per request, the
communication overheads become lower compared to the
computing time, and are amortized by the benefits of lever-
aging remote computing resources: the throughput of an Ag-
gregate VM becomes higher than the consolidated case. The
speedup increaseswithboth thedemandforcomputation time
(processing time) and thenumberofvCPUs. For example,with
4 vCPUs and a 500 ms processing time, the speedup is of 3.5x.

For fast request processing times, FragVisor is slower than
GiantVM: for 25 ms requests, FragVisor’s throughput is on
average 35% of GiantVM’s, and for 40 ms that number is 79%.
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Figure 13.OpenLambda: FragVisor vs. overcommitting (top)
and GiantVM (bottom).

However, for longer requests, FragVisor’s throughput be-
comeshigher thanGiantVM’sbya factorof 1.23x for 250ms re-
quests and 1.27x for 500ms ones. This indicates that, although
GiantVM remote vCPU communication is faster, which is im-
portant for short requests, for longer ones FragVisor is better
at exploiting the parallelism brought by these vCPUs.
ServerlessComputing. Functionas aService (FaaS) comput-
ing is an emerging paradigmwhere users upload and execute
small pieces of code, or functions, in the cloud [10, 40, 65].

Weused theOpenLambda [47]FaaS runtime to runa typical
serverless computing application [38], varying its resources.
Providers allocate vCPUs to FaaS runtime based on the re-
quested memory size [101]. In an Aggregate VM running
on FragVisor, we run the OpenLambda server configured to
spawn functions upon reception of an HTTP request on each
available vCPU – on different VM slices. Such functions run
the same Python code, which (1) fetches a series of pictures as
a compressed file from a database on the same network, (2) ex-
tracts the pictures, and (3) runs a face detection algorithm [38],
thus, returning to the client the number of detected faces.
A client, running on another machine, triggers function’s

execution.Wevary the number of parallel requests to be equal
to the number of vCPUs: 2, 3 and 4. Other than total time, we
break down the server-side execution times into: pictures
download, compressed file extraction, and face detection.

Results for anAggregateVMonFragVisor and a distributed
VMonGiant VMare shown in Figure 13. They are normalized
to overcommitting where 2, 3 and 4 vCPUs are consolidated
on the same pCPU.When overcommitting, the speedup for
the overall operation increases with the number of vCPUs
because the overcommitted VMneeds to runmore processing
on the same computing resources (1 core). Regarding extrac-
tion time, even if there are write operations to different pages,
the first write to a new region on a remote node always causes
DSMwrite-exclusive invalidation messages, contributing to
the slowdown of the extraction as the number of vCPU in-
creases. The face detection phase is considerably faster (up
to 3.3x for 4vCPU) with FragVisor. As it dominates the exe-
cution time of the entire operation, the overall performance
outperforms the overcommitting cases by 1.9x to 3.26x from
2 to 4 vCPUs. Comparing to GiantVM, FragVisor is always
faster on every phase, in particular the download one, up to
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13x with 4vCPUs. This leads to a speedup from 2.17x (2vCPU)
to 2.64x (4vCPU) for the whole operation. FragVisor proved
to be faster not only for its kernel-space DSM, but also for IO
device multiqueue and DSM-bypass.

7.3 Scheduling-drivenMigration

While the previous experiments demonstrate virtualized
memory and devices mobility, here we showcase the cost of
vCPUmobility. FragVisor’s vCPUmigration feature is useful
when resources free up on at least one host running part of
an Aggregate VM, allowing that VM to be consolidated on a
smaller number of nodes for higher performance.Migration is
also important for reliability when a failure can be predicted.
To demonstrate migration we set up a cluster of 4 servers,

each with 12 CPUs available for VMs (other 4 left for manage-
ment tasks). We adopted VM sizes and VM execution times
distributions from [45], scaled down by 100 to ease experi-
ments. With such a distribution we generated several bursts
of 100 arrivals that we fed into the cluster scheduler, which
starts and migrates FragVisor’s Aggregate VMs. Aggregate
VMs run aweb server on vCPU0 and the previously described
PHP benchmark on the other vCPUs. A client on the same
network sends 1000 requests to the server and measures the
latency of each request. While requests are generated, the
vCPUs of the Aggregate VMmigrate.

We picked a trace of a 4 vCPUs VM, which is easier to visu-
alize than an 8 vCPUsVMtrace,while showing enoughmigra-
tions. This is depicted in Figure 14. The top graph reports the
perceived client latency, which is the lowest (∼215𝑚𝑠) when
vCPUs are consolidated on a single machine, while being 299
𝑚𝑠 on average during the experiment. The middle graph re-
ports howmany vCPUs from each node the Aggregate VM
is using. The bottom graph reports howmany free vCPUs are
available per machine, which shows the effectiveness of our

Figure 14. Impact on client latency of migrating vCPUs of an
Aggregate VM controlled by a scheduler (top). Node locations
of such vCPUs (middle). Available free CPUs on each node
(bottom), CPUs become available on VMs termination.

simple algorithm that reduces resource fragmentation. We
also recorded the inter-node migration overhead of a vCPU:
it is 86 𝜇s on average – including 38 𝜇s to dump registers.
SchedulingDecisions. For the experiment in Figure 14 Frag-
BFF was configured to minimize overall fragmentation, and
anAggregate VM is released at time 155 on aminimal number
of nodes. 2 vCPUs are placed on node0 and 2 vCPUs on node1.

At time 222, 4 CPUs become free on node1. FragBFF won’t
migrate all AggregateVM’s vCPUs to node1 because thatmay
undermine overall cluster fragmentation, i.e., the current Ag-
gregate VMwill be consolidated but a newly arrived VMmay
likely be split acrossnodes again.At time360, similarly to time
222, the scheduler favors reducing overall fragmentation.

At time 470, 1 CPU becomes free on node1. Full consolida-
tion is not possible yet, since only one vCPU of the Aggregate
VM can bemoved to node0 and two are needed for full consol-
idation. FragBFF migrates a vCPU of the Aggregate VM and
consolidate with the ones already on node0. This is again to
reduce fragmentation: it results in more free CPUs on node1
(8 free) while utilizing the only free CPU on node0.

At time 623, one more CPU becomes free on node0, and
full consolidation is now possible for the Aggregate VM. The
last vCPU on node1 is then migrated to node0. There are now
12 free CPUs on node1, which are used to satisfy a 12 vCPU
VM request. Otherwise, such large VMwouldn’t run yet, or
would have unnecessarily paid the possible overhead(s) of
running in an Aggregate VM.

8 RelatedWork
ResourceFragmentationintheDataCenter.HarvestVM
[12] andElasticVM[102] growand shrink the amount of hard-
ware resources based on what is/may become available on a
single-machine, helping to tackle fragmentation. Differently,
an Aggregate VM extends to multiple machines. Similarly to
Spot VM [11, 41, 66], Harvest VM and Elastic VMmay be ter-
minated at any time, making them practical only for a subset
of applications. Instead, an Aggregate VM is never evicted,
and always provides the requested resources, similarly to a
Primary VM, but with a SLO depending on the workload.

Earlier, StopGap [75] aimed at solving fragmentation, intro-
ducing VMs that can be dynamically resized. It supports only
certain types of applications, elastic multi-tier master-slave
applications, while FragVisor supports all applications. Re-
cently, A. Fuerst et al. [36] also proposed not to evict transient
VMs, but to deflate them.While sharing the same goal with
FragVisor, this is a different approach; deflating VMs adds
overhead to the execution of everyworkload, andmay require
modifications to the guest OS.
DistributedVirtualMachines.DistributedVMs have been
proposed before: vNUMA [27], ScaleMP [8], TidalScale [96],
and GiantVM [104]. Fundamentally different from FragVisor,
such works target scale-up workloads: they aggregate all re-
sources in a computer cluster to execute one or a few VMs
with resource requirements greater than what provided by a
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single machine. Conversely, FragVisor aggregates only a sub-
set of hosts’ physical resources for the execution of VMs with
applications’ resources requirements that can be satisfied by a
single machine. Moreover, while in related works a VM distri-
bution is mostly static, in FragVisor the distributed state of a
VMaims to be temporary for it to be consolidated upon as few
hosts as possible once resources free up. Hence, the resource
borrowinghypervisor focusesonmobility features, e.g., vCPU
migration, missing in vNUMA, ScaleMP, and GiantVM (while
all provide vRAMmigration via DSM). These do not support
checkpointing either (for consolidation or fault tolerance).
TidalScaleprovidesvCPUmigration, but for adifferent reason.
No previous work seems to provide device mobility.
Finally, vNUMA [27] and ScaleMP [8] are Type 1 hyper-

visors, while GiantVM [104] and TidalScale [96] are Type 2
like FragVisor. Differently from [8, 27, 96], FragVisor is free
and open-source, built atop the widespread KVM hypervisor.
When compared to [104], FragVisor ismainly implemented in
kernel-space, and provides Aggregate VMs as a first class VM.
Distributed OSes. Distributed OSes aggregates resources
from different physical machines while still providing the
same OS interface, and scaling beyond a single physical ma-
chine. Notable past works include MOSIX [15], Amoeba [68].
More recently, Helios [74], and Popcorn [17, 19, 78]. Contrary
to FragVisor (andGiantVM), theseworks allowan application,
rather than a VM, to use remote resources.
DistributedSharedMemory.SeveraldistributedOSes lever-
ageDSM inorder to present to the application aunifiedvirtual
address space. Similarly, FragVisor uses DSM for vRAMmo-
bility and gives the VM a unified pseudo-physical address
space. Much work studied DSM during the 1990s [13, 26, 85],
with the overall objective of letting traditional/legacy shared
memory applications scale over several physical machines.
Recent work leverages modern interconnect technologies,
i.e., RDMA, in DSM systems [25, 71, 92]. FragVisor introduces
several newoptimizations tomake thenodes involved inDSM
changing dynamically (mobility), vs statically defined.
Disaggregated Computing. FragVisor takes an approach
different from existing works on hardware disaggregated
computing [37, 46, 61, 62, 91, 95]. Indeed, our objective is the
aggregation of scattered hardware resources in data centers,
rather than the abstraction of future disaggregated hardware.
In addition, contrary to existing works on disaggregation,
we target commodity servers and our solution is directly de-
ployable today, at no capital cost. In the future, FragVisor
can complement these approaches. For example, when co-
herent shared memory will become available among servers
– provided by CXL pooled memory [3] among other tech-
nologies, that may solve memory resource fragmentation,
as well as substitute FragVisor’s DSM, but cannot solve the
CPU resource fragmentation issue, which requires the other
mechanisms introduced by FragVisor.

9 Remarks
We already highlight the key limitation of the proposed

Aggregate VM approach, which is its general applicability,
i.e., not all workloads may benefit from it. While this is a
fact considering today’s data center hardware, upcoming
CXLmemory pools with hardware coherency may remove
all DSM-related overheads making Aggregate VM beneficial
for any workload. At the same time, data center schedulers
should be extended to handle Aggregate VMs, and further
research on scheduling algorithms is needed.
Prototype Limitations. FragVisor inherits the same limita-
tions as Popcorn Linux for homogeneous cluster on which it
was developed upon [17, 55]. FragVisor has been fully tested
only on the hardware used for evaluation, and up to 8 nodes.

10 Conclusions
For certain workloads, an Aggregate VM can be used to

tackle resource fragmentation issues in data centers with-
out reducing the promised hardware resources or evicting
VMs, i.e., with a SLO similar to Primary VMs. In general, the
SLO of an Aggregate VMwill depend on its memory-sharing
characteristics.
We introduced a new VM monitor design, the resource-

borrowing hypervisor,which leverages fragmented hardware
resources available among different physical machines, trans-
parently, and temporarily. This temporary nature is achieved
through mobility of virtualized memory, CPUs, and devices.
We implemented FragVisor, a prototype resource-borrowing
hypervisor based on Linux/KVM, and compared the perfor-
mance of an Aggregate VM on FragVisor to a distributed VM
on the state-of-the-art distributed hypervisor, GiantVM, and
overcommitment. FragVisor is faster than GiantVM in most
of the cases, and demonstrates significant speedups versus
overcommittment.

The source code of FragVisor is available at https://github.
com/systems-nuts/FragVisor, and at https://doi.org/10.5281/
zenodo.7725802.
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A Artifact Appendix
A.1 Abstract
The artifact contains the source code of FragVisor’s host

and guest Linux kernels, FragVisor hypervisor based on kvm-
tool (lkvm), and a plethora of helper scripts. The system
has been deployed on baremetal hardware on a cluster of
RDMA-connected servers. For reproduction, at least 5 servers
are needed – 4 acting as compute nodes echo, 1 acting as
client/load-generator fox.
A.2 Description &Requirements
Fragvisor mainly consists of three software modules. (1)

The distributed hypervisor built on top of kvmtool (lkvm)5, a
KVM-only, type-2 hypervisor. (2)Thehost Linuxkernel, heav-
ily modified to support FragVisor. (3)The guest Linux kernel,
which is avanillakernel, but anadditional version that enables
certain optimisations to improve performance is also made
available. In addition, a plethora of helper scripts automate
experiments, and configure and build the infrastructure.

A.2.1 kvmtool Hypervisor The source code of the modi-
fied kvmtool is available at https://github.com/systems-nuts/
fragvisor-kvmtool. Many files have been modified to support
VM distribution, mostly using the thread migration API to
replicate the VM object across all the hosts.
The repository also contains initramfs images, and con-

figure, build, and run scripts. Two notable scripts are msg_
pophype4node.sh, which establishes themessaging layer be-
tween hosts, and run.sh used to build and start the guest VM.

A.2.2 Host andGuestOSKernels Host andGuest kernel
use the same source tree at https://github.com/systems-nuts/
fragvisor-linux. The host kernel is heavily modified. Besides
the task migration code and the distributed shared memory
protocol inkernel/popcorn/, themainFragVisor extensions
is in kernel/popcorn/hype_kvm.c, as well as a plethora of
other modifications in the kernel virtualisation subsystem –
i.e., KVM, both architecture-independent parts as well as the
x86 architecture-specific portions in arch/x86/kvm/.
A.3 How to access
The source code of all FragVisor components is available

either at https://github.com/systems-nuts/FragVisor/ or at
https://doi.org/10.5281/zenodo.7725802.
5https://github.com/kvmtool/kvmtool
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A.4 Hardware Dependencies
FragVisor is deployed on a cluster of computers with mul-

tiple identical servers equipped with a Xeon E5-2620 v4 (2.1
GHz, 8/16 cores/threads) and 32 GB of RAM. Servers are con-
nectedvia56Gbps InfiniBandusingMellanoxConnect-X4and
an Infiniband Switch. All nodes are also connected via 1Gbps
Ethernet switch. The client communicates via 1Gbps Eth.
A.5 Software Dependencies
Hosts Linux is Debian Jessie 8.10, guest Linux is based on

the same, but generated fromwhat created by mkinitramfs.
Client Linux is Ubuntu 16.04.
A.6 Benchmarks
The benchmarks used are based on NPB, ApacheBench,

LEMP and OpenLambda (more on this later).
A.7 Set-up

For a full guide including how to use IPMI serial console, refer
to the README file on the github repository 6.

Firstweneed to compile and install the host kernel on every
node of the cluster not used as client/load-generator. For each
node in the echo cluster (echo5, echo4, echo1, echo0), run:

git clone −−recurse
−submodules git@github.com:systems−nuts/FragVisor

cd FragVisor/fragvisor−linux

Beforebuilding thekernels,makesure that themacroCONFIG_
POPCORN_ORIGIN_NODE ininclude/linux/popcorn/debug.
h is only defined for the origin node. All the other nodes must
NOT define it and it should be commented. Then, run:

make −j17
sudo make modules_install
sudo make install
reboot

Next, load the messaging layer. From echo0 or echo5, run:

cd FragVisor/fragvisor−kvmtool
./msg_pophype4node.sh

Thiswill compileand load themessaging layerkernelmodules.
If successful, you should observe on the IPMI serial console
that RDMA connection was established between all nodes.
A.8 EvaluationWorkflow

To run experiments, navigate to fragvisor-kvmtool, we
use the run.sh script. Every experiment will use a different
kvmtool launch command and initramfs image. Commands
starting with root@(none) have to be issued in the guest VM.
A.9 Major Claims
• (C1): FragVisor achieves higher throughput for longer re-
quests than the state-of-the-art GiantVM. This is proven
by the experiment (E1) described in Section 7.2 whose
results are illustrated in Figure 12 in the paper.

6https://github.com/systems-nuts/FragVisor/blob/main/README.md

• (C2): FragVisor performs faster than the state-of-the-art
GiantVM in every phase of OpenLambda serverless com-
puting. This is proven by the experiment (E2) described
in Section 7.2 whose results are illustrated in Figure 13
in the paper.

• (C3): With DSM bypass, FragVisor I/O delegation can
achieve very high performance to offset the effects of dis-
tribution. This is proven by the experiment (E3) described
in Section 7.1 whose results are illustrated in Figures 6
and 7 for networking and storage, respectively.

A.10 Experiments
E1. Running LEMP Experiments For 4 nodes, use the
following kvmtool command:

sudo bash −c "./lkvm run −a 1
−b 1 −x 1 −y 1 −w 4 −i $USER/c/ramdisk_lemp_4php.gz
−k $KERNEL_PATH/arch/x86/boot/bzImage −m 20480
−c 4 −p \"root=/dev/ram rw init=/init2 fstype=ext4
spectre_v2=off nopti pti=off numa=fake=4 percpu_alloc
=page −no−kvm−pit−reinjection clocksource=
tsc\" −−network mode=tap,vhost=1,guest_ip=10.4.4.222,
host_ip=10.4.4.221,guest_mac=00:11:22:33:44:55"

Then follow with

echo5$ cd FragVisor/experiments/nginx−new/nginx−1.16.1
echo5$ ./auto_configure_make_scp.sh
root@(none):~# nginx −c /usr/local/nginx/conf/nginx.conf
root@(none):~# php−fpm7

.2 −−fpm−config /etc/php/7.2/fpm/php−fpm.conf &

In the VM, there are N number of php-fpm, php worker
threads,whereN is thenumber of nodes. Eachof these threads
have to be pinned to a vCPU.

root@(none):~# ps aux |grep php
# Pin each of the php workers on a vCPU!
root@(none):~# taskset −p 0x1 312
root@(none):~# taskset −p 0x2 313 (Stop here for 2 Nodes)
root@(none):~# taskset −p 0x4 314 (Stop here for 3 Nodes)
root@(none):~# taskset −p 0x8 315
# Pin nginx master and worker on vCPU0
root@(none):~# ps aux |grep nginx
root@(none):~# taskset −p 0x1 112
root@(none):~# taskset −p 0x1 120

The customized LEMP experiment uses a php-benchmark
script with variable iterations of each benchmark. There are
4 variations of this which have to be copied to the VM from
the host node. Copy the scripts to VM before the run:

echo5:$ scp −r FragVisor/experiments/php
−script/∗ root@10.4.4.222:/var/www/travel_list/routes/

root@(none):~# cd /var/www/travel_list/routes
echo5:$ cd FragVisor/experiments/run_lemp
echo5:$ ./run_lemp_no_stats.sh
# Check output
echo5:$ cd run_lemp_no_stat/output_dir
echo5:$ time_taken_out
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E2. Running OpenLambda Experiments For a 4 nodes
configuration, use this kvmtool command:

sudo bash −c "./lkvm run −a 1 −b 1 −x 1
−y 1 −w 4 −i $USER/c/ramdisk_for_openlambda200625
.gz −k $KER NEL_PATH/arch/x86/boot/bzImage
−m 32768 −c 4 −p \"root=/dev/ram rw fstype=ext4
spectre_v2=off nopti p ti=off numa=fake=4 percpu_alloc
=page −no−kvm−pit−reinjection clocksource=
tsc\" −−network mode=tap,vho st=1,guest_ip=10.4.4.222,
host_ip=10.4.4.221,guest_mac=00:11:22:33:44:55"

Type the instructions below to run the experiment:

echo5:$ cd FragVisor/experiments/open−lambda/
echo5:$ ./copy4nodes.sh # passwd: popcorn
echo5:$ ssh popcorn@10.4.4.222
root@(none):~# sudo su
root@(none):/home/popcorn/$ ./folders4nodes.sh
root@(none):/home/popcorn/$ cd ~/

open−lambda0 && taskset 0x1 ./ol worker −−path=l0 −d
root@(none

):~/open−lambda0$ cd ~/open−lambda1 && taskset 0
x2 ./ol worker −−path=l1 −d # Stop here for 2 node setup

root@(none
):~/open−lambda0$ cd ~/open−lambda2 && taskset 0
x4 ./ol worker −−path=l2 −d # Stop here for 3 node setup

root@(none):~/open−lambda0$ cd ~/
open−lambda3 && taskset 0x8 ./ol worker −−path=l3 −d

echo5:$ cd FragVisor/experiments/run_openlambda
echo5:$ ./run_openlambda_no_stat_4_node.sh

E3. Running Network Delegation Overhead Experi-
ment For 4 node case choose this in run.sh:

sudo bash −c "./lkvm run −a
1 −b 1 −x 1 −y 1 −w 4 −i $USER/c/ramdisk_NPB_ATC.gz
−k $KERNEL_PATH/arch/x86/boot/bzImage −m 32768
−c 4 −p \"root=/dev/ram rw init=/init2 fstype=ext4
spectre_v2=off nopti pti=off numa=fake=4 percpu_alloc
=page −no−kvm−pit−reinjection clocksource=
tsc\" −−network mode=tap,vhost=1,guest_ip=10.4.4.222,
host_ip=10.4.4.221,guest_mac=00:11:22:33:44:55"

Compile kvmtool and the guest kernel, and launch the VM:

echo5:~/fragvisor_kvmtool$ ./run_echo.sh 1 1 0

The following are the commands for running the network
delegation experiment (note that fox3 is the client):

root@(none):~# ps aux | grep nginx
# Pin the nginx worker and master on vCPU 0
root@(none):~# taskset −p 0x1 112 #(master)
root@(none):~# taskset −p 0x1 120 #(worker)
fox3:$ cd FragVisor

/experiments/popcorn−utils (Run this on echo)
fox3:$ ./ab_micro_diff_sizes_lan_0x1_all

.sh <name_for_the_run>
# Check output in:
fox3:$ cd pophype_ab_micro_diff_sizes_lan/

Last case, we pin the nginx master and worker on vCPU1:
root@(none):~# taskset −p 0x1 112 #(master)
root@(none):~# taskset −p 0x2 120 #(worker)
fox3:$ cd FragVisor/experiments/popcorn−utils
fox3:$./

ab_micro_diff_sizes_lan_0x2_all.sh <name for the run>
fox3:$ cd pophype_ab_micro_diff_sizes_lan/
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