
Kite: Lightweight Critical Service Domains
A K M Fazla Mehrab

mehrab@vt.edu
Virginia Tech

Blacksburg, VA, USA

Ruslan Nikolaev
rnikola@psu.edu

The Pennsylvania State University
University Park, PA, USA

Binoy Ravindran
binoy@vt.edu
Virginia Tech

Blacksburg, VA, USA

Abstract
Converged multi-level secure (MLS) systems, such as Qubes
OS or SecureView, heavily rely on virtualization and ser-
vice virtual machines (VMs). Traditionally, driver domains
– isolated VMs that run device drivers – and daemon VMs
use full-blown general-purpose OSs. It seems that special-
ized lightweight OSs, known as unikernels, would be a bet-
ter fit for those. Surprisingly, to this day, driver domains
can only be built from Linux. We discuss how unikernels
can be beneficial in this context – they improve security
and isolation, reduce memory overheads, and simplify soft-
ware configuration and deployment. We specifically propose
to use unikernels that borrow device drivers from existing
general-purpose OSs.
We present Kite which implements network and storage

unikernel-based VMs and serve two essential classes of de-
vices. We compare our approach against Linux using a num-
ber of typical micro- and macrobenchmarks used for net-
working and storage. Our approach achieves performance
similar to that of Linux. However, we demonstrate that the
number of system calls and ROP gadgets can be greatly
reduced with our approach compared to Linux. We also
demonstrate that our approach has resilience to an array
of CVEs (e.g., CVE-2021-35039, CVE-2016-4963, and CVE-
2013-2072), smaller image size, and improved startup time. Fi-
nally, unikernelizing is doable for the remaining (non-driver)
service VMs as evidenced by our unikernelized DHCP server.

CCS Concepts: • Security and privacy → Operating sys-
tems security; Virtualization and security.

Keywords: Hypervisor, Virtual Machine, Unikernel, Xen
ACM Reference Format:
A K M Fazla Mehrab, Ruslan Nikolaev, and Binoy Ravindran. 2022.
Kite: Lightweight Critical Service Domains. In Seventeenth Eu-
ropean Conference on Computer Systems (EuroSys ’22), April 5–8,
2022, RENNES, France. ACM, New York, NY, USA, 18 pages. https:
//doi.org/10.1145/3492321.3519586

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).
EuroSys ’22, April 5–8, 2022, RENNES, France
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9162-7/22/04.
https://doi.org/10.1145/3492321.3519586

1 Introduction
Converged multi-level secure (MLS) systems [24, 27, 32, 35,
58, 65] are OSs which allow users to interact with applica-
tions easily in a single environment while providing better
levels of security than typical OSs [42]. More specifically, an
OS can use hardware virtualization as an extra protection
layer against malicious actors. Based on the MLS OS’s threat
model and design goals, malicious actors can include insiders
(users) as well as outsiders (attackers), and additional sensors
can run in a privileged virtual machine (VM) to monitor ab-
normal behavior of both insiders and outsiders. An MLS OS
can be deployed both locally for desktop users (e.g., Qubes
OS [65]) and on a cloud, such as Amazon EC2, for enterprise
users, especially when using newer Amazon bare-metal in-
stances which expose physical network and storage device
interfaces.

Typically, MLS OSs consist of a hypervisor (e.g., Xen [26]
in Qubes OS [65] or SecureView [24]) and unprivileged VMs
that run applications and system services. The idea is to
run an application or a group of applications in isolated
VMs, while providing the illusion of a uniform system to
users. Application VMs can typically be of any type, e.g.,
Windows- or Linux-based. Special service VMs run daemons
and drivers. Driver VMs use hypervisor’s capabilities of PCI
passthrough [82] to access the corresponding device, and
essentially run a physical driver (for storage or networking)
in an isolated VM, known as a driver domain in Xen, for more
effective load balancing and enhanced security. (See Section 2
for an overview of Xen, its I/O drivers, and driver domains.)
Isolating drivers in separate VMs is especially important as
the number of common vulnerabilities and exposures (CVE)
for drivers continues to surge across different OSs (Figure 1a).
A downside of service VMs is that they are relatively

heavy-weight as they usually run a general-purpose, full-
fledged OS such as Linux. Such VMs are cumbersome for
deployment and upgrades. Linux is designed to supportmany
subsystems (e.g., audio, video, USB, etc) as well as user-space
libraries, tools, daemons, and configuration scripts that are ir-
relevant to network or storage drivers alone, and yet, they all
need to be properly maintained when Linux runs as a driver
domain. (Ubuntu Server 18.04’s image is ≈1GB; the kernel
alone, without any modules, is ≈50MB.) General-purpose
OSs are also not ideal for security as they expose a poten-
tially large attack surface, which is undesirable for systems
with a greater degree of resource sharing such as Amazon
EC2. Even special stripped-down distributions, though rarely

https://doi.org/10.1145/3492321.3519586
https://doi.org/10.1145/3492321.3519586
https://doi.org/10.1145/3492321.3519586

EuroSys ’22, April 5–8, 2022, RENNES, France A K M Fazla Mehrab, Ruslan Nikolaev, and Binoy Ravindran

0
20
40
60
80

100
120

R
ep

o
rt

ed
 C

V
Es

Year

Linux Drivers
Windows Drivers

(a) CVEs, https://cve.mitre.org/.

0
0.5

1
1.5

2
2.5

3
3.5

4

G
ad

ge
ts

 (
m

ill
io

n
s)

(b) ROP gadget comparison.

Figure 1. CVEs and ROP gadgets.
used in practice, still have large memory footprints, which
add up in enterprise-scale bare-metal cloud systems that han-
dle many I/O devices. Moreover, it is simply impossible to
reduce the number of system calls since many of them (e.g.,
clone, exec, file I/O, etc) are essential to run a Linux-based
OS. In Section 5, we show that the number of required
Linux system calls is as high as 171.
One can wonder what it will take to run a truly light-

weight domain, which is exactly the problem that we address
in our paper. Linux driver domains require xen-utils [22], a
collection of user-space tools to manage a Xen-virtualized
system. Xen-utils are also used to establish connections be-
tween driver domains and other guest OSs. Xen-utils depend
on many other libraries and tools, which in turn also have
numerous dependencies (e.g., Python, etc). Note that only a
tiny fraction of this code is really relevant to driver domains.
However, xen-utils’ current monolithic approach cannot be
trivially modified to disaggregate unnecessary components.
It was reported previously that bugs or improper use of
Python can let an attacker gain unauthorized privileges in
Xen [2]. Moreover, xen-tools’ libxl can often be a source
of numerous vulnerabilities [4], which cause unauthorized
access to sensitive locations, denial of service attacks, etc.
That said, libxl could have been potentially substituted with
a much more minimalistic approach suitable for driver do-
mains, which avoids many of these pitfalls. However, the
feasibility of that was not explored in the past. Altogether,
since we still use a general-purpose OS for driver domains,
this enables an attacker to tailor application vulnerabilities.
(Not all applications can be fully excluded from driver do-
mains.) Furthermore, applications can even be crafted [18]
by the attacker to expose critical vulnerabilities.
Although the Linux kernel can be shrunk (but only to

a certain degree), we still need a functional user-space en-
vironment, which includes not just GLibC but also shells,
scripts, interpreters, configuration and bootstrapping tools,
etc. Since the system calls are the gateway from user-space
to kernel space, the attackers often use them to exploit vul-
nerabilities in the kernel and userspace. The attackers use
vulnerable/malicious applications that eventually use the
system calls to perform privilege escalation, denial of ser-
vice attacks, or leak sensitive data. The presence of the large
number of system calls in Linux (≈300) contributes to a huge
attack surface. Therefore, most of the reported CVEs benefit

from them, which makes system call reduction an active re-
search area [39, 40]. However, many system calls are tightly
coupled with the Linux kernel (e.g., clone, init_module, mod-
ify_ldt, etc), which makes it impossible to get rid of them
without distorting the kernel design.

In contrast, unikernels [28, 43, 46–48, 51–53, 61, 83] are
lightweight OSs designed specifically for cloud systems and
run atop a hypervisor in separate virtual machines. They
are, by design, capable of running only a single application.
In unikernels, a single application is statically compiled to-
gether with theminimum necessary kernel code and libraries
to produce a single-address-space image. Such an approach
reduces code and memory footprints, thereby reducing the
attack surface. Additionally, since this strategy eliminates
context switching, system calls now become ordinary func-
tion calls. Elimination of context switching overheads can
yield performance benefits. However, unikernels are mostly
designed for user applications in mind and are unsuitable
for driver domains.
In this paper, we explore the use of the rumprun uniker-

nel [43] for this purpose. The key feature of rumprun is
that it is directly based on NetBSD’s code [16], which po-
tentially enables access to NetBSD’s large collection of de-
vice drivers, even very specialized ones such as Amazon
ENA. (See Section 2 for an overview of rumprun.) The en-
tire rumprun OS image is ≈22MB. To get a general idea
of the security properties (putting Xen-related vulnerabili-
ties aside) of the rumprun unikernel and full-fledged OSs,
we measured the corresponding number of return-oriented
programming (ROP) gadgets [64, 67] for rumprun, default-
configured (fairly minimal and almost no modules), CentOS
8, Fedora 05/2020, Ubuntu 18.04, and Debian 10.4 Linux ker-
nels with their associated kernel modules. Figure 1b demon-
strates that rumprun has a substantially smaller number of
gadgets than any of the Linux configurations (even without
taking into account user-space ROP gadgets). Assuming that
NetBSD’s code quality is on par with that of Linux, this also
indicates potential for improved security more generally,
as rumprun’s attack surface is proportionally reduced com-
pared to that of full-fledged OSs. Furthermore, rumprun can
reduce the number of system calls by a factor of 10x,
and many of the disabled system calls are known to have
CVEs (Section 5).

However, out-of-the-box rumprun lacks many critical fea-
tures that are necessary to make driver domains feasible.
For example, network and storage I/O must be exposed to
guest VMs via efficient paravirtualized (PV) frontend and
backend drivers, which communicate with the correspond-
ing physical device drivers in a driver domain. A recent
work [58] extends rumprun for multicore systems and imple-
mentsminimalistic support for Xen’s hardware virtualization
mode (HVM). However, rumprun still lacks critical features
in HVM (e.g., xenbus [79] and xenstore [80]). Rumprun also

Kite: Lightweight Critical Service Domains EuroSys ’22, April 5–8, 2022, RENNES, France

lacks backend drivers for storage and networking. (Unfortu-
nately, NetBSD’s Xen drivers, unlike other drivers, cannot be
used in rumprun, and NetBSD itself is not known to support
driver domains.) Finally, rumprun lacks even basic system
orchestration tools, e.g., bridging or network address transla-
tion (NAT), and configuration scripts that would make driver
domains feasible.
We overcome these challenges by designing and imple-

menting Kite, a system of unikernelized service VMs. It fea-
tures the HVM version of rumprun incorporated with miss-
ing Xen features, PV backend drivers, and applications to
complement the missing Xen scripts. We propose a threaded
model to overcome the lack of components, such as preemp-
tive scheduler and work queues. Resultantly, Kite contains
rumprun-based network and storage VMs – the two existent
types of driver domains. To measure the effectiveness of
our implementation, we run experiments using iPerf, Wget,
Apache, MySQL, MongoDB, Memcached, Redis, etc (Sec-
tion 5). Kite provides competitive performance to that of
Linux-based driver domains, while retaining all the benefits
of unikernels such as reduced number of gadgets, smaller
image size, and faster boot time.

The paper’s research contribution is unikernelized service
VMs in MLS OSs. While past efforts explored increasing
isolation in hypervisors and reducing their attack surface
(Section 6), our work is the first to explore unikernels for
isolation of non-hypervisor core components (device drivers,
OS daemons). Although unikernels already power application
VMs in clouds, our work is the first to demonstrate that
service VMs in an MLS OS can also be built using unikernels.

Finally, Xen’s configuration and orchestration infrastruc-
ture is fairly complex and requires rich user-space environ-
ment, e.g., scripting languages. We show that much simpler
unikernels achieve the same driver domain functionality
with smaller overheads. None of the prior unikernel works
targeted the same problem, nor was it clear if driver domains
were feasible in the unikernel environment at all (due to the
heavy infrastructure in Linux). Not to mention that most
unikernels simply lack physical device drivers since they are
targeted for clouds.

2 Background
2.1 Xen HVM
Xen is a popular Type I hypervisor [44], often used by MLS
OSs. Though initially Xen pioneered “paravirtualization”
(PV) which required to modify OS kernels, later CPUs imple-
mented hardware-assisted virtualization (VT-x, AMD-V, etc),
and Xen widely adopted the hardware virtualization mode
(HVM). HVM is preferred by MLS OS vendors due to an
extra layer of hardware isolation. HVM also better supports
IOMMU [25, 41], which is required for driver domains.

2.2 Xen I/O Drivers
Traditional I/O device emulation is inefficient due to sub-
stantial performance overheads [29]. Xen’s original idea to
use special I/O drivers for PV also carries over to HVM as
long as the corresponding guest VM is enlightened about
Xen’s presence. Other hypervisors, e.g., VMware, Hyper-V,
and KVM, implement similar faster I/O drivers.

In Figure 2, we show Xen’s PV I/O driver architecture. PV
drivers are typically divided into two parts: frontend and
backend. A frontend driver runs in the guest VM, denoted as
DomU. This driver provides an interface, similar to that of a
corresponding physical driver (e.g., a network interface). The
underlying PV driver implementation remains transparent to
the applications in DomU. Therefore, the applications do not
require any modifications to access the PV drivers. Frontends
can be instantiated from the same or different DomUs.
A backend driver can run either in Dom0, the privileged

administrative VM, or in a driver domain (see Section 2.3). It
communicates with the physical device through the device
interface provided by the physical device driver that runs in
the same domain. Each backend driver is implemented such
that it can connect to multiple frontends.
Backends and frontends connect and communicate with

each other using Xen’s protocol. Both ends store their critical
information in the xenstore [80] database. Xenbus [79] reads
from and writes to xenstore. Using xenbus, the two sides
negotiate their capabilities and features. Tomonitor the other
end’s activity, each end can use xenbus to set up “watches.”
For inter-VM notifications, Xen’s event channel imple-

ments virtual interrupts. Xen shares memory between VMs
through grant tables, which specify what memory pages are
shared. The frontend allocates shared memory and initializes
I/O ring buffers, which are used by both ends to transfer data.
As Figure 2 shows, for each frontend instance, a correspond-
ing backend instance is created.

2.2.1 Netfront and Netback. For networking, netfront
and netback correspond to frontend and backend drivers.
Netfront exposes a virtual network interface to the network
stack of a guest OS. On the other side, netback forwards
packets to and from the physical device driver. The netback
and netfront drivers use two shared ring buffers for data
exchange, which are allocated by netfront. One ring buffer,
Tx, is used for sending packets from netfront to netback.
Another ring buffer, Rx, is used for sending packets from
netback to netfront.
There can be multiple netback instances in the VM. To

share a network interface controller (NIC), a bridge can be
used to connect all netbacks with the NIC. The bridge routes
packets between backends and the NIC, and across different
backends.

2.2.2 Blkfront and Blkback. For secondary storage, blk-
front and blkback correspond to frontend and backend. A

EuroSys ’22, April 5–8, 2022, RENNES, France A K M Fazla Mehrab, Ruslan Nikolaev, and Binoy Ravindran

Frontend Driver

Application

Ring

Device Interface

Frontend Driver

Application

Ring

Device Interface

Hypervisor

Hardware Devices

Backend Driver

Physical Device Drivers

Dom0/Driver Domain

D
o

m
U

s

Physical Device

Device Interface

Physical Device

Backend Driver

Device Interface

Frontend Driver

Application

Ring

Device Interface
Frontend Driver

Application

Ring

Device Interface

Frontend Driver

Application

Ring

Device Interface

Frontend Driver

Application

Ring

Device Interface

Figure 2. Xen’s PV I/O driver model.

guest OS uses blkfront to issue block device operations such
as read, write, etc. On the other side, blkback forwards these
operations to the physical device driver. Using the I/O ring
buffer, blkfront sends requests with the necessary informa-
tion (sector number, size, etc) to blkback. Blkback performs
the specified operation on the storage device and sends back
a response. The data is transferred between two sides using
shared memory via Xen’s grant table.

2.3 Driver Domains
Xen’s privileged (Dom0) VM traditionally runs device drivers
and performs many critical system tasks. However, unprivi-
leged guest VMs which run device drivers, known as driver
domains, can offload Dom0. Driver domains also increase
isolation and overall system security since potentially vulner-
able/malicious drivers (or devices) are isolated from Dom0.
Driver domains have direct access to the underlying hard-
ware by using PCI passthrough [82]. In Xen, driver domains
can be used for both networking and storage by running
netback and blkback drivers, along with the corresponding
physical device drivers, inside separate VMs rather than
Dom0.

Note that Xen’s split driver model is different from Xen’s
device virtualization (SR-IOV). Although VFs can be created
for certain (but not all) NICs, they are less feasible for storage.
Thus, dedicated driver domains are still often used to share
the same piece of hardware across different VMs.

Because of the above-mentioned benefits, MLS OSs, such
as Qubes OS [65] and SecureView [24], widely adopted driver
domains. For stronger isolation, MLS OSs also require the I/O
memory management unit (IOMMU) [25, 41] to be present.
HVM is essential for full-fledged IOMMU support; it safely
remaps interrupts and memory addresses to protect against
both malicious (or faulty) devices and vulnerable (or buggy)

device drivers. As a result, Dom0’s attack surface reduces.
Any driver malfunction or exploit will not directly affect
Dom0, and Xen’s administrative interface to other guest OSs
remains uninterrupted. Though other hypervisors such as
KVM [45] support faster I/O, they do not yet realize driver
domains. (At the very least, they do not provide the same
level of isolation.)

2.4 Rump Kernels and Rumprun
For the network and storage driver domains, we need a
unikernel capable of running many device drivers. A fair
number of non-compatible network (Ethernet [49], Wire-
less LAN [23], etc) and storage (PATA, SATA, SCSI, NVMe)
controllers must be supported. Because porting incurs non-
trivial engineering effort, we need a unikernel that can reuse
existing drivers.
Historically, the Flux OSKit [37] was the first to intro-

duce the idea of constructing OSs with the components from
multiple different OSs. NetBSD [16], a well-known general-
purpose OS, has a unique property in that all its core kernel
components are refactored into anykernel components. The
anykernel concept implies that these components can be
used in any context, e.g., a device driver can be executed in
a user thread. A special rump kernel glue layer enables the
reuse of the anykernel components outside of the NetBSD
kernel.

Rumprun is a unikernel that leverages rump kernels such
that it can potentially reuse any NetBSD device driver. Fig-
ure 3a shows the rumprun software stack, which consists
of the platform-specific layer (Interface to Xen) and bare
metal kernel (BMK) layer, which implements thread man-
agement, scheduling, interrupts, and memory management.
A special rumpuser layer implements an interface (known
as “hypercalls”, which are not to be confused with Xen’s
hypercalls) for the rump kernel components to communicate
with the BMK layer. Kite reuses other NetBSD components,
such as the TCP stack and vnode block device interface that
are denoted as ‘Faction.’
The layers above the rump kernel consist of relevant li-

braries and their interface to the rump kernel. A unikernel
application runs on top of the stack. NetBSD system calls
from LibC are replaced with ordinary function calls. Since
drivers need semantically similar support routines to that
of NetBSD, the rump kernel contains ‘Base’ which provides
support for memory allocation, thread handling, and locking.
Although a number of embedded Linux systems exist,

we are not aware of a comparable minimal system that
can readily be used for driver domains. Linux-based uniker-
nels [47, 63] currently lack maturity and flexibility. In con-
trast, rumprun is stable, and rump kernels are upstreamed
to NetBSD.

Kite: Lightweight Critical Service Domains EuroSys ’22, April 5–8, 2022, RENNES, France

3 Design
In this section, we discuss the challenges for building driver
domains and present a high-level overview of Kite.

3.1 Challenges
To retain all security benefits, we need to support IOMMU [25,
41], which confines erroneous DMA requests to a driver do-
main and prevents them from being propagated to other
domains. Xen supports IOMMU fully only in the HVMmode.
A recent work, LibrettOS [58], extends rumprun for multi-
core systems and partially adds Xen HVM support, which
we leverage in our work. This rumprun variant still lacks
xenstore and xenbus in HVM, which are required for Xen I/O
drivers.

Another big hurdle is that all existing versions of rumprun
only implement (non-optimized) frontend drivers and com-
pletely lack any backend drivers, let alone tools that would
be necessary to configure backend drivers and driver do-
mains. Unfortunately, NetBSD’s Xen I/O drivers cannot be
leveraged in rumprun unlike most other drivers. NetBSD is
also not known to support driver domains at all.
Yet another hurdle is driver domain organization. There

are several backend instances in driver domains. To link net-
backs to a physical NIC, techniques such as bridging, routing,
and network address translation (NAT) are used. Likewise,
for storage, some device-specific information needs to be
retrieved from and written to xenbus, which is later read by
the corresponding blkback instances. Xen provides special
domain initialization scripts and tools to perform these op-
erations in Linux. They run as separate processes and are
triggered on demand. However, a single-application uniker-
nel environment cannot use this approach. Rumprun lacks
the basic infrastructure to even run these scripts. Although
NetBSD supports NAT and bridging, the corresponding tools
must be ported and adapted as no one has ever used them in
rumprun.
Unikernelization of driver domains requires more than

implementing backend drivers, xenbus, xenstore, and tools.
For example, netback must consistently maintain the data
flow for both Rx and Tx ring buffers, which are handled asyn-
chronously. In addition, orchestration tools must run concur-
rently as part of the unikernel application. Since rumprun
uses a simple non-preemptive scheduler even for user code,
both tools and netback must avoid ever monopolizing CPUs
to allow seamless duplex communication without sacrificing
performance or existing driver compatibility.

In our design, we largely retain the original functionality
but use a more lightweight (single-process) infrastructure,
written in C, which is specifically designed for our unikernel.

We consider the Xen hypervisor to be the only trusted
component in a Xen-based virtualization stack. All VMs
running on top of the hypervisor (Dom0, driver domains, and
DomUs) are potentially vulnerable components and share

Application

Rump Kernel

Rump Kernel Syscalls

LibC

Userspace Libraries

Rumpuser Hypercall

Host Platform

Faction

Base

Device Driver

Bare Metal Kernel

Rump Kernel Calls

Device Driver

Faction

Interface to Xen

(a) Basic rumprun stack on Xen.

Block Status App

Rump Kernel

Rump Kernel Syscalls

LibC

Block Lib/Tool

Rumpuser Hypercall

Interface to Xen
Host Platform

Block Glue Code

Syscalls
Block Device

Interface

Block Driver

Bare Metal Kernel

Rump Kernel Calls

Blkback Driver

From NetBSD

TCP/IP
Stack

Netback Driver

Bridging App

Network Lib/Tool

NIC Driver

NIC Glue Code

New Contribution

(b) Kite driver domain.

Figure 3. Driver domain adaptation to rumprun in Kite.

the same threat model. Therefore, attacks applicable to guest
VMs are also applicable to our driver domains.

In Figure 3b, we show the architecture of our driver do-
mains. Along with the basic rumprun components in differ-
ent layers, we represent both domain-specific (network and
storage) components, such as blkback and netback, in the
same figure due to space limitations. The green rectangles
denote the components that we developed from scratch, and
the red rectangles present the components we adapted from
NetBSD. Although each unikernel VM typically serves one
device, our design can easily support many devices (e.g., sev-
eral NICs for better I/O scaling) since Kite supports multiple
cores.

3.2 Netback Driver
Two vital parts of the network driver domain are the netback
driver and network device driver (e.g., ethernet driver). The
network device driver, located at the rump kernel layer as
shown in Figure 3b, provides a network interface (IF), which
is used to transfer network packets between the netback dri-
ver and the outside world. The netback driver creates exactly
one netback instance for every virtual network channel from
the corresponding netfront instance in a guest VM. Each
netback instance creates one virtual network interface (VIF).
Our network domain connects all virtual and physical in-
terfaces, i.e. IF and VIFs, using a network bridge, which is
located at the application layer.
The Interface to Xen layer hosts the netback driver along

with other Xen-related components such as xenbus and grant
table interfaces. Even though netback is designed specifically
for Xen, we have to separate it into platform-dependent and
platform-independent layers to follow design principles and
linking restrictions of rumprun. The upper layer of netback
is responsible for communication with the network driver
through rumprun’s network stack and bridge. For any incom-
ing packet (from the network stack) destined to a DomU, this

EuroSys ’22, April 5–8, 2022, RENNES, France A K M Fazla Mehrab, Ruslan Nikolaev, and Binoy Ravindran

layer places packets into a memory buffer and forwards them
to the bottom layer. The bottom layer places these memory
buffers into a corresponding Xen I/O ring buffer and no-
tifies netfront on the other side. Similarly, for a stream of
network packets originating from a DomU, the bottom layer
receives them in memory buffers through the ring buffer and
forwards them to the upper layer. Subsequently, the upper
layer pushes these memory buffers onto the network stack.
Aside from ring buffer operations, other hypervisor-specific
operations between netback and netfront such as interrupts
through Xen’s event channel are done at the bottom layer.
This duplex communication happens through asynchro-

nous events. Netback is expected to complete the interactions
as soon as there is any data available from netfront. How-
ever, rumprun lacks rich OS support for interrupts and work
queues. In our design, we exploit multi-threading so that net-
back does not block any hypervisor-based event mechanisms
and processes data fast. Our design includes an event handler
that is invoked when there is a notification from netfront for
a data request or response. Often, these notifications require
operations involving hypercalls, which are time-expensive.
Spending significant time in the handler may create a bottle-
neck, blocking other incoming notifications. We introduce
a dedicated thread, activated by the handler, to take over
and perform necessary actions in response to notifications.
Likewise, netback needs to respond to the network stack
operations by using callback routines. Spending too much
time in these routines delays subsequent operations because
a response may issue an expensive hypercall. To minimize
the response time, another thread is waken by the routines
and performs the actual processing.

Linux runs a special daemon for starting services needed
in the corresponding Xen driver domain. Along with other
responsibilities, this service runs networking scripts that
set up a bridge, NAT, etc. In our single-process unikernel
environment, we create a unified application that waits for
requests by DomUs, creates new netback instances, and con-
nects netbacks to the physical NIC (i.e., using a bridge). This
application cooperates with netback to avoid CPU monopo-
lization.

3.3 Blkback Driver
In the same vein, blkback is instrumental for storage domains.
If any VM seeks PV storage through blkfront, the storage
domain negotiates with that VM and creates a blkback in-
stance.

We divide blkback into platform-dependent and platform-
independent layers similar to the netback driver. The bot-
tom layer handles requests (i.e., transfers data blocks) from
blkfront and sends responses using Xen I/O ring buffer. De-
pending on the type of the request (read, write, etc), the
upper layer performs a corresponding operation on the stor-
age device using the block device API. The upper layer also

Table 1. Lines of Code (LOC) for changes.
Component Description LOC

Blkback Xen’s storage backend driver 1904
Netback Xen’s network backend driver 2791
HVM extension xenbus and xenstore support 1100
Configuration network and storage applications 450
Utilities ifconfig/brconfig changes 222
Daemon VM OpenDHCP [60] as a daemon VM 16
Total: 6483

forwards a response from the device driver to the bottom
layer.
Each request consists of multiple block segments to per-

form a particular operation. A write request reads segments
from the shared memory and writes them to the storage de-
vice. A read request is the opposite of that. Memory is shared
through grant tables, which involve costly hypercalls, but
our blkback driver adopts several optimizations described
below.

Similar to netfront and netback, blkfront notifies blkback
through the event channel. To prevent requests from being
piled up and accelerate request processing, we run a sepa-
rate thread for reading all pending requests and performing
operations on the storage device. This thread wakes up only
when there is a notification from the event channel.

When the physical device driver completes the requested
operation, blkback sends a response to blkfront. Similar to
Linux’s blkback design, we handle operations and send re-
sponses asynchronously. Subsequent requests are not blocked
by the current request. There are other Linux-specific op-
timizations we support to achieve good performance. We
batch block device operations where segments from one
or multiple requests are consecutive. This reduces the total
number of block device operations and increases through-
put. We use “persistent referencing” to avoid mapping and
unmapping of the same memory location through grant ta-
ble operations, which involve costly hypercalls. We retain
a memory address and its grant reference, so that we can
later reuse the existent mapping for a grant reference that is
already saved.
Finally, a direct segment request contains a maximum

of 11 segments’ information since it is the maximum size a
block ring can accommodate along with the ring indexes [21].
Therefore, direct segments are limited to 44KB, which is
insufficient for high-speed NVMe SSDs. An indirect segment
request contains grant references to pages, each containing
512 segments’ information. Thus, we also support indirect
segments for transferring up to 16MB per request.

4 Implementation
We use a recent version of rumprun [58] that already adds
minimal HVM and multicore support. As Table 1 shows,
most implementation effort relates to drivers. Configuration

Kite: Lightweight Critical Service Domains EuroSys ’22, April 5–8, 2022, RENNES, France

applications, though small, support common scenarios; they
cooperate with the driver code to avoid CPUmonopolization.

4.1 Backend Invocation
A separate backend instance must be created for every fron-
tend counterpart in DomU. A driver domain needs to know
that one or more frontends are waiting for pairing. The back-
end driver sets a watch in xenstore [80], which is a database
in the shared space between domains. The xenstored [78]
daemon in Dom0 keeps this database updated with each do-
main’s configuration and status information. Each domain
has paths in xenstore where the corresponding information
is stored. When a frontend instance attempts to connect to
its backend instance, a new path containing the requesting
frontends’s information is created. Any change in driver do-
main paths is detected by the “watch” callback in the backend
driver.

Kite backend driver spawns a dedicated thread in the very
beginning of execution to handle all path changes. When
the watch observes a change in the driver domain’s path
in xenstore, a corresponding callback function wakes this
thread up. The thread queries xenbus [79] to check if there is
any relevant change. For any unpaired frontend, the thread
creates and initializes a new backend instance.

4.2 Netback Driver

Initialization. The first step is to update the xenstore data-
base so that this netback’s features are advertised to other
domains.

Since the hypervisor has all machine memory mapped for
all domains, it is faster to copy data across domains using the
hypervisor. To provide faster data transfer between netfront
and netback, Xen supports hypervisor-based data copy, and
nowadays, most of the netfronts from OSs such as Linux and
NetBSD utilize this feature. Therefore, in our Kite network
driver domain, we implement this feature.
The communication between the frontend and backend

parts happens through special I/O ring buffers, which are
built on top of Xen’s shared memory mechanism called grant
tables [81]. Netfront and netback use two ring buffers: Tx
and Rx. Netfront uses Tx to send data to netback, which even-
tually forwards this data to the network stack (e.g., bridge)
through the netback virtual interface (VIF). Conversely, when
netback’s VIF receives any data from the stack, netback for-
wards it to netfront using Rx. To distinguish VIF instances
from each other, each VIF is assigned a unique name.
Netfront allocates shared memory and initializes Tx and

Rx. To access ring buffers, netback reads Tx and Rx grant ref-
erences from xenstore and maps them to its address space. It
keeps track of ring buffer accesses using producer-consumer
indices. Notifications between netback and netfront happen
asynchronously through event channels (virtual interrupts).
Netback binds an event channel to a dedicated event handler.

Transmit. In DomUs, any data from the network stack goes
to netfront. Netfront transmits packets to netback using Tx.
Likewise, netback pushes received data to the corresponding
VIF. The ring buffer consists of multiple slots that can be
used for requests as well as responses. Tx transmits data
from netfront through netback. After placing requests into
the ring buffer, netfront issues a virtual interrupt. Netback’s
handler copies the unhandled requests and maps pages to
its address space. The memory contents are then delivered
to a VIF.
Netback sends responses to netfront on completed Tx

operations by using the slots from already served requests.
Once these slots are filled with responses, netback pushes
them to the Tx ring buffer and notifies netfront (if necessary).
Receive. For the opposite direction, netback pushes the data
from a VIF to Rx. Rx is not the inverse of Tx, but similar in
some aspects. Like Tx, the Rx ring buffer consists of multiple
slots that can be used for requests and responses.
When netfront sends Rx requests, netback retains them

but cannot send back any data until it receives data from the
VIF. When VIF data is ready, netback copies the data to the
pages associated with the corresponding Rx requests using
the grant table. To notify netfront, netback reuses the served
request slots for responses and issues a virtual interrupt.
Multiple Threads. Rumprun lacks Linux’s rich support for
work queues. We use threads for faster Tx and Rx operations.

For faster response to the notifications coming from net-
front, the notification handler at netback must act efficiently.
If the handler responds to the requests using the shared ring
buffers, subsequent notifications need to wait longer since
the Xen hypercalls associated with shared memory manipu-
lation are time expensive. It will hurt latency sensitive appli-
cations. Therefore, our handler only wakes up a dedicated
thread, pusher, if not already awake. Pusher keeps reading
Tx requests and copying corresponding data from the shared
memory and sends them to the VIF through the network
stack. If there are no pending Tx requests, the pusher thread
goes to sleep.

If there is any incoming data at the VIF, a callback function
in the netback driver is invoked. Similar to the pusher thread,
a dedicated thread, soft_start, keeps copying and sending
these data to the netfront instance using the Rx ring buffer
and shared memory. This thread goes to sleep once there is
no data or Rx requests left. The callback function only wakes
up the soft_start thread if it is sleeping.

4.3 Network Application
Using a network bridge, we connect the VIF interfaces from
netbacks to the physical NIC. To that end, we developed
an application in our network driver domain. When this
application is launched, it creates a bridge interface. Next,
the application assigns an IP address to the physical inter-
face; the physical interface works as a gateway for incoming

EuroSys ’22, April 5–8, 2022, RENNES, France A K M Fazla Mehrab, Ruslan Nikolaev, and Binoy Ravindran

and outgoing packets across all VIFs. Then, the application
watches for a new VIF to appear and adds the new interface
to the bridge.

We ported the ifconfig(8) utility from NetBSD to initialize
bridge interfaces and assign IP addresses. Alongwith that, we
also ported the brconfig(8) utility fromNetBSD, which is used
for adding interfaces to a bridge. To allow other components
such as netback, the NIC driver, and network stack make
progress, our application explicitly yields CPU time.

4.4 Blkback Driver
Initialization. First, blkback advertises its properties (the
number of sectors, sector size, read/write mode, and features
such as cache flush support, persistent grant references, the
maximum number of indirect segments) via xenstore. Then,
blkback sets its status in xenstore as ‘connected.’ Next, blk-
front writes its properties to xenstore: ring references, an
event channel number, support for persistent grant refer-
ences, and an I/O protocol. Blkback maps the ring buffer and
sets an event handler for notifications from blkfront. Unlike
networking, storage I/O uses one ring buffer and one event
channel.
Request.As discussed in Section 3.3, we have a thread for re-
quest notifications. The thread copies the request and stores
segment information from the copied requests. With the
segment information, I/O buffers are constructed in batches.
The grant references are mapped to the pages inside the
storage domain’s address space and are used as buffer block
data. Once buffers for all consecutive segments from one or
more requests are constructed, the device driver interface is
called through the upper layer to perform I/O.
Response. Blkback sends a response to blkfront when the
bottom layer hears back from the device driver regarding
previously submitted I/O. NetBSD’s buffer structure makes
it possible to set a callback function, which the device driver
calls when it completes the submitted operations. In the
callback, blkback unmaps grant references (unless they are
persistent) and sends responses back to blkfront with the
success/failure status, and then destroys memory buffers.
Blkback uses its event channel to issue a virtual interrupt to
blkfront.
Indirect Segment and Persistent References. Indirect
segments can be crucial for NVMe SSDs but they require
mapping indirection. First, we map grant references to pages.
Then, we parse these pages, where each of themmay contain
up to 512 indirect segments. (Linux currently supports at
most 32 indirect segments; we also limit the number to 32.)
To implement persistent referencing, we map each page

separately so that we can reuse these pages even if they do
not maintain any sequence in other requests. We store grant
references and addresses of corresponding mapped pages in

Table 2. Hardware configuration.
Server Client

CPU Xeon E5-2695 2.20GHz Core i5-6600K 3.50GHz
Cores 24 (w/ HyperThreading) 4
L1/L2 32/256 KB per core 32/256 KB per core
L3 30720 KB 6114 KB
Memory 64 GB 16 GB
Network Intel 82599ES 10-Gigabit Intel 82599ES 10-Gigabit
Storage Samsung 970 EVO N/A

Plus 500GB NVMe

a lookup data structure, which makes it possible to avoid
re-mapping.

5 Evaluation
We do a security evaluation, which includes CVE and ROP
gadget analysis, and a performance analysis to identify per-
formance overheads, if any, due to our implementation.
We only compare against Linux-based driver VMs since

Linux is the only OS that supports driver domains. (NetBSD
currently does not support them.) Likewise, Xen is the only
hypervisor that has fully-fledged driver VM support cur-
rently. Our performance evaluation shows that, even with
the mentioned challenges in Section 3.1, Kite is as perfor-
mant as Linux for most of the cases. Some performance gains
can be attributed to NetBSD drivers. Other gains come from
the elimination of extra OS layers and user space.
Table 2 shows our setup. A client and server machines

are directly connected by a SFI/SFP+ network cable. Dri-
ver VMs are tested on the server side. For network-related
tests, our client acts as a load generator. Our server runs
Xen (Dom0 has no storage/network drivers). Each server
application runs in DomU. We create Linux-based and Kite
driver VMs, which access the NIC and NVMe storage via
PCI passthrough.

Dom0, DomU, and Linux-based driver domains runUbuntu
18.04.3 LTS, kernel 5.0.0-23-generic. They are assigned 8GB,
5GB, and 2GB of RAM, respectively. For Kite VMs, we use
Rumprun-SMP [43, 58] (based on NetBSD 9.0) with our addi-
tional changes.We assign lessmemory (1GB) since rumprun’s
footprint is smaller. In our tests, we found that one virtual
CPU (vCPU) suffices since driver domains are I/O-intensive,
but we support multiple vCPUs. Each driver domain allots 1
vCPU, and DomU allots 22 vCPUs.We use Ubuntu’s standard
Xen 4.9 hypervisor.

5.1 Security
5.1.1 Syscall Reduction and CVEs. The minimalistic de-
sign of Kite allows only a handful of libraries, selected drivers,
and one application per driver domain. These applications
replace the need for several userspace libraries (e.g., python)
and tools (e.g., xen-tools). Therefore, Kite driver domains are
safe from many known vulnerabilities, such as CVE-2016-
4963 and CVE-2013-2072, associated with unneeded libraries

Kite: Lightweight Critical Service Domains EuroSys ’22, April 5–8, 2022, RENNES, France

Table 3. Examples of CVEs prevented by only keeping necessary system calls.

CVE ID Syscall Name Description
2021-35039 init_module Linux Kernel loading unsigned kernel modules via init_module syscall.
2019-3901 execve A race condition allows local attackers to leak sensitive data from setuid programs.
2018-18281 ftruncate, mremap Permits access to a already freed and reused physical page.
2018-1068 compat_sys_setsockopt Allows a privileged user to arbitrarily write to a limited range of kernel memory.
2017-18344 timer_create Allows userspace applications to read arbitrary kernel memory.
2017-17053 modify_ldt, clone Allows an attacker to achieve a use-after-free impact by running a crafted program.
2016-6198 rename Allows local users to cause a denial of service attack.
2016-6197 rename, unlink Allows local users to cause a denial of service attack.
2014-3180 compat_sys_nanosleep Usage of uninitialized data creates possible out-of-bounds read.
2009-0028 clone Allows unprivileged child process to send arbitrary signals to a parent process.
2009-0835 chmod, stat Allows local users to bypass intended access restrictions via crafted syscalls.

1
8 2
7

7

1
7

1

2
9

7

7
5

(a) Syscall Count (b) Size(MB) (c) Boot time(s)

Kite

Ubuntu

Figure 4. System call, size, and boot time comparison.

and applications that are part of traditional service VMs. We
found 172 [19] and 92 [20] reported CVEs that make use
of crafted applications and shell, respectively, for perform-
ing attacks on Linux-based OSs. Being single-purpose OSs
without rich user-space environments, Kite VMs prevent
the attackers from running malicious applications or using
shells.

Rumprun leverages syscall-related functions fromNetBSD.
Since each Kite VM runs one specific application, we can
easily pinpoint the system calls that are used. We found
that rumprun uses 14 and 18 system calls for the network
and storage domain, respectively, whereas even minimal
Ubuntu-based driver domains use 10x more systems calls
(Figure 4a). Furthermore, to prevent attackers from using
other syscalls, we discard all remaining syscalls during the
compilation process. This reduces the attack surface and
mitigates many CVEs, including 11 CVEs presented in the
Table 3. Though we can block a few syscalls in Linux, lots of
them are essential to initialize and run driver domains and
cannot be removed.

5.1.2 ROP Gadget Reduction. Though reduction of ROP
gadgets does not always improve security, a smaller num-
ber of ROP gadgets indicates potential obstacles for an at-
tacker since the attacker will have a hard time constructing
ROP chains to exploit a known vulnerability, assuming that
NetBSD’s code quality is generally on par with that of Linux.
Using themethodology from Follner et al. [36] and a tool [12],
we count ROP gadgets belonging to different categories: Data
move, Arithmetic, Logic, Control flow, Shift & Rotate, Setting

0

1000000

2000000

3000000

4000000

Kite Default CentOS Fedora Debian Ubuntu

Q
u

an
ti

ty
 o

f
G

ad
ge

ts

DataMove Arithmatic Logic

ControlFlow ShiftAndRotate SettingFlags

String Floating Misc

MMX Nop Ret

Figure 5. ROP gadget comparison.

flags, String, Floating point, Misc, MMX, NOP, and RET. Each
category represents a class of operations.
Figure 5 breaks downs ROP gadgets, shown in Introduc-

tion, according to their category. The default Linux config-
uration is very minimal and has almost no modules, but
already has 4x gadgets than Kite VMs. Note that for driver
domains, we also need corresponding driver modules. More-
over, we do not count Linux user-space ROP gadgets here.
This shows Kite’s great potential for improved security.

5.2 Image Size and Boot Time
We already mentioned that rumprun is smaller than even a
fairlyminimal Linux image. To further elaborate, we compare
image sizes of Kite and Linux-based driver domains used in
experiments. For Kite, we measured the size of the entire
Kite VM binary. For Linux, we measured only the size of
the kernel and its modules, i.e., did not include the size of
user-space programs. As Figure 4b shows, the Linux image
is about 10x bigger than the Kite image.
Since boot times directly affect deployment in the cloud

infrastructure, it is crucial to reduce them asmuch as possible.
Moreover, driver domains can potentially be restarted when
recovering from failures, where faster boot times are equally
important. As Figure 4c shows, Kite takes 7 seconds to boot
a driver domain. In contrast, Linux needs 75 seconds.

EuroSys ’22, April 5–8, 2022, RENNES, France A K M Fazla Mehrab, Ruslan Nikolaev, and Binoy Ravindran

0

2

4

6

8

Linux Kite

B
an

d
w

id
th

 (
G

b
p

s)

Figure 6. Nuttcp throughput for UDP file transfers.

0
0.1
0.2
0.3
0.4
0.5
0.6

Ping Memtier Netperf

La
te

n
cy

 (
m

s) Linux Kite

Figure 7. Linux vs. Kite network driver domains latency.

5.3 Network Domain
We have evaluated Kite that is only built for the network dri-
ver domain, discarding all unrelated components. We have
confirmed that our system shows similar performance trends
for 1GbE and 10GbE (with various NIC drivers). In general,
Kite should work with any NIC drivers from NetBSD, includ-
ing recent 40GbE drivers, for which we expect similar perfor-
mance trends. In this section, we evaluate our network do-
main, attached to a 10GbE NIC, using both micro- and macro-
benchmarks. We run the nuttcp [9] microbenchmark to mea-
sure overall network throughput. Me measure network la-
tency using ping, Netperf [7], and memtier [8] benchmark.
We use macrobenchmarks including ApacheBench [72], Re-
dis [11], and MySQL [6] to measure the performance of real-
life applications, which can be relevant to cloud users.

5.3.1 Nuttcp. We measure the network throughput of a
Linux guest machine when using 10GbE NIC through the
Linux and Kite driver domain. To achieve optimal throughput
with minimal packet loss, we run nuttcp benchmark [9]
(v8.2.2) in the UDP mode with 4MB of window size and
8KB of buffer size. As shown in Figure 6, with the described
configuration, we achieve about 7Gbps with less than 1.5%
UDP packet loss for both Linux and Kite network domain.

5.3.2 Network Latency. We use various tools with differ-
ent configurations for measuring network latency. Figure 7
shows the latency comparison when using Linux’s and Kite’s
versions of netback. Pinging the guest machine from the
client machine 100 times with one-second interval, we get
lower latency for Kite (0.31ms) than for Linux (0.51ms). The
Netperf [7] benchmark, which sends 1000 requests per sec-
ond with even intervals to the guest machine, shows 0.18ms
latency for Linux and 0.10ms latency for the Kite network
domain. Memtier [8], a benchmark for Memcached [5] re-
ports 0.16ms and 0.15ms for Linux and Kite, respectively,

0

50

100

150

200

250

5
1

2 4
k

1
6

k

6
4

k

2
5

6
k

1
m

Th
ro

u
gh

p
u

t
(M

B
p

s)

File size

Kite Linux

(a) Varying file size.

1
4

9
.6

9

3
3

.4
1

7

2
9

9
.2

5

1
6

9
.6

6

2
9

.4
8

4

3
3

9
.1

7

Throughput
(MB/s)

Time (s) Request/s
Linux Kite

(b) Throughput, transfer time,
and request rate.

Figure 8. Apache server throughput.

Table 4. Relative standard deviation for experiments.

Apache Redis Memtier Sysbench
Linux 1.20% 0.00053% 0.0029% 0.0167%
Kite 1.44% 0.0011% 0.0023% 0.0496%

when performing 100000 SET and GET operations with a
ratio of 1:10 and data of size 8KB.

One can see that the Kite network domain achieves slightly
better latency to that of Linux across different applications.
Therefore, using Kite driver domains for running latency-
sensitive applications, we can achieve similar performance
to that of Linux.

5.3.3 Apache. To evaluate anHTTP server, we runApache
(v2.4.29) in DomU and Apache benchmark in the client ma-
chine. The server data (files) are randomly generated. The
benchmark sends 100,000 requests and measures the server-
side throughput. Each experiment is repeated 3 times. Fig-
ure 8a shows results for file sizes ranging from 512B to 1MB.

Figure 8b shows different parameters such as the transfer
time, throughput, and request handling rate (logarithmic
scale) for a specific Apache server experiment with a file of
512KB size. The Apache benchmark sends 100,000 requests
with 40 concurrent requests. Kite is marginally faster. For
the Linux and Kite results, the maximum relative standard
deviation (RSD) is 1.20% and 1.44%, respectively.

5.3.4 Redis. We run Redis server [11], a well-known key-
value store, in DomU to compare driver domains. We execute
Redis benchmark (v4.0.9) with millions of SET/GET opera-
tions in the pipeline mode in the client machine. We set the
pipeline size to 1,000. We also vary concurrency, wherein
each GET/SET operation reads/writes 128MB of data with
each key of size of 64 bits.
Figure 9 shows the number of SET/GET operations per

second, on a logarithmic scale. Overall, Kite and Linux net-
back exhibit similar performance. The RSD for Linux’s and
Kite’s netback is 0.00053% and 0.0011%, respectively.

Kite: Lightweight Critical Service Domains EuroSys ’22, April 5–8, 2022, RENNES, France

0

50000

100000

150000

5 10 15 20

Tr
an

sa
ct

io
n

s/
se

c

Thread Count

Linux SET Kite SET

Linux GET Kite GET

Figure 9. Redis key-value store throughput.

0

2000

4000

6000

5 10 20 40 60

O
p

er
at

io
n

s/
se

c

Thread Count

Kite Linux

(a) Throughput varying threads.

0

5

10

15

1 5 10 20 40 60C
P

U
 U

ti
liz

at
io

n
 %

Thread Count

Kite

Linux

(b) CPU utilization.

Figure 10.MySQL throughput (network domain).

5.3.5 MySQL. Aside from NoSQL (Redis, Memcached), we
evaluated the MySQL [6] server (v5.7.29), a popular SQL
database, running on DomU. On the client machine, we ran
Sysbench (v1.1.0) to measure the database throughput.

We created a database with ten tables, each with 1,000,000
records. All data fits in memory, i.e., the workload is memory-
bound, and there is no storage I/O. We ran the benchmark
from the client machine for a different number of threads
(from 5 to 60). The benchmark sends read-only SQL queries
to the server, which allows us to stress-test the network path.
Figure 10a shows the number of operations (queries and

transactions). There is almost no performance difference
when using Linux’s or Kite’s netback. The RSD is 0.0167% and
0.0496% for Linux and Kite, respectively. Figure 10b shows
the average CPU utilization of DomU, measured using the
sysstat utility [15], during the aforementioned benchmark
execution. We found that DomU’s CPU utilization for both
Linux and Kite is very similar.
Table 4 shows the standard deviation of experiments de-

scribed in Figures 7, 8, 9, and 10.

5.4 Storage Domain
For the storage domain performance evaluation, we have
built Kite exclusively for storage domain. We use dd [3] as a
microbenchmark. For macrobenchmarks, we use SysBench
(v1.1.0) and Filebench [71] (v1.5-alpha3). Macrobenchmarks
measure the performance of real-life applications such as
MySQL and MongoDB database servers, fileserver, and web-
server. For each run, we flush the read buffer and use total
I/O size bigger than the main memory so that we exercise
our storage domain more aggressively.

Certain Kite’s storage performance gains can be attributed
to NetBSD itself. Other gains are due to the elimination of
kernel layers and user space.

0

200

400

600

800

1000

1200

Read Write

Th
o

u
gh

p
u

t
(M

B
/s

) Linux Kite

Figure 11. Storage throughput (dd).

0

100

200

300

400

1 5 10 20 40 60 80 100Th
ro

u
gh

p
u

t
(M

b
p

s)

Thread Count

Linux Kite

(a) Varying number of threads.

0

200

400

600

Th
ro

u
gh

p
u

t(
M

b
p

s)

Block Size

Linux Kite

(b) SysBench file I/O throughput.

Figure 12. SysBench file I/O throughput.

5.4.1 DD. To keep both reading and writing overheads
minimal, we use /dev/zero as the source as well as the
destination. We run experiments 3 times. Each time, 10GB
of data is transferred from/to the device. Figure 11 shows
similar performance for Linux and Kite.

5.4.2 SysBench File I/O. We use SysBench to measure file
I/O performance. SysBench uses 192 files totaling 15GB. We
perform random operations on these files with a read-write
ratio of 3:2 since read operations are performed more than
write, in general. We run the same experiment for a different
number of threads, ranging from 1 to 100, and block sizes,
ranging from 16KB to 128MB. Each run takes 5 minutes.
Figure 12a shows throughputs for runs with a different

number of threads for a block size of 256KB. Figure 12b
shows throughputs for runs with a fixed number of threads
(20) and different block sizes. Throughputs for Kite are very
comparable to that of Linux. Kite is even better than Linux
for higher number of threads and block sizes. The average
RSD is 0.49% and 0.33% and the average latency is 16.91ms
and 15.23ms for Linux and Kite, respectively.

5.4.3 SysBench MySQL. We evaluate MySQL for stor-
age using SysBench. Our database contains 100 tables, each
with 1 million records, totalling 20GB of disk space. We vary
the number of threads, each thread performs complex SQL
queries [14]. Results in Figure 13 are identical.

5.4.4 Filebench Fileserver. To generate a file serverwork-
load, we use a fileserver benchmark from Filebench. We run
50 threads in parallel each performing series of operations
including create, read, write, append, close, stat, delete, etc.
Before running the workload, Filebench creates 100,000 files
with an average size of 128KB, which makes a total of around
13GB. The mean append size is 1KB where the I/O sizes are
varied, from 16KB to 8MB, for each run of 5 minutes.

EuroSys ’22, April 5–8, 2022, RENNES, France A K M Fazla Mehrab, Ruslan Nikolaev, and Binoy Ravindran

0

2000

4000

6000

8000

10000

12000

14000

1 5 10 20 40 60 80 100

Th
ro

u
gh

p
u

t
(K

b
p

s)

Thread Count

Linux Kite

Figure 13.MySQL (storage domain).

0

100

200

300

400

500

600

700

16K 32K 64K 128K 256K 512K 1M 2M 4M 8M

Th
ro

u
gh

p
u

t
(M

B
p

s)

Block Size

Linux Kite

Figure 14. Filebench’s fileserver throughput.

Throughput results are presented in Figure 14. Kite’s stor-
age domain often performs slightly better than Linux. The
maximum incurred latency for this experiment is 8.99ms and
7.93ms for Linux and Kite, respectively.

5.4.5 FilebenchMongoDBServer. Wealso evaluateMon-
goDB, a NoSQL database server, using Filebench because of
its different file access patterns. We create 20GB of data with
the mean I/O size of 4MB. Figure 15 shows the throughput,
execution time per operation, and latency, stretched in log-
arithmic scale, for a run of 5 minutes with one user. Kite
outperforms Linux proving our storage domain can exhibit
better performance even for lower concurrency.

5.4.6 Filebench Webserver. To generate a web server
workload, we run 50 threads in parallel, where each thread
performs a series of operations combining open, read, and
close. First, filebench creates 200,000 files with an average
size of 64KB, totaling around 13GB. The mean append size
and I/O size is 16KB and 1MB, respectively. We run each
experiment for 5 minutes. Figure 16 shows the web server
throughput, execution time per operation, and latency, which
are stretched in the logarithmic scale. Kite’s storage domain
takes a little less time than Linux for executing each opera-
tion, and thus Kite provides slightly higher throughput and
lower latency.

5.5 Daemon Service VM
We measured our rumprun-based OpenDHCP server [60]
performance using perfdhcp [10] (a DHCP benchmarking
tool) and compared latencies with Linux. The average delay

4
4
6
.9

1
3
0
1
7

2
3
.3

8
9
2
.1 1
0
7
2
9

1
1
.8

Throughput(Mbps) CPU(us/op) Latency(ms)

Linux Kite

Figure 15. Filebench: MongoDB server.

2
4
6
.9

2
9
1
9
7

4
7
1
8
.4

5
6
1
.5

2
8
3
0
3

2
4
0
6
.4

Throughput(Mbps) CPU(us/op) Latency(ms)

Linux Kite

Figure 16. Filebench: Webserver.

for DHCP discover offer and request acknowledgement is
very similar for rumprun and Linux (delays are ≈0.78 ms and
≈0.7 ms for Discover-Offer and Request-Ack, respectively).

6 Related Work
MLS Systems. Qubes OS [65] and SecureView [24] are Xen-
based OSs for desktop and enterprise users, respectively.
Qubes OS uses several types of VMs: network VM, storage
VM, other service VMs, apps VMs, and administrative/GUI
VM. The apps VMs are domains for running corresponding
types of applications. The network VM runs netback and
serves as a network driver domain for the apps VMs. The
storage VM runs blkback and provides access to the disk for
the apps VMs. The administrative/GUI VM provides GUI to
users. For all VMs, Qubes OS runs Linux. Kite’s service VMs
reduce memory footprints, startup times, and attack surface,
which are critical for desktop and cloud users alike.

Some recent works [57] can strengthen the security of
MLS OSs by continuously re-rerandomizing address space
layout of device drivers. Kite can adopt similar techniques
in the future.
Hypervisor Disaggregation. The Flux OSKit [37] demon-
strates how OSs can be constructed using components from
multiple different OSs, in particular by writing thin glue
layers that can be used to leverage existent stable device dri-
vers from Linux and BSD. However, the Flux OSKit requires
manually modifying the glue layer each time drivers from
source OSs change. In contrast, Kite is based on NetBSD’s
anykernel architecture, which factors out device drivers into
components that can be executed unmodified anywhere, e.g.,
in other OSs, by using the rump kernel glue layer. Moreover,
rumprun, the rump kernel-based unikernel, allows running
a lightweight library OS atop the Xen hypervisor, unlike the
Flux OSKit.

Kite: Lightweight Critical Service Domains EuroSys ’22, April 5–8, 2022, RENNES, France

Hypervisors, which run multiple virtual machines on the
same physical machine, are counted towards a trusted com-
puting base (TCB) for cloud infrastructures. Xen uses Dom0
as a control VM. Dom0 is a fully-fledged OS that runs on
top of Xen. Unexpected behavior from Dom0 or Xen can
adversely affect any (DomU) guest OS. Therefore, there have
been several efforts [31, 55, 68] for splitting Xen responsi-
bilities, so that an exploited or failed component does not
affect other components.

Prior works, discussed below, need fully-fledged VMs for
drivers. Kite nicely complements them by targeting drivers.
Xoar [31] disaggregates Dom0 functionality into nine

types of service VMs, each having different responsibilities.
Two of them, PCI backend and bootstrapper, run on top
of nanOS, a lightweight OS, destroyed after initialization.
Xoar uses nanOS only during bootstrapping, i.e., it does not
contribute to further PCI communication. For network and
storage driver VMs, Xoar uses heavyweight Linux, unlike
our work. This still opens a potentially large attack surface.
Our work nicely complements Xoar by providing lightweight
driver domains.
The Nexen [68] architecture decomposes the hypervisor

into three parts using page-based isolation mechanisms: se-
curity monitor, shared service domain, and Xen slices. The
security monitor provides isolation between internal do-
mains and manages privileges by controlling all updates to
the memory management unit (MMU). Xen slices are com-
posed of highly vulnerable hypervisor functionalities and
data needed by DomU. Each slice serves only one DomU.
The shared service domain provides the functionalities that
could not be decomposed into slices. A limitation of this
work is that Nexen does not manage I/O devices. Therefore,
Nexen relies on the native Linux PV (e.g., network and disk)
device drivers and cannot prevent abuses on the drivers.

Murray et al. [55] disaggregate the hypervisor by extract-
ing the domain building process, called domain builder, from
Dom0 and porting it to a light-weight OS such that the TCB
attack surface remains small. However, for I/O calls, the do-
main builder relies on Dom0 which runs a backend driver as
well as a physical driver. Therefore, this disaggregation does
not secure the I/O path. SSC [30] describes a modified Xen ar-
chitecture for reducing TCB by distributing DomU responsi-
bilities to multiple user-level service domains called UDom0.
Each DomU belongs to one UDom0, which enforces isolation.
Apart from UDom0, this design has a system-wide adminis-
trative domain, called SDom0, and a domain builder. SDom0
has multiple responsibilities, including scheduling and I/O
device virtualization. Therefore, Dom0 has a relatively larger
attack surface, and errors can affect core functionalities.
OS Architectures. Containers, e.g., Docker [54], have only
process-level isolation. For better isolation, containers run
in VMs with fully-fledged OSs [33, 38], but they have a large
attack surface.

The hypervisor can also be used to build one OS by disag-
gregating its components. For example, VirtuOS [56] isolates
critical OS components in separate VMs, which are similar
to driver VMs. Since VirtuOS uses fully-fledged Linux-based
VMs, the challenges with a large attack surface remain.

Unikernels are popular for cloud infrastructures [1, 63].
LibrettOS [58] extends rumprun’s support for multicore sys-
tems and (partially) Xen HVM. Kite further extends Libret-
tOS’s version of rumprun. Rumprun is ported to seL4 [34]
but the same problem with driver domains (sharing the NIC
between applications) arises in seL4. HEXO [59] takes advan-
tage of low resource requirements of the HermitCore [48]
unikernel. However, HermitCore and other unikernels lack
rumprun’s rich device driver support. None of the prior
unikernel works improve the hypervisor itself. Kite’s shows
unikernels’ performance, security, and resource consump-
tion benefits for privileged hypervisor components (i.e., dri-
ver VMs).

Trusted Execution Environments (TEE), such as Intel SGX
and AMD SEV, are being leveraged to secure applications
running in general-purpose VMs [62, 69] and in uniker-
nels [66, 74–76]. Several works [50, 77] proposed secure I/O
paths between the applications and drivers as an extension
for TEE. However, TEE is orthogonal to our work but can
potentially be considered in Kite VMs to further enhance
security.

Kernel-bypass libraries such as DPDK [73] and SPDK [70]
provide high performance, but they lack standardized APIs
(use custom APIs) and therefore incur prohibitive engineer-
ing efforts to modify existing applications to use them. As
standardized API support for kernel-bypass libraries matures,
SPDK or DPDK driver domains can be developed. This is an
interesting future direction.

Our evaluation is inclusive of related works, such as Xoar
and Nexen, since these disaggregation approaches use full-
fledged Linux for driver domains. Therefore, we did not
separately discuss them in the evaluation section.

7 Conclusions
In this paper, we presented the first implementation of uniker-
nelized service VMs in MLS OSs. While past efforts have ex-
plored reducing the attack surface of hypervisors, our work
is the first to focus on improving memory footprint, isolation,
and security of privileged components such as device drivers
that run outside of the hypervisor. Kite’s novelty is that it
does not need a full-blown OS to run driver domains. Though
Kite’s benefits partially come from the rumprun design itself,
building a driver domain from rumprun was previously im-
possible. Kite’s driver domains have a number of advantages
compared to Linux-based driver domains: reduced number
of syscalls, ROP gadgets, smaller image size, and faster boot
time. Moreover, Kite does not rely on heavy-weight Linux
tools (xen-tools), which present a number of security issues.

EuroSys ’22, April 5–8, 2022, RENNES, France A K M Fazla Mehrab, Ruslan Nikolaev, and Binoy Ravindran

To realize the vision of unikernelized driver domains,
we had to overcome many challenges such as extending
rumprun’s Xen HVM support, and implementing the netback
and blkback drivers and special configuration/orchestration
tools inside the rumprun unikernel. Our experimental evalu-
ation reveals that our driver domains provide competitive
performance to that of Linux-based driver domains, while
retaining all the benefits of unikernels.

AVAILABILITY
Kite’s code is available at https://github.com/ssrg-vt/kite.

ACKNOWLEDGEMENTS
We would like to thank the anonymous reviewers and our
shepherd Rodrigo Fonseca for their insightful comments and
suggestions, which helped greatly improve this paper.

This research is based upon work supported by the Office
of the Director of National Intelligence (ODNI), Intelligence
Advanced Research Projects Activity (IARPA). The views
and conclusions contained herein are those of the authors
and should not be interpreted as necessarily representing
the official policies or endorsements, either expressed or
implied, of the ODNI, IARPA, or the U.S. Government. The
U.S. Government is authorized to reproduce and distribute
reprints for Governmental purposes notwithstanding any
copyright annotation thereon.
This research is also based upon work supported by the

U.S. Office of Naval Research (ONR) under grants N00014-
18-1-2022 and N00014-19-1-2493.

Kite’s DHCP server was integrated into an enterprise-level
software infrastructure called SAVIOR (Secure Applications
in Virtual Instantiations of Roles) system, which was de-
veloped as part of the IARPA VirtUE (Virtuous User Envi-
ronment) program [17]. SAVIOR’s source code repository is
publicly available [13].

References
[1] 2016. Docker Acquires Unikernel Systems to Extend the Breadth of

the Docker Platform. https://www.docker.com/docker-news-and-
press/docker-acquires-unikernel-systems-extend-breadth-docker-
platform.

[2] 2021. CVE-2013-2072. https://cve.mitre.org/cgi-bin/cvename.cgi?n
ame=CVE-2013-2072.

[3] 2021. dd – convert and copy a file. https://man7.org/linux/man-
pages/man1/dd.1.html.

[4] 2021. libxl CVE search. https://cve.mitre.org/cgi-bin/cvekey.cgi?key
word=libxl.

[5] 2021. Memcached. http://memcached.org/.
[6] 2021. MySQL. https://www.mysql.com/.
[7] 2021. Netperf Manual. http://www.cs.kent.edu/~farrell/dist/ref/Netp

erf.html.
[8] 2021. NoSQL Redis and Memcache traffic generation and benchmark-

ing tool. https://github.com/RedisLabs/memtier_benchmark/.
[9] 2021. Nuttcp Welcome Page. https://www.nuttcp.net/Welcome%20Pa

ge.html.

[10] 2021. perfdhcp – DHCP benchmarking tool. http://manpages.ubuntu.
com/manpages/xenial/man8/perfdhcp.8.html.

[11] 2021. Redis. https://redis.io/.
[12] 2021. Ropper. https://github.com/sashs/Ropper.
[13] 2021. SAVIOR (Secure Applications in Virtual Instantiations of Roles).

https://github.com/NextCenturyCorporation/VirtUE.
[14] 2021. SysBench Manual. https://man7.org/linux/man-pages/man1/d

d.1.html.
[15] 2021. SYSSTAT Utilities. http://sebastien.godard.pagesperso-

orange.fr/.
[16] 2021. The NetBSD Project. https://netbsd.org.
[17] 2021. VirtUE (Virtuous User Environment). https://www.iarpa.gov/in

dex.php/research-programs/virtue.
[18] 2021. Xen application CVE search. https://cve.mitre.org/cgi-

bin/cvekey.cgi?keyword=xen+application.
[19] 2021. Xen application CVE search. https://cve.mitre.org/cgi-

bin/cvekey.cgi?keyword=linux+crafted+application.
[20] 2021. Xen application CVE search. https://cve.mitre.org/cgi-

bin/cvekey.cgi?keyword=linux+shell.
[21] 2021. Xen block header. https://github.com/xen-project/xen/blob/m

aster/xen/include/public/io/blkif.h.
[22] 2021. xen-utils-4.9. https://packages.ubuntu.com/bionic/xen-utils-4.9.
[23] IEEE Std 802.11 a. 1999. Wireless LAN medium access control (MAC)

and physical layer (PHY) specification: high-speed physical layer in
the 5GHz band. (1999).

[24] Air Force Research Laboratory AFRL/RIEB. 2021. SecureView. https:
//www.ainfosec.com/technologies/secureview/.

[25] AMD, Inc. 2021. AMD I/O Virtualization Technology (IOMMU) Speci-
fication. http://www.amd.com/system/files/TechDocs/48882_IOM
MU.pdf.

[26] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris,
Alex Ho, Rolf Neugebauer, Ian Pratt, and Andrew Warfield. 2003. Xen
and the Art of Virtualization. In Proceedings of the 19th ACM Sympo-
sium on Operating Systems Principles (Bolton Landing, NY, USA) (SOSP
’03). 164–177. https://doi.org/10.1145/945445.945462

[27] Mark Beaumont, Jim McCarthy, and Toby Murray. 2016. The Cross
Domain Desktop Compositor: Using Hardware-Based Video Composit-
ing for a Multi-Level Secure User Interface. In Proceedings of the 32nd
Annual Conference on Computer Security Applications (Los Angeles,
California, USA) (ACSAC ’16). 533–545. https://doi.org/10.1145/2991
079.2991087

[28] Alfred Bratterud, Alf-Andre Walla, Hårek Haugerud, Paal E Engelstad,
and Kyrre Begnum. 2015. IncludeOS: A minimal, resource efficient
unikernel for cloud services. In Proceedings of the 7th IEEE International
Conference on Cloud Computing Technology and Science (CloudCom
’15). 250–257. https://doi.org/10.1109/CloudCom.2015.89

[29] Edouard Bugnion, Jason Nieh, and Dan Tsafrir. 2017. Hardware and
software support for virtualization. Synthesis Lectures on Computer
Architecture 12, 1 (2017), 1–206.

[30] Shakeel Butt, H. Andrés Lagar-Cavilla, Abhinav Srivastava, and Vinod
Ganapathy. 2012. Self-Service Cloud Computing. In Proceedings of
the 2012 ACM Conference on Computer and Communications Security
(Raleigh, North Carolina, USA) (CCS ’12). Association for Computing
Machinery, New York, NY, USA, 253–264. https://doi.org/10.1145/23
82196.2382226

[31] Patrick Colp, Mihir Nanavati, Jun Zhu, William Aiello, George Coker,
Tim Deegan, Peter Loscocco, and AndrewWarfield. 2011. Breaking Up
is Hard to Do: Security and Functionality in a Commodity Hypervisor.
In Proceedings of the 23rd ACM Symposium on Operating Systems Prin-
ciples (SOSP ’11). 189–202. https://doi.org/10.1145/2043556.2043575

[32] Raytheon Company. 2021. Raytheon Trusted Thin Client. https:
//www.raytheon.com/sites/default/files/capabilities/rtnwcm/group
s/gallery/documents/digitalasset/rtn_216411.pdf.

Kite:
https://github.com/ssrg-vt/kite
https://www.docker.com/docker-news-and-press/docker-acquires-unikernel-systems-extend-breadth-docker-platform
https://www.docker.com/docker-news-and-press/docker-acquires-unikernel-systems-extend-breadth-docker-platform
https://www.docker.com/docker-news-and-press/docker-acquires-unikernel-systems-extend-breadth-docker-platform
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-2072
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-2072
https://man7.org/linux/man-pages/man1/dd.1.html
https://man7.org/linux/man-pages/man1/dd.1.html
https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=libxl
https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=libxl
http://memcached.org/
https://www.mysql.com/
http://www.cs.kent.edu/~farrell/dist/ref/Netperf.html
http://www.cs.kent.edu/~farrell/dist/ref/Netperf.html
https://github.com/RedisLabs/memtier_benchmark/
https://www.nuttcp.net/Welcome%20Page.html
https://www.nuttcp.net/Welcome%20Page.html
http://manpages.ubuntu.com/manpages/xenial/man8/perfdhcp.8.html
http://manpages.ubuntu.com/manpages/xenial/man8/perfdhcp.8.html
https://redis.io/
https://github.com/sashs/Ropper
https://github.com/NextCenturyCorporation/VirtUE
https://man7.org/linux/man-pages/man1/dd.1.html
https://man7.org/linux/man-pages/man1/dd.1.html
http://sebastien.godard.pagesperso-orange.fr/
http://sebastien.godard.pagesperso-orange.fr/
https://netbsd.org
https://www.iarpa.gov/index.php/research-programs/virtue
https://www.iarpa.gov/index.php/research-programs/virtue
https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=xen+application
https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=xen+application
https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=linux+crafted+application
https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=linux+crafted+application
https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=linux+shell
https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=linux+shell
https://github.com/xen-project/xen/blob/master/xen/include/public/io/blkif.h
https://github.com/xen-project/xen/blob/master/xen/include/public/io/blkif.h
https://packages.ubuntu.com/bionic/xen-utils-4.9
https://www.ainfosec.com/technologies/secureview/
https://www.ainfosec.com/technologies/secureview/
http://www.amd.com/system/files/TechDocs/48882_IOMMU.pdf
http://www.amd.com/system/files/TechDocs/48882_IOMMU.pdf
https://doi.org/10.1145/945445.945462
https://doi.org/10.1145/2991079.2991087
https://doi.org/10.1145/2991079.2991087
https://doi.org/10.1109/CloudCom.2015.89
https://doi.org/10.1145/2382196.2382226
https://doi.org/10.1145/2382196.2382226
https://doi.org/10.1145/2043556.2043575
https://www.raytheon.com/sites/default/files/capabilities/rtnwcm/groups/gallery/documents/digitalasset/rtn_216411.pdf
https://www.raytheon.com/sites/default/files/capabilities/rtnwcm/groups/gallery/documents/digitalasset/rtn_216411.pdf
https://www.raytheon.com/sites/default/files/capabilities/rtnwcm/groups/gallery/documents/digitalasset/rtn_216411.pdf

Kite: Lightweight Critical Service Domains EuroSys ’22, April 5–8, 2022, RENNES, France

[33] Intel Corp. 2018. Intel Clear Containers. https://clearlinux.org/docum
entation/clear-containers.

[34] Kevin Elphinstone, Amirreza Zarrabi, Kent Mcleod, and Gernot Heiser.
2017. A Performance Evaluation of Rump Kernels As a Multi-server OS
Building Block on seL4. In Proceedings of the 8th Asia-Pacific Workshop
on Systems (Mumbai, India) (APSys ’17). Article 11, 8 pages. https:
//doi.org/10.1145/3124680.3124727

[35] N. Feske and C. Helmuth. 2005. A Nitpicker’s guide to a minimal-
complexity secure GUI. In 21st Annual Computer Security Applications
Conference (ACSAC ’05). 85–94. https://doi.org/10.1109/CSAC.2005.7

[36] Andreas Follner, Alexandre Bartel, and Eric Bodden. 2016. Analyzing
the Gadgets. In Proceedings of the 8th International Symposium on
Engineering Secure Software and Systems - Volume 9639 (London, UK)
(ESSoS 2016). Springer-Verlag, Berlin, Heidelberg, 155–172. https:
//doi.org/10.1007/978-3-319-30806-7_10

[37] Bryan Ford, Godmar Back, Greg Benson, Jay Lepreau, Albert Lin,
and Olin Shivers. 1997. The Flux OSKit: A Substrate for Kernel
and Language Research. In Proceedings of the 16th ACM Symposium
on Operating Systems Principles (Saint Malo, France) (SOSP ’97). As-
sociation for Computing Machinery, New York, NY, USA, 38–51.
https://doi.org/10.1145/268998.266642

[38] Cloud Native Computing Foundation. 2021. Production-Grade Con-
tainer Orchestration. https://kubernetes.io/.

[39] Seyedhamed Ghavamnia, Tapti Palit, Azzedine Benameur, and M. Poly-
chronakis. 2020. Confine: Automated System Call Policy Generation
for Container Attack Surface Reduction. In RAID 2020.

[40] Seyedhamed Ghavamnia, Tapti Palit, Shachee Mishra, and Michalis
Polychronakis. 2020. Temporal System Call Specialization for Attack
Surface Reduction. In 29th USENIX Security Symposium (USENIX Secu-
rity 20). USENIX Association, 1749–1766. https://www.usenix.org/c
onference/usenixsecurity20/presentation/ghavamnia

[41] Intel Corporation. 2021. Intel’s Virtualization for Directed I/O. http:
//www.intel.com/content/dam/www/public/us/en/documents/produ
ct-specifications/vt-directed-io-spec.pdf.

[42] Abdullah Issa, TobyMurray, and Gidon Ernst. 2018. In Search of Perfect
Users: Towards Understanding the Usability of Converged Multi-Level
Secure User Interfaces. In Proceedings of the 30th Australian Conference
on Computer-Human Interaction (Melbourne, Australia) (OzCHI ’18).
572–576. https://doi.org/10.1145/3292147.3292231

[43] Antti Kantee and Justin Cormack. 2014. Rump Kernels No OS? No
Problem! USENIX; login: magazine (2014).

[44] Samuel T. King, GeorgeW. Dunlap, and PeterM. Chen. 2003. Operating
system support for virtual machines. In ATEC ’03: Proceedings of the
2003 USENIX Annual Technical Conference. 71–84.

[45] Avi Kivity. 2007. KVM: the Linux virtual machine monitor. In 2007
Ottawa Linux Symposium. 225–230.

[46] Avi Kivity, Dor Laor, Glauber Costa, Pekka Enberg, Nadav Har’El,
Don Marti, and Vlad Zolotarov. 2014. OSv: Optimizing the Operating
System for Virtual Machines. In Proceedings of the 2014 USENIX Annual
Technical Conference (Philadelphia, PA) (ATC ’14). USENIX Association,
USA, 61–72.

[47] Hsuan-Chi Kuo, Dan Williams, Ricardo Koller, and Sibin Mohan. 2020.
A Linux in Unikernel Clothing. In Proceedings of the 15h European
Conference on Computer Systems (Heraklion, Greece) (EuroSys ’20).
Article 11, 15 pages. https://doi.org/10.1145/3342195.3387526

[48] Stefan Lankes, Simon Pickartz, and Jens Breitbart. 2016. Hermit-
Core: A Unikernel for Extreme Scale Computing. In Proceedings of
the 6th International Workshop on Runtime and Operating Systems
for Supercomputers (Kyoto, Japan) (ROSS ’16). Association for Com-
puting Machinery, New York, NY, USA, Article 4, 8 pages. https:
//doi.org/10.1145/2931088.2931093

[49] David Law. 2019. IEEE Standard for Ethernet-Amendment 1: Physical
Layer Specification and Management Parameters for 2.5 Gb/s and 5
Gb/s Operation over Backplane. IEEE Std 802.3 cb-2018 (Amendment to

IEEE Std 802.3-2018) (2019). https://doi.org/10.1109/IEEESTD.2019.860
4150

[50] Hongliang Liang, Mingyu Li, Yixiu Chen, Lin Jiang, Zhuosi Xie, and
Tianqi Yang. 2020. Establishing Trusted I/O Paths for SGX Client
Systems With Aurora. IEEE Transactions on Information Forensics and
Security 15 (2020), 1589–1600. https://doi.org/10.1109/TIFS.2019.2945
621

[51] Anil Madhavapeddy, Richard Mortier, Charalampos Rotsos, David
Scott, Balraj Singh, Thomas Gazagnaire, Steven Smith, Steven Hand,
and Jon Crowcroft. 2013. Unikernels: Library Operating Systems for
the Cloud. In Proceedings of the 18th International Conference on Ar-
chitectural Support for Programming Languages and Operating Systems
(Houston, Texas, USA) (ASPLOS ’13). Association for Computing Ma-
chinery, New York, NY, USA, 461–472. https://doi.org/10.1145/2451
116.2451167

[52] Filipe Manco, Costin Lupu, Florian Schmidt, Jose Mendes, Simon Kuen-
zer, Sumit Sati, Kenichi Yasukata, Costin Raiciu, and Felipe Huici. 2017.
My VM is Lighter (and Safer) Than Your Container. In Proceedings of
the 26th Symposium on Operating Systems Principles (Shanghai, China)
(SOSP ’17). 218–233. https://doi.org/10.1145/3132747.3132763

[53] Joao Martins, Mohamed Ahmed, Costin Raiciu, Vladimir Olteanu,
Michio Honda, Roberto Bifulco, and Felipe Huici. 2014. ClickOS and
the Art of Network Function Virtualization. In Proceedings of the 11th
USENIX Conference on Networked Systems Design and Implementation
(Seattle, WA) (NSDI ’14). 459–473. http://dl.acm.org/citation.cfm?id=
2616448.2616491

[54] Dirk Merkel. 2014. Docker: lightweight linux containers for consistent
development and deployment. Linux Journal 2014, 239 (2014), 2.

[55] Derek Gordon Murray, Grzegorz Milos, and Steven Hand. 2008. Im-
proving Xen Security through Disaggregation. In Proceedings of the 4th
ACM SIGPLAN/SIGOPS International Conference on Virtual Execution
Environments (Seattle, WA, USA) (VEE ’08). Association for Computing
Machinery, New York, NY, USA, 151–160. https://doi.org/10.1145/13
46256.1346278

[56] Ruslan Nikolaev and Godmar Back. 2013. VirtuOS: An Operating
System with Kernel Virtualization. In Proceedings of the 24th ACM
Symposium on Operating Systems Principles (SOSP’13). 116–132. https:
//doi.org/10.1145/2517349.2522719

[57] Ruslan Nikolaev, Hassan Nadeem, Cathlyn Stone, and Binoy Ravindran.
2022. Adelie: Continuous Address Space Layout Re-Randomization
for Linux Drivers. In Proceedings of the 27th ACM International Con-
ference on Architectural Support for Programming Languages and Op-
erating Systems (Lausanne, Switzerland) (ASPLOS ’22). Association
for Computing Machinery, New York, NY, USA, 483–498. https:
//doi.org/10.1145/3503222.3507779

[58] Ruslan Nikolaev, Mincheol Sung, and Binoy Ravindran. 2020. Libret-
tOS: A Dynamically Adaptable Multiserver-Library OS. In Proceedings
of the 16th ACM SIGPLAN/SIGOPS International Conference on Virtual
Execution Environments (Lausanne, Switzerland) (VEE ’20). 114–128.
https://doi.org/10.1145/3381052.3381316

[59] Pierre Olivier, A. K. M. Fazla Mehrab, Stefan Lankes, Mohamed Lamine
Karaoui, Robert Lyerly, and Binoy Ravindran. 2019. HEXO: Offloading
HPC Compute-Intensive Workloads on Low-Cost, Low-Power Embed-
ded Systems. In Proceedings of the 28th International Symposium on
High-Performance Parallel and Distributed Computing (Phoenix, AZ,
USA) (HPDC ’19). Association for Computing Machinery, New York,
NY, USA, 85–96. https://doi.org/10.1145/3307681.3325408

[60] OpenDHCP Server. 2021. http://dhcpserver.sourceforge.net/.
[61] Donald E. Porter, Silas Boyd-Wickizer, Jon Howell, Reuben Olinsky,

and Galen C. Hunt. 2011. Rethinking the Library OS from the Top
Down. SIGARCH Comput. Archit. News 39, 1 (March 2011), 291–304.
https://doi.org/10.1145/1961295.1950399

https://clearlinux.org/documentation/clear-containers
https://clearlinux.org/documentation/clear-containers
https://doi.org/10.1145/3124680.3124727
https://doi.org/10.1145/3124680.3124727
https://doi.org/10.1109/CSAC.2005.7
https://doi.org/10.1007/978-3-319-30806-7_10
https://doi.org/10.1007/978-3-319-30806-7_10
https://doi.org/10.1145/268998.266642
https://kubernetes.io/
https://www.usenix.org/conference/usenixsecurity20/presentation/ghavamnia
https://www.usenix.org/conference/usenixsecurity20/presentation/ghavamnia
http://www.intel.com/content/dam/www/public/us/en/documents/product-specifications/vt-directed-io-spec.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/product-specifications/vt-directed-io-spec.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/product-specifications/vt-directed-io-spec.pdf
https://doi.org/10.1145/3292147.3292231
https://doi.org/10.1145/3342195.3387526
https://doi.org/10.1145/2931088.2931093
https://doi.org/10.1145/2931088.2931093
https://doi.org/10.1109/IEEESTD.2019.8604150
https://doi.org/10.1109/IEEESTD.2019.8604150
https://doi.org/10.1109/TIFS.2019.2945621
https://doi.org/10.1109/TIFS.2019.2945621
https://doi.org/10.1145/2451116.2451167
https://doi.org/10.1145/2451116.2451167
https://doi.org/10.1145/3132747.3132763
http://dl.acm.org/citation.cfm?id=2616448.2616491
http://dl.acm.org/citation.cfm?id=2616448.2616491
https://doi.org/10.1145/1346256.1346278
https://doi.org/10.1145/1346256.1346278
https://doi.org/10.1145/2517349.2522719
https://doi.org/10.1145/2517349.2522719
https://doi.org/10.1145/3503222.3507779
https://doi.org/10.1145/3503222.3507779
https://doi.org/10.1145/3381052.3381316
https://doi.org/10.1145/3307681.3325408
http://dhcpserver.sourceforge.net/
https://doi.org/10.1145/1961295.1950399

EuroSys ’22, April 5–8, 2022, RENNES, France A K M Fazla Mehrab, Ruslan Nikolaev, and Binoy Ravindran

[62] Christian Priebe, Divya Muthukumaran, Joshua Lind, Huanzhou Zhu,
Shujie Cui, Vasily A. Sartakov, and Peter R. Pietzuch. 2019. SGX-
LKL: Securing the Host OS Interface for Trusted Execution. ArXiv
abs/1908.11143 (2019).

[63] Ali Raza, Parul Sohal, James Cadden, Jonathan Appavoo, Ulrich Drep-
per, Richard Jones, Orran Krieger, Renato Mancuso, and Larry Wood-
man. 2019. Unikernels: The Next Stage of Linux’s Dominance. In Pro-
ceedings of the 17th Workshop on Hot Topics in Operating Systems (Berti-
noro, Italy) (HotOS’19). 7–13. https://doi.org/10.1145/3317550.3321445

[64] Ryan Roemer, Erik Buchanan, Hovav Shacham, and Stefan Savage.
2012. Return-Oriented Programming: Systems, Languages, and Ap-
plications. ACM Trans. Inf. Syst. Secur. 15, 1, Article 2 (March 2012),
34 pages. https://doi.org/10.1145/2133375.2133377

[65] Joanna Rutkowska and Rafal Wojtczuk. 2010. Qubes OS architecture.
Invisible Things Lab Tech Rep.

[66] Ioannis Sfyrakis and Thomas Gross. 2018. UniGuard: Protecting
Unikernels Using Intel SGX. In 2018 IEEE International Conference
on Cloud Engineering (IC2E). 99–105. https://doi.org/10.1109/IC2E.201
8.00032

[67] Hovav Shacham. 2007. The Geometry of Innocent Flesh on the Bone:
Return-into-libc Without Function Calls (on the x86). In Proceedings of
the 14th ACM Conference on Computer and Communications Security
(Alexandria, Virginia, USA) (CCS ’07). 552–561. https://doi.org/10.114
5/1315245.1315313

[68] Lei Shi, Yuming Wu, Yubin Xia, Nathan Dautenhahn, Haibo Chen,
Binyu Zang, and Jinming Li. 2017. Deconstructing Xen. In NDSS ’17.
https://doi.org/10.14722/ndss.2017.23455

[69] Shweta Shinde, Dat Le, Shruti Tople, and Prateek Saxena. 2017.
Panoply: Low-TCB Linux Applications with SGX Enclaves. In NDSS
’17. https://doi.org/10.14722/ndss.2017.23500

[70] SPDK Contributors. 2021. Storage Performance Development Kit
(SPDK). http://spdk.io/.

[71] V. Tarasov, E. Zadok, and S. Shepler. 2016. Filebench: A Flexible Frame-
work for File System Benchmarking. login Usenix Mag. 41 (2016).

[72] The Apache Software Foundation. 2021. ab - Apache HTTP server
benchmarking tool. http://httpd.apache.org/docs/2.2/en/programs/
ab.html.

[73] The Linux Foundation. 2021. Data Plane Development Kit (DPDK).
http://dpdk.org/.

[74] Hongliang Tian, Yong Zhang, Chunxiao Xing, and Shoumeng Yan.
2017. SGXKernel: A Library Operating System Optimized for Intel
SGX. In Proceedings of the Computing Frontiers Conference (Siena, Italy)
(CF’17). Association for Computing Machinery, New York, NY, USA,
35–44. https://doi.org/10.1145/3075564.3075572

[75] Chia-Che Tsai, Kumar Saurabh Arora, Nehal Bandi, Bhushan Jain,
William Jannen, Jitin John, Harry A. Kalodner, Vrushali Kulkarni,
Daniela Oliveira, and Donald E. Porter. 2014. Cooperation and Security
Isolation of Library OSes for Multi-process Applications. In Proceedings
of the 9th European Conference on Computer Systems (Amsterdam, The
Netherlands) (EuroSys ’14). Article 9, 14 pages. https://doi.org/10.114
5/2592798.2592812

[76] Chia-Che Tsai, Donald E. Porter, and Mona Vij. 2017. Graphene-
SGX: A Practical Library OS for Unmodified Applications on SGX. In
Proceedings of the 2017 USENIX Annual Technical Conference (Santa
Clara, CA, USA) (ATC ’17). 645–658. http://dl.acm.org/citation.cfm?i
d=3154690.3154752

[77] Samuel Weiser and Mario Werner. 2017. SGXIO: Generic Trusted
I/O Path for Intel SGX (CODASPY ’17). Association for Computing
Machinery, New York, NY, USA, 261–268. https://doi.org/10.1145/30
29806.3029822

[78] Xen Project. 2014. Xenstored. https://wiki.xen.org/wiki/Xenstored.
[79] Xen Project. 2015. XenBus. https://wiki.xen.org/wiki/XenBus.
[80] Xen Project. 2015. XenStore. https://wiki.xen.org/wiki/XenStore.
[81] Xen Project. 2018. Grant Table. https://wiki.xen.org/wiki/Grant_Table.

[82] Xen Project. 2019. PCI Passthrough. https://wiki.xenproject.org/wiki
/Xen_PCI_Passthrough.

[83] Yiming Zhang, Jon Crowcroft, Dongsheng Li, Chengfen Zhang, Huiba
Li, Yaozheng Wang, Kai Yu, Yongqiang Xiong, and Guihai Chen. 2018.
KylinX: A Dynamic Library Operating System for Simplified and Effi-
cient Cloud Virtualization. In Proceedings of the 2018 USENIX Annual
Technical Conference (ATC ’18).

https://doi.org/10.1145/3317550.3321445
https://doi.org/10.1145/2133375.2133377
https://doi.org/10.1109/IC2E.2018.00032
https://doi.org/10.1109/IC2E.2018.00032
https://doi.org/10.1145/1315245.1315313
https://doi.org/10.1145/1315245.1315313
https://doi.org/10.14722/ndss.2017.23455
https://doi.org/10.14722/ndss.2017.23500
http://spdk.io/
http://httpd.apache.org/docs/2.2/en/programs/ab.html
http://httpd.apache.org/docs/2.2/en/programs/ab.html
http://dpdk.org/
https://doi.org/10.1145/3075564.3075572
https://doi.org/10.1145/2592798.2592812
https://doi.org/10.1145/2592798.2592812
http://dl.acm.org/citation.cfm?id=3154690.3154752
http://dl.acm.org/citation.cfm?id=3154690.3154752
https://doi.org/10.1145/3029806.3029822
https://doi.org/10.1145/3029806.3029822
https://wiki.xen.org/wiki/Xenstored
https://wiki.xen.org/wiki/XenBus
https://wiki.xen.org/wiki/XenStore
https://wiki.xen.org/wiki/Grant_Table
https://wiki.xenproject.org/wiki/Xen_PCI_Passthrough
https://wiki.xenproject.org/wiki/Xen_PCI_Passthrough

Kite: Lightweight Critical Service Domains EuroSys ’22, April 5–8, 2022, RENNES, France

A Artifact Appendix
A.1 Abstract
In this Appendix, we discuss how to deploy Linux-based
(Ubuntu) and Kite network and storage domains on a physi-
cal machine. We also discuss how to reproduce our experi-
mental results presented in Section 5.

A.2 Description & Requirements
Section 5 describes the experimental setup, including the
hardware, Xen hypervisor version, and operating systems
used for the different domains. Here we describe other hard-
ware and software dependencies, used benchmarks, and how
to set up the artifact evaluation environment.

A.2.1 How to Access. The artifact is available at https:
//doi.org/10.5281/zenodo.6348173.

The artifact instructions are provided in README. The ar-
tifact evaluation files are located at the kite/Artifact directory,
benchmarking scripts at kite/Artifact/benchmarking_scripts,
and configuration files at kite/Artifact/config. The config direc-
tory contains configuration scripts for building the Ubuntu
driver domain and guest domain. It also contains configu-
ration scripts for booting up Ubuntu and Kite domains for
network and storage domain evaluation in network and stor-
age subdirectories, respectively.

Kite’s latest source code is also available at https://github
.com/ssrg-vt/kite.

A.2.2 Hardware Dependencies. Driver domains require
physical 10Gbps NIC and NVMe devices via PCI passthrough
(similar to Section 5). Moreover, virtualization support to run
Xen is required. Physical machine deployment is required
since deployment in a virtual machine would involve nested
virtualization.

A.2.3 Software Dependencies. Kite should work with
any Linux-based OS. However, we recommend Ubuntu 18.04
LTS for the Dom0 and DomU OSs.

A.2.4 Benchmarks. Our evaluation requires installation
of Nuttcp, Netperf, Redis, Apache, Memcached, MySQL on
the server machine inside DomU. The client (load generator)
machine should have corresponding client benchmark appli-
cations for Nuttcp (v8.2.2), Netperf (v2.6.0-2.1), Redis (v4.0.9),
Apache (v2.4.29), sysbench (v1.1.0) (for MySQL (v5.7.29)) for
network domain evaluation. For storage domain evaluation,
the client machine needs MySQL server (v5.7.29), sysbench
benchmark (v1.1.0), and Filebench (1.5-alpha3) benchmarks.
The benchmark scripts and instructions can be found in the
artifact package.

A.3 Setup
A.3.1 Xen. First, install Ubuntu 18.04 LTS on a 64-bit x86
machine. Please select “Use LVM with the new Ubuntu in-
stallation.”

Then, install the Xen 4.9.1 hypervisor and reboot the ma-
chine; GRUB should automatically boot Xen and launch
Dom0:
apt install xen-hypervisor-amd64

A.3.2 PCI Passthrough. Find BDF numbers of the avail-
able PCI devices (NIC, NVMe) using the lspci command.
Then, add the corresponding device to the PCI assignable
list, where xx:xx.x represents the BDF number:
modprobe xen-pciback
xl pci-assignable-add xx:xx.x

A.3.3 Kite. Please set up Kite’s build environment:
apt install build-essential git
apt install libz-dev libxen-dev

Next, get Kite’s source and build it:
git clone https://github.com/ssrg-vt/kite
cd kite
git submodule update --init --recursive --remote
CC=‘echo $PWD‘/gcc8fix.sh ./build-rr.sh -j16 hw
cd bridge
./ifconf.sh && ./run.sh
cd ../vbdconf
./run.sh

A.3.4 Guest Domain (DomU) for Server Applications.
First, create a logical disk drive to install a guest OS:
lvcreate -L 40G -n ubuntu_guest /dev/<VG>

Please download Ubuntu 18.04 LTS from https://releases.
ubuntu.com/18.04/ubuntu-18.04.6-desktop-amd64.iso. Then
launch a guest VM using the provided configuration file from
the artifact package:
xl create -c config/ubuntu_guest_setup.cfg

Install a VNC client (such as vncviewer) for GUI access
(using localhost) and finish Ubuntu guest installation.

A.3.5 Linux Driver Domain. First, create a logical disk
drive to install the Ubuntu driver domain:
lvcreate -L 40G -n ubuntu_dd /dev/<VG>

Then copy the contents from /dev/<VG>/ubuntu_guest
to save the OS installation time for the Ubuntu driver domain:
dd if=/dev/<VG>/ubuntu_guest
of=/dev/<VG>/ubuntu_dd bs=1G count=40

Launch the Ubuntu driver domain using the provided
configuration file ubuntu_dd_setup.cfg:
xl create -c config/ubuntu_dd_setup.cfg

Next, install Xen tools. (It can be easier to simply install the
Xen hypervisor again.) Then, replace /etc/default/grub.d
/xen.cfg with the provided config/xen.cfg; it will pre-
vent the driver domain itself from booting the Xen hypervi-
sor. Finally, update GRUB by running ‘update-grub’.

https://doi.org/10.5281/zenodo.6348173
https://doi.org/10.5281/zenodo.6348173
Kite:
https://github.com/ssrg-vt/kite
Kite:
https://github.com/ssrg-vt/kite
Ubuntu:

EuroSys ’22, April 5–8, 2022, RENNES, France A K M Fazla Mehrab, Ruslan Nikolaev, and Binoy Ravindran

A.4 Evaluation Workflow
A.4.1 Major Claims.

• (C1): Kite achieves 10x faster boot time than anUbuntu-
based driver domain. See experiment E1 in Section 5.2,
for which results are reported in Figure 4c.

• (C2): Kite’s network domain performs similarly to an
Ubuntu-based network domain. See experiment E2.

• (C3): Kite’s storage domain performs similarly to an
Ubuntu-based storage domain. See experiment E3.

• (C4):We skip Figure 5 (ROP gadgets) due to the need of
extra tools; this is not a fundamental paper result, it is
just given for information purposes only. The reduced
attack surface also follows from reduced image sizes.

A.4.2 Experiment E1 [Boot Time]. Wemeasure the boot
time for both Ubuntu and Kite driver domains. We use net-
work domains but results are similar for storage domains.

First, update config/network/ubunt_dd.cfg with the
BDF number of the network device:
pci=[‘xx:xx.x,permissive=1’]

Then, launch an Ubuntu-based network domain and mea-
sure the boot time manually until you see the login screen:
xl create -c config/network/ubuntu_dd.cfg

Next, terminate the Ubuntu domain. Then, to run Kite’s
network domain, first add the network device’s BDF number
into the config/network/kite_dd.cfg file. Next, launch
the Kite network domain using the following command:
xl create -c config/network/kite_dd.cfg
Measure the boot time manually until you see a notifica-

tion that says ‘Network domain is ready.’ To destroy
Kite’s domains, run the following:
xl destroy <Kite domain id>

To locate domain IDs, run the following command in
Dom0, where Kite’s network domain is named ‘netbackend’:
xl list

Kite should exhibit at least 10x faster boot time.

A.4.3 Experiment E2 [Network Performance]. To eva-
luate an Ubuntu-based network domain, first launch it:
xl create -c config/network/ubuntu_dd.cfg

In the driver domain, create a network bridge, named
xenbr0, with the network interface corresponding to the
network device (assigned via PCI passthrough). Then, launch
the Xen driver domain daemon:
xl devd

Next, launch the Ubuntu DomU guest:
xl create -c config/network/guest_on_ubuntu.cfg

We run server applications such as Apache, Redis, Mem-
cached, and MySQL in this guest machine. The client ma-
chine should be connected to the same network. We use the

benchmark scripts from the artifact package to measure net-
work throughput, CPU utilization, and latency. (The details
on the clientmachine setup are in README_benchmark.pdf.)
To evaluate Kite’s network domain, launch Kite as ex-

plained in E1. Next, launch the Ubuntu DomU:
xl create -c config/network/guest_on_kite.cfg

You can run the same network benchmark experiments
from the client machine to evaluate Kite’s network domain.
We expect Kite to yield similar performance to that of Ubuntu.

A.4.4 Experiment E3 [Storage Performance]. To eval-
uate the Ubuntu storage domain, first launch it:
xl create -c config/storage/ubuntu_dd.cfg

Attach the storage device to the Ubuntu storage domain:
xl pci-attach <Driver Domain ID> ‘xx:x.x’

Launch the Xen driver domain daemon:
xl devd

Next, launch the Ubuntu DomU guest:
xl create -c config/storage/guest_on_ubuntu.cfg

Mount the PV storage device to an empty directory:
mkdir disk
mount /dev/xvdb disk

We run the MySQL server with sysbench and Filebench
benchmark for file server, web server, and the MongoDB
server to evaluate the storage domains. You can use the
benchmark scripts from the artifact package (instructions are
in README_benchmark.pdf) to measure storage through-
put, CPU utilization, and latency.

To evaluate Kite’s storage domain, first change the storage
device’s BDF number in the config/storage/kite_dd.cfg
file. Then, run the following command to build the storage
domain application and launch Kite’s storage domain:
xl create -c config/storage/kite_dd.cfg

Next, launch the Ubuntu DomU guest:
xl create -c config/storage/guest_on_kite.cfg

You can run the same benchmark experiments in the
Ubuntu guest VM to evaluate Kite’s storage domain. We
expect Kite to yield performance similar to that of Ubuntu.

A.5 Notes on Reusability
Our paper requires a physical machine with 10Gbps NIC and
NVMe (virtual machines, containers, etc. are impossible).

	Abstract
	1 Introduction
	2 Background
	2.1 Xen HVM
	2.2 Xen I/O Drivers
	2.3 Driver Domains
	2.4 Rump Kernels and Rumprun

	3 Design
	3.1 Challenges
	3.2 Netback Driver
	3.3 Blkback Driver

	4 Implementation
	4.1 Backend Invocation
	4.2 Netback Driver
	4.3 Network Application
	4.4 Blkback Driver

	5 Evaluation
	5.1 Security
	5.2 Image Size and Boot Time
	5.3 Network Domain
	5.4 Storage Domain
	5.5 Daemon Service VM

	6 Related Work
	7 Conclusions
	References
	A Artifact Appendix
	A.1 Abstract
	A.2 Description & Requirements
	A.3 Setup
	A.4 Evaluation Workflow
	A.5 Notes on Reusability

