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Abstract
The recent possibility of integrating multiple-OS-capable,
high-core-count, heterogeneous-ISA processors in the same
platform poses a question: given the tight integration be-
tween system components, can a shared memory program-
ming model be adopted, enhancing programmability? If this
can be done, an enormous amount of existing code writ-
ten for shared memory architectures would not have to be
rewritten to use a new programming paradigm (e.g., code
offloading) that is often very expensive and error prone. We
propose a new software architecture that is composed of an
operating system and a compiler framework to run ordinary
shared memory applications, written for homogeneous ma-
chines, on OS-capable heterogeneous-ISA machines. Appli-
cations run transparently amongst different ISA processors
while exploiting the most optimized instruction set for each
code block. We have implemented and tested our system,
called Popcorn, on a multi-core Intel Xeon machine with a
PCIe Intel Xeon Phi to demonstrate the viability of our ap-
proach. Application execution on Popcorn demonstrates to
be up to 52% faster than the most performant native execu-
tion on Linux, on either Xeon or Xeon Phi, while remov-
ing the burden of the programmer having to adopt a differ-
ent programming model than shared memory on a hetero-
geneous system. When compared to an offloading program-
ming model, Popcorn is shown to be up to 6.2 times faster.

1. Introduction
The landscape of heterogeneous computing is changing. The
main CPU on a platform is no longer exclusively paired
with special-purpose computational units (e.g., GPUs); in-
stead, general-purpose high-core count multicore processors
are starting to be adopted [13, 32]. These emerging high-
core count processors are general-purpose and are thus able
to run a fully-fledged operating system, i.e. they are “OS-
capable” [21]. As a result, the platform that can be assem-
bled out of them will be running different OSes, each poten-
tially utilizing a different instruction set architecture (ISA).
Each application runs on a single OS/ISA, unless written

within an exotic programming library (OpenCL, MYO, etc.)
or within a distributed memory programming model (e.g.,
MPI) to exploit the heterogeneity. We foresee that such
platforms will become increasingly popular. Hence, in or-
der to improve their programmability, we propose a soft-
ware architecture that enables applications written within
the shared memory programming model and compliant to
the POSIX interface to run transparently across the hetero-
geneous system. Furthermore, to enhance performance we
propose to exploit the workload diversity that exists between
and within applications by mapping each workload’s code
block onto the optimal processor island in a heterogeneous
system, when predicted to be efficient.

Emerging heterogeneous platforms are characterized by
tightly-coupled ISA-diverse processor islands. Every ISA is
distinguished by a different performance profile depending
on the workload. A processor island is defined as multi-
ple processor cores sharing a single ISA and a single mem-
ory coherency domain. However, multiple processors islands
may or may not support shared memory, and if they sup-
port shared memory the link between them may or may
not implement cache coherency. Therefore, two main as-
pects are required to run applications transparently and ef-
ficiently across a heterogeneous system: a mechanism to
provide shared memory amongst different processor islands
when not present, and another mechanism to exploit ISA het-
erogeneity by mapping different code blocks onto the most
suitable processor island at any time.

This paper targets a platform on which Intel Xeon proces-
sors and an Intel Xeon Phi board (Xeon-Xeon Phi hereafter)
are connected via PCIe. Xeon and Xeon Phi are two pro-
cessor islands with different architectures but overlapping-
ISAs. Each one can remotely access the main memory of the
other processor, but there are no memory coherency guaran-
tees.

We show that with our software infrastructure, shared
memory programs do not have to be rewritten to run on the
Xeon-Xeon Phi. Depending on the number of cores avail-
able, our system always makes the best mapping decision
of code to processor islands, delivering a performance im-



provement over the best native execution of up to 52% and
6.2 times faster execution than OpenCL and offload ver-
sions of the same benchmarks. Even though the current Pop-
corn prototype was built, deployed, and evaluated on two
overlapping-ISA processors, we believe that the same ideas
and similar results also apply to fully heterogeneous-ISA
platforms, such as platforms that integrate Tilera TileGx [32]
and x86, or ARM and x86. However, when the heterogene-
ity between architectures increases, more engineering will
be needed to run applications amongst multiple processor
islands. We will address the extra effort needed while de-
scribing the implementation.

1.1 Motivations
Programming paradigms other than the shared memory
model can be cumbersome, limit the programmer’s ex-
pressivity [30], and promote breaking of the one-OS-per-
platform model. We advocate that the shared memory pro-
gramming model should be used on heterogeneous OS-
capable systems, and that even if the platform is hetero-
geneous, the programmer should see a single system/OS.

Application offloading has been used within multiple OS-
capable processor islands. On the Xeon-Xeon Phi, OpenCL,
the MYO and LEO runtimes can be exploited [33] for this
purpose. The application is loaded on one processor island
and every time a block of code should be offloaded, that
block and the data on which it is working are transferred
to the other. The offloaded computation is compiled for the
island-specific ISA and integrated into the application by the
runtime and/or the compiler. The programmer has to manu-
ally partition the application and decide which code blocks
should and should not be offloaded. Offloading breaks the
shared memory paradigm and adds an additional layer of
complexity due to the difficulty of manually finding the best
code partition (which is usually application- and accelera-
tor model- dependent). Moreover, from an OS point of view,
processors that are not part of the main CPU island are seen
as external devices and not as processors themselves, break-
ing the execution-flow abstraction. When executing on a dif-
ferent processor, the offloaded code sees a different execu-
tion environment.

A distributed memory programming model or a parti-
tioned global address space (PGAS) programming model
can be also adopted on OS-capable heterogeneous-ISA plat-
forms. We assume that nowadays, a large code base writ-
ten using the shared memory programming model exists.
Rewriting such a large code base would require a serious
investment. Further, rewriting an application with a dis-
tributed memory programming paradigm is cumbersome
and error prone [34]. In fact, some applications have to
be almost totally rewritten in order to comply with a dif-
ferent programming paradigm. For example, comparing the
distributed memory (MPI) and shared memory (OpenMP)
versions of the NPB applications [1], we noticed that more
than 44% of the code needed to be rewritten (see Table 1).

Benchmark CG EP FT IS MG
Difference 98% 44% 98% 46% 97%
Total OMP LOC 1150 297 1106 1108 1481

Table 1. Code differences between the OpenMP and MPI
versions of NPB applications [1] (version 3.3).

Benchmark CG EP FT IS MG
OpenMP 21% 14% 4% 37% 6%
OpenCL 303% 164% 143% 177% 189%
Serial LOC 506 163 606 454 852

Table 2. Additional code required by the OpenCL and
OpenMP versions compared to the serial version of NPB ap-
plications (SNU NPB [29] version 1.0.3).

Different programming models require the code to be
modified from its serial version, which can demand up to
98% of the application’s code to be rewritten in the case of
MPI (Table 1) or up to 303% additional code in the case of
OpenCL (Table 2). Finally, hybrid approaches exist, but they
inherit the same problems of their constituent models.

1.2 Popcorn
Popcorn bridges the programmability gap in heterogeneous-
ISA platforms for the application developer, increasing pro-
ductivity by reducing the development and porting time. In
fact, Popcorn enables multi-threaded shared memory pro-
grams written for homogeneous-ISA multiprocessors to run
on heterogeneous-ISA platforms. This eliminates the neces-
sity of learning a different programming model and removes
the burden of code rewriting and/or code optimization. In
contrast to offloading, the developer does not have to par-
tition the code. Instead, Popcorn will prepare the code to
run on the available processor islands. Based on the code
block’s performance profile, Popcorn will pick the best is-
land on which to execute. In this way, the diversity and dif-
ferent degrees of parallelism in the same application can be
exploited. In contrast to distributed memory programming,
in which the programmer has to not only partition the mem-
ory but also instruct the runtime to transfer it, Popcorn pro-
vides distributed shared memory (DSM) transparently to the
application. All these features come with no additional effort
from the application developer.

1.3 Contributions
We contribute a design, a prototype, and an initial evalu-
ation of an architecture, made up of an operating system
and a compiler framework, that enables POSIX shared mem-
ory applications to run in a heterogeneous-ISA environment.
Our prototype runs on the Xeon-Xeon Phi platform. In or-
der to gain more traction, the software architecture is based
on the Linux environment, hence many existing applica-
tions written for Linux can be tested on Popcorn without



any rewriting. Our operating system is the first Linux-based
replicated-kernel OS [3] running on a heterogeneous-ISA
platform. We also introduce an extended memory subsystem
for Linux that allows consistent task-based address space
replication and DSM amongst kernels. Our compiler frame-
work transforms shared memory programs so that they can
migrate and execute on different processor islands. The run-
time selects for each thread, at specific points, on which pro-
cessor island to execute. If execution is deemed more ef-
ficient on another processor island, the runtime triggers an
inter-kernel migration. To the best of our knowledge, we are
the first in contributing such an architecture and deploying
it.

In the next section, we introduce Popcorn’s software ar-
chitecture on generic hardware, and in Section 3, we de-
scribe our prototype implementation. Section 4 presents the
experiments and Section 5 describes the results. We present
related work in Section 6 and conclude in Section 7.

2. Popcorn Architecture
Popcorn aims to create the illusion of a single execution
environment amongst tightly-coupled diverse processor is-
lands, allowing applications to exploit the most suitable pro-
cessor island for each code block at runtime.

Design Principles Popcorn has its foundations in some of
the design principles typical of just-in-time (JIT) high level
languages, SMP OSes, and cluster OSes:

• Transparency. The user should not see processor island
boundaries, but a single system on which applications
can run everywhere and use all the available resources
on the platform. Developers should not have to slice up
their programs in order to make them faster; instead, they
should be able to focus on the application’s logic while
assuming an SMP system.

• Load Sharing. The produced application executable should
be able to run on any processor island by potentially con-
taining the code for each architecture. The OS should
be able to handle the binary format and the ISA switch.
Tasks should migrate intra- and inter- processor islands
without being limited to a processor island.

In addition, Popcorn incorporates one more principle in
order to take advantage of heterogeneity:

• Exploiting Asymmetries. Although sometimes it may be
desirable to mask the asymmetries, a new programming
interface should expose the architectural distinctions and
allow for their exploitation. Architectural asymmetries,
which may be due to the CPU microarchitecture or the
hardware resources local to each processor island on
which the task can execute, should be exploited.

These design principles lead to the Popcorn architecture
in Figure 1 and Figure 2.
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Figure 1. Heterogeneous-ISA generic hardware model, and
Popcorn operating system software layout.
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Figure 2. Popcorn kernel- and user-level software layout.

2.1 Hardware Model
Our software architecture is designed to work with a generic
hardware platform, depicted in Figure 1, which attempts to
abstract current and emerging hardware. Popcorn assumes
a hardware model where processors of the same ISA are
grouped in islands, and different islands share access to a
global, eventually consistent, memory (Mem G in Figure 1).
Computational units of a single island may have exclusive
access to a memory area (Mem A and Mem B) and across
islands, the same memory area can be mapped to different
physical address ranges. A similar model holds for accessing
devices and peripherals that are mainly memory-mapped.
Some devices, like Dev X and Dev Y, can be directly ac-
cessed by any processor. Others, like Dev Z or Dev W, can-
not.

2.2 Software Layout
Figure 1 shows Popcorn’s software architecture and how it
is layered on top of a generic hardware model. The schema
illustrates a single application compiled with the Popcorn
compiler framework that is running on the Popcorn oper-
ating system. The application is multi-threaded, and differ-
ent threads potentially run on different kernels (and therefore
on different-ISA processors). The application’s code is com-
piled for each ISA available on the system, and in each case
with the highest optimization. The user-space runtime, inter-
acting with the operating system, picks the optimal processor
island on which to execute a given thread.



2.3 Operating System Architecture
The operating system consists of different kernels, each
compiled for, and running on, a different processor island,
as shown in Figure 1. Therefore the kernel code must be
portable to any ISA of the heterogeneous platform. Kernels
interact to provide applications with the illusion of a sin-
gle OS amongst different processor islands. The OS state
is partially replicated on all kernels in order to account for
thread migrations across them, and resource sharing (e.g.,
memory and devices). When no hardware cache coherent
shared memory is available between kernels, Popcorn ad-
ditionally provides software DSM, so that multi-threaded
applications, written for shared memory architectures can
continue to work.

A communication layer glues kernels together and pro-
vides basic data conversion between ISAs, as in Figure 2.
The communication layer is a key component: all replicated-
kernel OS services rely on it (e.g., thread migration, page
coherence, thread synchronization, etc.). Kernels communi-
cate through it to maintain a single (partially replicated) OS
state.

Popcorn’s services and namespaces layer, depicted in
Figure 2, strive to create a single environment for appli-
cations running amongst kernels, and make applications as-
sume that they are executing on a traditional SMP OS. Pop-
corn’s namespaces layer on each kernel provides a unified
processes and resources view, similar to Plan 9 [23].

Amongst kernels, the state of each migrating applica-
tion (e.g., address space) is replicated and is kept consis-
tent. Because we are targeting shared memory applications
that can potentially run different threads on different pro-
cessor islands, and two tightly connected processors islands
may or may not be cache coherent, software DSM should be
provided. Finally, strategies to migrate threads across-ISA
should be introduced too: because the whole system is het-
erogeneous, a scheduler must consider the asymmetries ex-
istent between processor islands.

2.4 Compiler Support
Popcorn’s compiler framework takes an application’s source
code as input, and after a series of offline analysis and pro-
filing combined with a pre-built knowledge of the hardware
platform, emits a multi-ISA binary that can run on the Pop-
corn operating system.

The operating system provides a single cohesive view
of the multiple kernels running on heterogeneous hardware.
However, it cannot hide the functional incompatibility of dif-
ferent processors, and it should not hide the asymmetric per-
formance that they provide. Compiler support is required to
produce programs that are both capable of running on a het-
erogeneous OS, and to exploit the best possible application
workload division on the replicated-kernel OS.

Some existing approaches to heterogeneous systems
make use of intermediate languages [21] or embedded

target-independent intermediate formats [10], but the domi-
nant way of programming in Linux still involves compiling
to a single architecture-specific binary. Our approach con-
tinues to provide this single binary solution, but packed with
support for multiple architectures and allowing switching
architectures at specific migration points. While it would
be possible to pack multiple versions of a program into a
single binary and choose an architecture when the program
starts, this would not allow for efficient use of the hardware.
Many programs contain both serial and parallel code and
would benefit from using different hardware at those differ-
ent points of execution.

Arbitrary scheduling of a heterogeneous program across
different architectures is not possible with this approach as
incompatible instructions and application binary interfaces
(ABI) will cause immediate problems. This is why our com-
piler framework chooses code blocks where a migration is
likely to give a boost in performance and inserts code to
interact with the kernel to optionally perform a migration
across architectures at that point. The inserted code chooses
whether to perform a migration, and if a migration is to be
performed, it packs up the data required for a transition in an
ABI-independent manner.

3. Implementation
We deployed Popcorn on a PCIe interconnected Intel Xeon
and Intel Xeon Phi platform, which is an overlapping-ISA
heterogeneous hardware configuration. Both multiproces-
sors implement a common set of the x86 instructions but
Xeon and Xeon Phi implement different x86 ISA exten-
sions (e.g., using different sets of FPU registers) that makes
them ISA heterogeneous. Moreover, the clock frequency is
2.2 times higher on the Xeon processors and other microar-
chitectural differences exist. Our implementation consists
of ∼ 37k lines of code amongst the Linux kernel and the
patches to the Intel MPSS to boot and communicate with the
Xeon Phi. The compiler implementation requires ∼ 5k lines
of code amongst compilers passes, scripts and modifications
to the libraries to make them work across-ISAs. The imple-
mentation details are discussed in the following section. The
full source codes for Popcorn Linux and associated tools can
be found at http://www.popcornlinux.org.

3.1 Operating System
Popcorn implements a replicated-kernel OS design using the
Linux kernel as the basic building block [3]. We deploy one
kernel on the Xeon and another on the Xeon Phi (respec-
tively compiled with the x86-64 and the k1om compiler tar-
get architecture). Different software components have been
introduced in the Linux kernel and are described hereafter.
To support fully heterogeneous-ISA platforms such compo-
nents shouldn’t be redesigned but just ported to the target
architectures because diversity is handled by the upper soft-
ware layers. Our changes to the architecture-dependent sub-



directory of the Linux kernel consists only of ∼ 1.5k lines,
easing portability.

3.1.1 Messaging Framework
We designed a kernel-level, pluggable, low latency inter-
kernel messaging layer able to sustain high data throughput.
A pluggable interface was chosen to ease portability and to
support multiple communication channels between kernels.

There are different types of messages and for each mes-
sage type a message handler is registered. When a message
arrives at a receiving end, it is stored in a queue first, and
then picked up by one of a set of kernel threads that executes
the handling function corresponding to the message’s type.

We use the MPSS’s SCIF [12] library provided by Intel
to communicate between Xeon and Xeon Phi. SCIF was
designed to be a per-process library. Therefore, we modified
it to have a set of communication channels which are usable
from every thread in the system. These channels are created
at boot time and are managed by a set of kernel threads.

Communication channels are implemented on top of two
mechanisms for message delivery: PIO (scif send()) or
DMA (scif writeto()). We developed a hybrid messag-
ing layer that switches between PIO and DMA, dynamically,
depending on the message size, but at different thresholds on
Xeon and on Xeon Phi. From our experiments, as shown in
Figure 3, we found that for small messages, PIO transfers
have lower latencies; however DMA transfers are faster for
large messages. In fact we observed that the platform has
asymmetric communication times; Figure 3 shows the cost
of sending a message using PIO (scifSend), DMA without
notification (dmaSend), DMA with a short message notifi-
cation (dma), and Popcorn varying the message size in both
directions. From Xeon to Xeon Phi PIO transfers are faster
than DMA until 64kB, however from Xeon Phi to Xeon PIO
transfers are faster than DMA only up to 256B. The fact
that our messaging layer is the fastest in Figure 3 is due to
our enhancements to SCIF. Amongst other changes we in-
crease the size of the SCIF PIO buffers to 2MB. This also
impacts the DMA transfers that rely on PIO for message de-
livery notification. Finally in Figure 4 we report the cost of a
message ping-pong between Xeon and Xeon Phi varying the
message content size. This represents another asymmetry of
the adopted platform: the cost is more than 4 times higher
when the sending is initiated on the Xeon Phi. This likely
reflects the difference in clock frequency and core topology
between the two processor islands.

We implemented a DMA buffering scheme with maxi-
mum message size of 8kB that provides enough room to
send every message type without fragmentation. Each trans-
mission channel has 256 pre-allocated 8kB DMA mapped
buffers. Moreover, we introduced a transfer mechanism for
huge messages up to 512 pages long (2MB). We experimen-
tally found that to ensure maximum utilization of the PCIe
bus we must use 8 parallel channels. This is equivalent to
the number of the DMA engines available on the Xeon Phi.
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Each channel has one receiver kernel thread at each end. This
is reflected in an application’s execution time and shown in
Figure 5, where 8 channels always represent the best config-
uration for performance. We evaluated a buffered, i.e., asyn-
chronous, and non-buffered, i.e., synchronous, version of the
messaging layer. It was found that with the non-buffered ver-
sion of the messaging layer, increasing the number of threads
caused a significant slowdown in the application execution.
Figure 6 shows this impact in conjunction with the memory
footprint of the applications, where small, medium, and large
correspond to class A, B, and C of the NPB benchmarks [1].
Note that the buffered version is up to 2.5 times faster when
228 threads are running. In our experiments in Section 4, we
use 8 communication channels and the buffered version of
the messaging layer.

3.1.2 Namespaces
Linux provides namespace mechanisms to be used as a form
of lightweight virtualization [20]. Popcorn re-engineered
Linux’s namespaces to provide the opposite mechanism:
an aggregate view of all local resources available on each
kernel (users, file system, IPC, PID, network, and CPU).
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By default the Linux kernel initializes a set of namespaces;
however, the user must switch to Popcorn’s namespaces to
exploit Popcorn’s capabilities. Popcorn initializes its names-
pace objects and updates them every time a new kernel joins
Popcorn Linux (joining happens via the messaging layer).

We added the CPU namespace to Linux. The CPU names-
pace enables an application running on a kernel to list all
the CPUs available on all kernels and eventually migrate
to any of them. The CPU namespace affects /proc/cpuinfo
entry but also the behavior of sched setaffinity() and
sched getaffinity(). These functions manage all the
CPUs on which Popcorn OS is running. Because of the
pthread library’s assumption that the number of CPUs in
a system does not vary dynamically outside a certain static
range, after an application joins the Popcorn CPU names-
pace, the number of CPUs seen by the application is fixed.
In other words, if another kernel joins Popcorn CPU names-
pace after an application has been associated, the application
will not see the new kernel’s resources.

Linux’s PID namespace is based on the integer id man-
agement library (IDR). IDR allocates PIDs from a set of
available integers in an efficient way. In Popcorn, instead of
creating a central server for integer allocation, which could
slow down the system, we subdivided the set of allocatable
integers amongst the kernels. In the Xeon-Xeon Phi setup,
we allocate the lower half of integers to Xeon and the upper
half to Xeon Phi.

The file system namespace is currently running by relying
on NFS to share the same filesystem on both kernels. We
describe how file descriptors are migrated in Section 3.1.4.
Section 3.1.4 explains the Futex IPC mechanism.

3.1.3 Task Migration
Popcorn introduces inter-kernel user-space task (thread and
process) migration in Linux. A task migration consists of
copying the task state from one kernel, where the task cur-
rently executes, to another kernel that potentially runs on
a different ISA processor. A kernel-level migration service
runs on each kernel. To handle migrating tasks quickly, a
pool of dummy user-space tasks is maintained on each ker-
nel. Dummy tasks are kept in a sleeping state until they are
activated due to an incoming inter-kernel task migration re-
quest. Therefore, the pool adds a minimal resource overhead
to the system. When a new task arrives from a remote kernel,
the state of the migrating task is installed in a dummy task
and the execution is resumed in the new kernel.

Migrations are triggered by the application/user calling
the system call sys sched setaffinity(). According to
a CPU bitmask provided to those functions, a destination
kernel is selected by evaluating which CPU ranges are as-
sociated to which kernel. When a migration is triggered a
message is sent to the designated kernel and the local task is
put to sleep. If the task migrates back to this kernel at a later
time, then this sleeping task will be resumed. The first migra-
tion has a higher OS cost than successive migrations. This is
because the destination kernel needs to select threads from
the dummy pool and attaching each of them to the incom-
ing process. From the second time onward a thread that is
migrated to that kernel already knows its hosting thread and
therefore successive migrations are faster. Figure 7 shows
the initial migration OS cost varying the number of concur-
rent migrating threads. The blue line shows that successive
migrations are up to 35 times faster, but this reduces with the
number of threads to only 2 times faster.

Thread and Process States. The task state of a thread can
be divided into process related and thread related state. The
process state is shared between threads of the same process,
whereas the thread state is private.

The thread state includes the content of all CPU regis-
ters used by the task before entering kernel space. All in-
formation regarding the task state is migrated each time a
task moves to another kernel. On the Xeon-Xeon Phi plat-
form, whose processors are both x86, overlapping-ISA, we
are currently migrating the integer registers as-is (in Linux,
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saved in struct pt regs object). The floating point reg-
isters (Linux’s union thread xstate) are not migrated
because of differences between the two architectures. Pop-
corn’s compiler framework is responsible for FPU regis-
ter handling during migration. Therefore floating point code
cannot migrate at arbitrary points.

The process state includes all information regarding the
memory layout (e.g., virtual memory areas), file descrip-
tors, futex, process-shared signals, IPC, and user and group
credentials. Because of the shared nature of such state, this
information cannot be simply copied during thread migra-
tion. Specific services have been introduced to keep this in-
formation updated during the lifetime of the process. The
services that are used to keep file descriptors consistent
and maintain futex states amongst kernels are described in
Section 3.1.4. The memory management is also described
in 3.1.4. IPCs and credentials are managed via namespaces
(see Section 3.1.2).

3.1.4 Consistent Services
A process’s memory state is comprised of virtual memory
areas (VMA) and a virtual to physical addresses map. In
Linux, struct vm area struct and the page directory,
accessible from pgd t in the struct mm struct, contain
these information, respectively. VMAs divide the address
space in non-overlapping ranges of addresses, each one with
specific memory access privileges and properties. Under-
neath the VMA layer, the memory is further divided and
seen as organized in pages of fixed granularity (only 4kB
page size is currently supported in our prototype). Each vir-
tual page of a process is paired with a physical memory
page that contains the actual data. Virtual to physical mem-
ory mappings are stored in a hierarchical page directory and
are used by the hardware memory management unit (MMU)
when virtual addresses must be resolved upon load/store op-
erations by the CPU.

The first thread of a process that migrates to another
kernel resumes its execution into a dummy task that has
an empty memory state, without VMAs and without (user-
space) virtual to physical address mapping. Anytime this
task tries to access a new page, an exception is raised by
the hardware. The kernel will resolve the VMAs and vir-
tual to physical mappings on demand. In Popcorn, Linux’s
memory exception handler (page fault()) has been modi-
fied to notify Popcorn’s memory management service of the
migrated task’s memory faults. Intercepting memory excep-
tions allowed us to implement a user-level transparent DSM
between threads of the same processes running among dif-
ferent kernels. Such transparency makes code instrumenta-
tion unnecessary.

The memory management service implements different
protocols according to the physical memory architecture
that exists among kernels. For Xeon-Xeon Phi we decided
to use a page replication protocol of exploiting the non
cache-coherent shared memory available on the heteroge-

neous platform. In this protocol, each page accessed by a
process is replicated on demand and kept consistent by a
page-coherency algorithm.

Page Replication Algorithm. The page replication algo-
rithm is the core mechanism of Popcorn’s page-granularity
user-level DSM. For transparency, we provide the same
memory consistency the user expects on SMP platforms. We
exploit the protection mechanisms provided by the MMU to
monitor application’s accesses to memory pages, and the
messaging layer is used to transfer updates. A generic im-
plementation of this protocol for an arbitrary number of ker-
nels is proposed in [26]. For Xeon-Xeon Phi, we optimized
the algorithm to run with two kernels. The goal of this pro-
tocol is to maximize the number of accesses that can be
performed directly on the local address space copy, with-
out triggering updates to the other copies, and therefore, to
minimize the messages exchanged between kernels to keep
replicas consistent. In the protocol, a replicated page can be
in one of the MSI [22] states: Modified, Shared, or Invalid.
A page in Modified can be accessed in read/write without
triggering any page fault, a page in Shared can only be ac-
cessed for read, and a page in Invalid cannot be accessed.
We implemented the same protocol transitions as in MSI
and introduced various optimizations.

To quickly resolve concurrent write conflicts (i.e. two
kernels wanting to write on the same page in Shared state at
the same time), we introduced the page owner, as previously
proposed by Ivy [16]. At any time, only one kernel has the
ownership of a replicated page. The replica that owns the
page can be upgraded to Modified state, whereas the other
copy is set to Invalid. The ownership of a page is dynamic
and it is transferred when a write (transition to Modified) is
acknowledged.

To reduce message traffic, the page replication algorithm
is not always active on all pages of the address space. The
page replication algorithm works on demand: a local page
copy will be created only if a task accesses such a page from
that kernel. To model this, we introduced two new states
in the protocol: Not Replicated and Not Mapped. If a page
has never been accessed by a kernel, the page is in the Not
Mapped state in that kernel. If it has been accessed by only
one of the two kernels, the page is in the Not Replicated state
and read/write accessible by that kernel. Pages will transition
from Not Mapped or Not Replicated states to MSI states
when a process’ task migrates to another kernel and asks for
those pages.

Guided Pre-fetching. We implemented guided pre-fetching
of pages to speed up process execution. A new system call
has been introduced to inform the memory management
service about the virtual addresses that will be needed by
the application after migrating to a different kernel. The
corresponding pages are then moved to the selected kernel
with the highest access privilege granted by their VMA (Not
Replicated if read only, Modified if read-write accessible).



The list of addresses needed is inserted at compile time and
passed to the memory service just before a task migration is
invoked.

File Descriptors Algorithm. To support task migration we
extended the Linux virtual file system layer (VFS) while pro-
viding the same POSIX semantics offered by Linux. Tasks
are initially migrated between kernels without their file de-
scriptors. To minimize migration cost file descriptors are
sent on demand. When a task invokes a file system opera-
tion (e.g., read, write) the extended VFS layer checks if that
particular file descriptor is present in the task’s file descrip-
tor table. If it is not present, and the task has been migrated,
the layer sends a message to the kernel where this process
was first created (home kernel). The home kernel returns the
file descriptor information such as file name, current offset,
mode and the kernel where it was opened (owner kernel).
This information is used to open the same file in the current
kernel (via NFS and mount namespaces) and the file descrip-
tor table is updated accordingly. If a task wants to open a new
file while on a remote kernel it has to query its home kernel
to get the next available file descriptor.

To guarantee the same file system consistency level pro-
vided by Linux while reducing the message traffic, we aug-
mented the file descriptor object with a mode flag. The file
descriptor can be in one of the two modes: exclusive or
shared. If a file descriptor is used by only one thread of a
process all changes to the file offset are kept in the kernel
where the thread resides (exclusive mode). When multiple
threads query for the same file descriptor the exclusive mode
is changed to shared mode. In shared mode all file offset
updates are sent by threads to the owner kernel.

Futex Algorithm. Fast user-space mutex [19] (Futex) is a
central mechanism used in libc. Because almost all POSIX
applications are based on libc we decided to support it.

Futex performs inter-thread synchronization using the OS
futex wait and futex wake syscalls. SMP Linux imple-
mentation handles concurrent requests by means of a ta-
ble of global queues (Linux’s futex queues object) pro-
tected by a spinlock. Serialization is ensured by this mecha-
nism for a monolithic kernel. However, because Popcorn is
a replicated-kernel OS, we extend this functionality within
Popcorn by adopting a client/server model. The kernel on
which the user-space futex variable has been initialized be-
comes the server for that futex. The futex queue in the server
kernel is considered as the global queue for that futex, main-
taining global state of all the requests. All the others main-
tain a local queue. Messages are exchanged between the fu-
tex server and its clients to ensure synchronization.

3.2 Compiler Framework
Section 2.4 described the need for compiler support to be
able to produce a single binary that can effectively run on a
heterogeneous OS. The implementation of this support takes
place in three phases: code analysis and profiling, code trans-

formation, and the additional work required to make external
libraries work with the resulting heterogeneous binary.

We constrain our compiler framework to allow migrations
to only occur at function boundaries (i.e., the call site must
be in a function that the compiler can modify and not at the
call site of an immutable external library function, such as
printf). This means that the compiler can modify the pro-
gram such that instead of the function foo calling bar, it can
now insert the code necessary to migrate between architec-
tures so that bar will be, optionally, executed on a different
processor island. This introduces the restriction that when
bar returns, the execution migrates back to the original pro-
cessor island, so that a single execution of foo always runs
on a single architecture. These limitations reduce the amount
of work required to support multiple ABIs. If the program
execution did not return to the original architecture, then the
entire stack would need to be converted to the new architec-
ture’s ABI.

To support fully heterogeneous platforms the runtime
must be extended as proposed in previous works (e.g., De-
Vuyst et al. [6]), and the binaries must be generated accord-
ingly by the compiler framework.

3.2.1 Finding Optimal Partitionings
The first step to produce a heterogeneous binary is to find an
ideal partitioning that would most benefit the performance.
The benefit in migrating a program from one architecture
to another is that some functions would get better perfor-
mance being mapped to one architecture, while other func-
tions could be optimally mapped to another architecture. The
cost of migrating a program is primarily the data-transfer
cost that will be incurred by switching architectures at a
given point. Often this cost can outweigh the benefits of
performing a migration, so an effective analysis is required
to determine when it is worth migrating. For example, in
the implementation presented herein the Xeon processor is
faster at executing serial code, but the Xeon-Phi is faster at
executing parallel code. Simply running all serial code on
one and all parallel code on the other is unlikely to provide
the best mapping. Since the page faults incurred to handle
data-transfers within the heterogeneous OS must be handled
over PCIe, they are much more expensive than cache misses.
Therefore it is often best to run a function on a sub-optimal
architecture if it means that it will be accessing local data.

The Cost Model. Figure 8 demonstrates the cost model
used to find an optimal partitioning. Note that this analysis
phase is a one-time offline cost per program per platform.
The result of the analysis phase can vary according to the
number of cores available on each processor island. Each
vertex in a graph represents a function (A, B, C, D in Fig-
ure 8), each edge between two functions represents a cost
that would be incurred by inserting a migration at that call
boundary. The raw data used to create these cost graphs for
each benchmark is obtained by using a LLVM [15] pass to
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annotate every function call and memory access with a call
to a tracking library we developed. In turn, this tracking li-
brary then generates the necessary data during a profiling run
of the binary. It is necessary to track every address to know
which pages are being accessed, providing a foundation for
a precise runtime analysis of the application memory access
pattern. The analysis library builds up a call-graph, shown
in Figure 8(a), and then finds a partitioning of functions be-
tween architectures1.

The first cost considered, is the raw cost of migrating
a thread across architectures as there is a time involved in
pausing a task and migrating it to another kernel. The sec-
ond cost, shown in Figure 8(b), represents the data-transfer
requirements between functions. This is where the runtime
analysis is essential, so that it is able to know precisely which
function most recently read or wrote to a particular page and
thus owns it (i.e. that page currently resides on the architec-
ture that executed that function). The thicker lines in Fig-
ure 8(b) represent pairs of highly coupled functions that ac-
cess many of the same pages, and thus it is desirable for
those two functions to reside on the same architecture to
avoid data-transfers. Finally, Figures 8(c) and (d) represent
how well each function maps to each architecture, again a
thicker line means that it is desirable for that function to be
mapped to that architecture.

The four graphs are combined into a single cost graph,
shown in Figure 8(e), by assigning a weight to each type
of event. These weights are the number of nanoseconds re-
quired to handle a single event of that type. The edge be-
tween two functions represents the number of nanoseconds
that will be added to the program’s run-time if a migration
happens at that function call boundary. The edge between
a function and a virtual compute cost node is the estimated
cost in nanoseconds of not running on that architecture, i.e.
how many nanoseconds will be added to the total run-time
by choosing a different architecture.

The migration and page fault costs are stable enough
to be considered constant for this analysis and thus their
weights are measured directly. However, the differing com-
pute cost of executing a single function on different archi-
tectures varies greatly and can only be approximated. An ap-

1 If a function is not executed during the profiling run it will not considered
for migration.

proximate nanosecond cost of executing a single memory ac-
cess is found by dividing the runtime of a set of benchmarks
by the number of tracked memory accesses. The number of
tracked memory accesses per-function is then weighted by
this measured value. Finally, the compute cost is divided by
the number of processors available for functions that will
execute in parallel (i.e. those that contain parallel OpenMP
loops, or are called from inside a parallel loop), but is left
unmodified for functions that are not parallel.

To find the optimal partitioning we need to assign each
vertex to a partition such that the sum of the weights of the
edges crossing between the two partitions is minimized. For
example, in Figure 8(e) the best partitioning is {s, A, D},
and {B, C, t} as the edges crossing between these sets have
small weights. This is known as the “min-cut”, and although
there are many algorithms for solving that globally, we have
the additional constraint that s and t reside on opposite sides
of the cut. We find an s-t min-cut by exploiting the max-
flow/min-cut duality theorem [7]. We map Figure 8(e) to a
flow network, find the maximum-flow from s to t, and then
map that back to a s-t min-cut by exploiting the property
that any vertex reachable from s using residual flow in the
network must belong to the same partition as s. This lets
us find the partitioning shown in Figure 8(f), and shows us
that we should migrate between architectures on the edge
between vertices A and B.

Finding the min-cut of a graph results in a binary parti-
tioning. For example, in the final reachability stage of the
above algorithm, each node is either reachable from s, or
not. This means that the approach as presented does not
generalize to N architectures, which is not required for the
Xeon-Xeon Phi, but should be supported to follow the pro-
posed design principles. Less precise graph partitioning ap-
proaches such as clustering algorithms could be used to split
the cost graph into N partitions, but are out of scope for this
paper. Finally, the partitioning analysis only considers com-
putational capability. It could be extended to consider how
other costs, such as network or disk I/O, differ between pro-
cessor islands when determining optimal partitionings.

3.2.2 Transforming Programs
Given the resulting partitioning sets, e.g., {A,D} and {B, C},
the set mapped to the Xeon Phi is used as input in the trans-
formation phase. This phase has been implemented with the



source-to-source Rose [24] compiler, targeting the C/C++
language. The program transformation locates in the origi-
nal source files all the functions that belongs to the {B,C}
set, that have been marked with a pragma keyword above
the function definition during the partitioning phase. These
functions, hereafter called compute functions, are copied
in a new source file that will be exclusively compiled for
Xeon Phi. For distinguishability, all compute functions are
appended with a postfix to show whether they are compiled
to run on host or target architecture. To resolve any depen-
dencies of sub-functions that might be called from the com-
pute functions, the program transformation recursively finds
any function called within the compute functions and cre-
ates a static version in the newly created file. Each call to a
compute function is a possible migration site.

For each migration site the program transformation tool
packs any data required for a migration in a data structure,
allowing ABI independence. Specifically, this refers to the
argument list that is passed to the called compute function.

We use this data structure to guarantee that the necessary
arguments are saved in the heap instead of in the stack or
registers. Then to facilitate the task returning to the host
architecture, when the function completes, the return value
is copied into the same data structure.

Any instance of a function call to a compute function
in the original source code is replaced with a call to the
migration hint() function. This function takes as ar-
guments struct fun, fun Xeon, fun XeonPhi, where
struct fun is the ABI independent packaged data struc-
ture. fun Xeon is the compute function that, if selected,
will run on Xeon; fun XeonPhi is the compute function
that, if selected, will run on Xeon Phi (additional arguments
can be added to accommodate more ISA kernels within the
same system). The migration hint() function initiates
the transition from one ISA architecture to another. Finally,
this phase does minor clean-up tasks, adding required head-
ers, function declarations, and substituting standard library
calls with per-architecture ones where necessary.

3.2.3 Library Support
When external libraries are needed, such as libm, then within
a traditional linking approach that library will be compiled
for a single architecture. In a heterogeneous binary it is es-
sential that a function compiled for a particular architecture
is only linked to functions compiled for the same architec-
ture. To compile and execute applications in a heterogeneous
environment we rebuilt system libraries in order to provide
both Xeon and Xeon Phi implementations of their functions.

In addition, an optimization was made to the glibc library
in order to improve the performance of the page fault co-
herence algorithm described in Section 3.1.4. As supporting
concurrent writes to a single page across multiple kernels is
expensive, false sharing should be avoided. Often multiple
mutexes are created together. To avoid multiple mutexes on
a single page, the pthread mutex data structure is padded

to 4kB to ensure that only a single instantiation can exist
on a page. The current prototype is restricted to static linked
executables only, dynamic loading is out of the scope of this
work.

4. Experimental Evaluation
Hardware. We ran all experiments on a system containing
two Intel Xeon E5-2695 (12 cores, 2-way hyper-threaded at
2.4GHz per socket in a dual-socket configuration), 64GB of
RAM, and an Intel Xeon Phi 3120A (57 cores, 4-way hyper-
threaded at 1.1GHz, 6GB of RAM) connected via PCIe.

Following the results of the analysis in Section 3.1.1, our
data was collected with a configuration of 8 Xeon cores and
228 Xeon Phi cores. We limit the experiments on the Xeon
to 8 cores because the majority of the NPB applications do
not see any performance gain by running on the Xeon Phi,
when more than 8 Xeon cores are used. Table 3 demonstrates
this for the CG application. Thus, the partitioner tool never
decides to migrate from Xeon to Xeon Phi. We kept this
configuration for all experiments.

Software. The Popcorn prototype is based on Linux 3.2.14
and Intel MPSS 3.2.3, which was ported from kernel 2.6.38.8
to 3.2.14. Since the namespace code on Linux 3.2.14 was not
complete, we backported part of the namespace code from
Linux 3.8. The Linux distribution used in the experimental
system was CentOS 6.5.

In order to compile applications for Popcorn Linux, we
used a combination of LLVM 3.4, ICC 14.0.3, gcc 4.4.7,
gcc 4.7 (k1om), and Rose 0.9.5a. We partially rewrote and
recompiled GNU libc 2.13 (shipped with Intel MPSS 3.2.3)
and Intel OpenMP 5.0 (libiomp) to make them work across
ISAs and to enable a medium compiler memory model2 for
statically-compiled NPB applications.

Compute/Memory Intensive Benchmarks. The main dif-
ference between the processor islands in our test platform
is that the Xeon Phi can run highly parallel code more effi-
ciently than the Xeon processor. On the other hand, serial
and I/O bound workloads run faster on the Xeon proces-
sor. To exploit this heterogeneity, we evaluated our proto-
type by using compute/memory intensive workloads written
in OpenMP.

We ran the OpenMP C version of the NAS Parallel
Benchmarks from the SNU NPB benchmark suite [29], ver-

2 NPB requires a medium compiler memory model, the -mcmodel option.

Cores Xeon 4 Xeon 8 Xeon 12 Xeon Phi 228
CG.A 1.04s 0.53s 0.09s 0.24s
CG.B 59.56s 31.46s 10.87s 15.41s
CG.C 162.13s 86.28s 29.93s 60.71s

Table 3. Xeon core counts vs Xeon Phi core counts. Execut-
ing on 12 Xeon cores is faster than executing on any number
of Xeon Phi cores.



sion 1.0.3. We compared the execution time on Popcorn
against native Linux execution on only the Xeon cores and
only on the Xeon Phi cores. For a fair comparison, x86-64
and k1om binaries were compiled with the same optimiza-
tions (-O3) and compiler (icc). Moreover, the same exe-
cutable was used to run homogeneously (intra-ISA) and het-
erogeneously (inter-ISA). This was made possible by modi-
fying the ELF header.

We also compared with the OpenCL version of SNU
NPB, and with the offloaded version of OpenMP. We wrote
the offloaded version starting from the original SNU NPB
OpenMP versions, offloading all available parallel sections.
We wrote the offloaded versions using Intel’s Language Ex-
tension for Offload (LEO [33]), an extension available for
the Xeon-Xeon Phi platform. Both the OpenCL and the of-
floaded versions rely on the coi daemon distributed with
MPSS 3.2.3. The collected OpenCL numbers refer only to
the compute kernel execution time.

Single System Benchmarks. To demonstrate that Popcorn
works without the need to rewrite an application, we ran
POSIX applications “as is”, i.e. without refactoring them
with the partitioner. Moreover, we inserted explicit scheduler
migration calls because the prototype currently does not
support in-kernel scheduler migration decisions.

We ran the POSIX-compliant compression application
Parallel BZIP version 1.1.2 (pbzip2) [8]. We generated the
input files using the system random device /dev/urandom
and used default settings, including 900kB buffer slot size.
Parallel BZIP creates one thread per processor core available
on the platform and two I/O threads. In Popcorn, the number
of available cores is returned as the sum of the total cores
available on Xeon and the total cores available on Xeon
Phi. Therefore, pbzip2 places its threads on each available
core regardless of the CPU architecture and considers them
as part of an SMP architecture. pbzip2 is a stream-oriented
application that stresses all of Popcorn’s consistent services
implemented in the prototype and is therefore representative
of most POSIX applications.

5. Results
The goal of our experimental evaluation was to demonstrate
that our software infrastructure is effective in providing an
operating system for heterogeneous platforms that supports
transparent programmability. Additionally, we wanted to
show that the compiler framework produces an effective
code block placement on the available cores on the Xeon
Phi. We assume that all applications start on the Xeon CPU.

Running with Code Analysis. Figures 9, 10, 11, and 12
show the execution times (in seconds) of the CG, EP, IS,
and SP benchmarks of the NPB suite, respectively. For each
benchmark, we report the execution time for Class A, Class
B, and Class C categories (i.e. different input data sizes)
using different numbers of available cores on the Xeon Phi

processor (4, 8, 57, 114, and 228). Each data point was
averaged over 10 executions, and the maximum deviation
per sample never exceeded 11ms.

In the figures, an asterisk is used to mark whenever Pop-
corn migrates the execution at least once between the Xeon
and Xeon Phi. The other benchmarks in the NPB suite ei-
ther never migrate between Xeon and Xeon Phi (i.e., UA),
or have a similar migration and performance pattern as the
ones shown (e.g., BT has the same pattern as SP).

When an application runs on Popcorn, a migration occurs
when the cost model (Section 3.2.1) determines that the per-
formance benefits outweigh the communication overheads
due to the migration. From the figures, it is clear that due to
the large difference in the clock frequency between the Xeon
and Xeon Phi processors, Popcorn never migrates threads
when a small number of cores are allocated on the Xeon Phi,
running on only the Xeon cores. When 57, 114, or 228 cores
are available on the Xeon Phi, the behavior changes for each
benchmark.

For the SP benchmark, presented in Figure 12, the par-
titioner decides to always migrate for 57, 114, and 228
threads, providing improvements over native execution.
With 57 threads, Popcorn is up to 53% and 46% faster than
native execution on the Xeon Phi and Xeon (Class C), re-
spectively. When the number of threads increases to 114,
Popcorn is up to 33% and 61% faster than native execution
on the Xeon Phi and Xeon (Class B), respectively. With 228
threads, Popcorn is still able to outperform native execution,
although its performance advantage is reduced. This per-
formance gain demonstrates the benefits of the partitioner’s
decision to migrate execution to the Xeon Phi.

The SP benchmark allows for a direct comparison of Pop-
corn and the offload implementations because the migration
points are the same in both versions. However, Popcorn is
always faster than its competitors. In particular, Popcorn is
up to 3.5 times faster on 57 cores on Class C. From this su-
perior performance, we conclude that Popcorn’s kernel-level
shared memory model amongst processor islands allows for
better performance than an offloading software stack imple-
mented in user-space between the Xeon and Xeon Phi. The
same performance trends and conclusions hold for both EP
(Class B and Class C) and IS (Class C) benchmarks.

We observe that for all other benchmarks, the Class A
versions have the shortest execution time by more than one
order of magnitude. Because of this short execution time,
the partitioner never migrates any of the benchmarks, as the
advantage of greater parallelism in the Xeon Phi would be
offset by the migration overhead. Thus, Popcorn executes
the Class A versions of CG, EP, and IS on 8 Xeon cores.

In contrast, the OpenCL and offload versions of these
benchmarks always migrate because these versions do not
have any migration policy mechanism that selects a proces-
sor island on which to execute. Therefore, the OpenCL and
offloading versions are (in most cases) slower than Popcorn,
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Figure 12. SP

with up to a 12 times slowdown for IS Class A using 228
cores.

The EP Class B and Class C benchmarks (Figure 10) have
the same trend as the SP Class B and Class C benchmarks
(Figure 12). Popcorn is up to 52% and 53% faster than native
execution on the Xeon Phi for EP Class B and Class C,
respectively, for 57 threads. With 114 threads, Popcorn’s
speedup decreases to 25% and 32%, respectively. For 228
threads, Popcorn is slower than native execution on the Xeon
Phi (33% in Class B and 8% in Class C), but faster than
native execution on the Xeon (65% and 72%) due to higher
overhead in thread migration. EP represents a special case
for OpenCL in which Intel’s analysis tool allowed us to
discover its exploitation of extremely efficient mathematical
functions that could not be used for the other versions of the
benchmark, hence Popcorn’s performance is slower.

Uniquely to CG, the partitioner migrates for higher num-
ber of threads (114 or 228). In this case, Popcorn is up to
27% and 43% better than native execution on the Xeon in

Class B and Class C, respectively. From Figure 9, we ob-
serve that for both Class B and Class C, native execution on
the Xeon Phi has a clear advantage over native execution on
the Xeon for only 228 threads. This is detected by Popcorn’s
partitioner tool. However, the OpenCL and offload versions
are not able to detect this and experience up to 6.2 times
slowdown for 57 cores, Class C.

IS is the fastest benchmark. It turns out that Popcorn’s
partitioned IS migrates to Xeon Phi only for 57 and 114
threads in Class B and Class C, respectively. In both cases,
execution using Popcorn is faster than native execution on
the Xeon Phi (for Class C, Popcorn is also always faster
than native execution on the Xeon). We hypothesize that this
behavior is due to the fact that the Popcorn partitioner has
a cost model that better fits FPU computations than integer
computations on which the Xeon Phi appears to be slower
(IS only has integer computations).

Our evaluation illustrates that compute/memory intensive
benchmarks written for SMP and running on a replicated-



File Size 128MB 256MB 512M 1G
Xeon 8 cores 4.3s 8.3s 17.3s 36s
Xeon Phi 228 cores 9s 15s 24s 74s

Table 4. pbzip2 execution time on 8 Xeon cores and 228
Xeon Phi cores. pbzip2 is always faster on the Xeon cores.
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Figure 13. Execution time slowdown of the pbzip2 applica-
tion on the Xeon Phi with respect to 8 Xeon cores using Pop-
corn. The slowdown is shown for different input file sizes
and number of Xeon Phi cores.

kernel OS with DSM can take significant advantage of a
heterogeneous platform when compiled with our partitioner.
Additionally, Popcorn’s system software infrastructure is
more performant than a user-space offloading software in-
frastructure. However, for short-running benchmarks there
is no benefit in using Popcorn due to the high communi-
cation overhead of migrating execution between processor
islands. Moreover, Popcorn does not always have low mi-
gration overhead for high thread counts. This performance
profile is application-dependent.

Running without Code Analysis. In Table 4, we report the
native execution time of pbzip2 on the Xeon and the Xeon
Phi for different input file sizes. pbzip2 is always faster on
the Xeon than the Xeon Phi by a factor of 2, meaning there
is no benefit in migrating to the Xeon Phi. Exploiting 57,
114, and 228 Xeon Phi cores changes the execution time up
to 10%.

Regardless, we ran pbzip2 on Popcorn on 8 Xeon cores
varying the number of available cores on the Xeon Phi from
4 up to 114 for different input files. We compared this setup
against executing pbzip2 natively on the Xeon, which was
always faster. Figure 13 plots the slowdown in execution
time. The slowdown in execution time reflects the overhead
in all the stressed subsystems of the replicated-kernel OS. In
particular, it stresses the DSM protocol and the Futex algo-
rithm. The measurements show that the overhead decreases
when the file size increases. This is because larger file sizes
increase the per-thread computational time, which dimin-

ishes the interaction between threads, thereby amortizing the
added OS overhead.

We also observe a different behavior with changes in core
counts: the overhead decreases with a different trend relative
to the number of cores involved. For a core count up to the
number of communication channels, the trend is mostly lin-
early decreasing. However, once the number of cores used
exceeds the number of available channels, the overhead de-
creases exponentially. This shows how the latency of the
messaging framework negatively impacts performance.

This evaluation reveals that even though Popcorn pro-
vides a single OS image and DSM, which fosters trans-
parent programmability on architectures with heterogeneous
processor islands (a particularly important fact for legacy
POSIX applications), the cost of distributed services when
used without an analysis tool can significantly degrade per-
formance (e.g., 5 to 16 times slower for pbzip2). An appli-
cation can indeed run transparently amongst processor is-
lands, but will have a performance advantage only if threads
on different islands do not share most of their working sets.
Alternatively, the application can be explicitly written to ex-
ploit the heterogeneous platform similarly to OpenCL appli-
cations.

6. Related Work
To the best of our knowledge, we are the first to present a re-
design of Linux to accommodate heterogeneous-ISA hard-
ware together with a compiler framework to support multi-
packed binaries. There are, however, previous works regard-
ing both heterogeneous and replicated-kernel operating sys-
tems and compilers for those architectures. In a previous pa-
per [2], we present our vision for a replicated-kernel OS for
heterogeneous-ISA platforms. In this paper, we follow and
extend that vision by providing an actual OS implementa-
tion, with additional user-space system software.

Li et al. [17] proposed a Linux design for overlapping-
ISA heterogeneous architectures. In their model, cores share
a large set of common instructions and registers with iden-
tical encoding and semantics. We target a much broader
hardware model. Our prototype runs on similar hardware
configurations but without cache coherent memory amongst
processor islands, that require the deployment of a kernel
per coherency domain. K2 OS [18] adapts Linux to run
on non-strictly cache coherent overlapping-ISA heteroge-
neous architectures by introducing the shared-most OS de-
sign. The shared-most OS is a middle ground between the
shared-memory and the shared-nothing OS designs. Differ-
ently Popcorn implements the shared-nothing OS design,
without relying on any special hardware supported for lock-
ing as K2 does. Similarly to Popcorn, K2 also requires the
deployment of a kernel per coherency domain, local and
global OS services.

Most research towards OSes for heterogeneous platforms
involves the creation of new kernels. Barrelfish OS [4] in-



troduces the multikernel design that runs a microkernel per-
core. A heterogeneous version of Barrelfish has also been
proposed [28]. Similarly to Barrelfish, Popcorn uses mes-
sage passing to keep global system state consistent. Al-
though we use a similar message passing design, we do not
use remote procedure calls; instead, we use inter-kernel task
messaging. COSH [5], prototyped on Barrelfish, introduces
a new OS level abstraction which exposes different kinds of
memories available in a platform to the programmer at the
cost of code rewriting. In contrast Popcorn provides a trans-
parent DSM so code modification is not required. The He-
lios OS [21] also uses a multikernel-like design but is based
on Singularity [11]. In contrast to our design the application
programming model is message passing and the application
is shipped in an intermediate format not in a multipacked
binary.

Work presented by DeVuyst et al. [6] examines a MIPS-
ARM platform that leverages binary translation for instan-
taneous migration whereas we avoid binary translation com-
pletely. We do however share the concept of migrating to na-
tively compiled code at function call sites. Moreover in [6]
the authors envision the availability of a heterogeneous OS
that we actually implemented. Unlike adopting an interme-
diate language or using JIT, Popcorn builds on the idea of
FatELF [9], i.e., multiarchitecture binary, or universal bi-
nary; code is compiled and optimized for each architecture.

In Saez et al. [27] the concept of an ”architecture signa-
ture” is used to partition the code among processors of a het-
erogeneous platform. Our analysis phase is similar to their
static approach which also creates an application profile of-
fline based on the memory access pattern.

The Intel Compiler Collection shipped with the Xeon-
Xeon Phi platform creates a single binary out of two per-
architecture optimized assembly code for Xeon and Xeon-
Phi. The compiler, together with a user-space daemon, pro-
vides the base to execute applications written within the In-
tel Offloading, MYO, and OpenCL programming paradigms
on the Xeon-Xeon Phi platform. However, this compiler is
completely driven by the decisions of the developer. Further-
more, there is no single system abstraction. MYO is a shared
memory model for Xeon-Xeon Phi. This model requires the
programmer to follow semantics similar to offloading to take
advantage of shared memory within a heterogeneous system.
Consequently, we created our own shared memory model in
order to uphold our goal of user transparency.

A similar effort to produce a single system view, or cen-
tral resource administration, while splitting the system load
across processor islands, has been followed by other re-
searchers. However, their efforts are focused on CPU-GPU
configurations, as Ptask [25], GPUNet [14], and GPUfs [31],
instead of all OS-capable processors, as Popcorn.

7. Conclusions
We demonstrated that it is possible for shared memory ap-
plications written for homogeneous-ISA multiprocessors to
transparently execute on heterogeneous-ISA multiproces-
sors with high performance. Popcorn enables this through
a replicated-kernel OS and a compiler framework that to-
gether creates a single execution environment across hetero-
geneous processor islands. The compiler framework builds
multi-architecture binaries that exploit the most optimized
instruction set for each code block, while minimizing the
communication overheads of the replicated-kernel OS’s dis-
tributed services.

We show that compute/memory-intensive applications
that run on a Xeon-Xeon Phi platform and utilize Popcorn’s
capabilities can be up to 52% faster than the most perfor-
mant native execution. In addition, Popcorn’s cost model
can adapt the migration decisions to a variable number of
processor cores, and yields up to 6.2 times faster execution
than the OpenCL and offload models. In particular, for ap-
plications with the exact same migration points, Popcorn is
faster than an offloading software stack that requires user-
level daemons.

Our work also shows that without using a compiler frame-
work, a replicated-kernel OS can indeed be used to run
multithreaded POSIX SMP applications as-is. However,
such an execution may use hardware and OS services in-
efficiently, significantly degrading application performance.
Popcorn’s cost model can determine when the overhead of
the replicated-kernel OS offsets the performance benefits of
execution migration in heterogeneous platforms. Such mod-
els are important for effective resource management.

In future work, we plan to extend the evaluation of Pop-
corn beyond the Xeon-Xeon Phi platform to fully heterogen-
eous-ISA platforms, which will involve design and engineer-
ing across the system software stack. In general, finding the
level of the software stack that must handle architecture di-
versity to obtain better application performance remains an
open question. We also plan to explore how the cost model
can be made dynamic and be used to make resource man-
agement decisions at run-time for improved performance.
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