
Secure and Efficient In-process Monitor (and Library) Protection
with Intel MPK

Xiaoguang Wang
Virginia Tech

xiaoguang@vt.edu

SengMing Yeoh
Virginia Tech

sengming@vt.edu

Pierre Olivier
The University of Manchester
pierre.olivier@manchester.ac.uk

Binoy Ravindran
Virginia Tech
binoy@vt.edu

ABSTRACT
The process reference monitor is a common technique to enforce
security policies for application execution. Reference monitors can
be used to enforce access control, check program integrity, detect
attacks and even transform program states. Deciding where the
monitor resides involves a trade-off between strong monitor iso-
lation and low switching overheads. Running the monitor in the
same address space as the protected/traced application (in-process
monitors) allows for low overhead but raises isolation concerns.
Thus, existing work place monitors in a separate address space,
which leads to expensive monitor invocation cost.

We present MonGuard, a system in which a high-performance
in-process monitor is efficiently isolated from the rest of the appli-
cation. To that aim, we leverage the Intel Memory Protection Key
(MPK) technology to enforce execute-only memory, combined with
code randomization to protect and hide the monitor. MonGuard
inserts instrumentation around sensitive instructions to further pre-
vent possible code reuse attacks. We built a prototype of MonGuard
as a loader extension and implemented a multi-variant execution
(MVX) monitor. The evaluation shows MonGuard enhances the
monitor protection with nearly zero performance overhead.

CCS CONCEPTS
• Security and privacy→ Systems security; Software and ap-
plication security.
KEYWORDS
Memory Protection, In-process Monitor, Software Security, Multi-
Variant Execution
ACM Reference Format:
Xiaoguang Wang, SengMing Yeoh, Pierre Olivier, and Binoy Ravindran.
2020. Secure and Efficient In-process Monitor (and Library) Protection with
Intel MPK. In 13th European Workshop on Systems Security (EuroSec ’20),
April 27, 2020, Heraklion, Greece. ACM, New York, NY, USA, 6 pages. https:
//doi.org/10.1145/3380786.3391398

1 INTRODUCTION
The process referencemonitor is commonly used to enforce security
policies for application execution [1, 4, 6, 13, 15, 22, 26, 28, 29]. In the

EuroSec ’20, April 27, 2020, Heraklion, Greece
© 2020 Association for Computing Machinery.
This is the author’s version of the work. It is posted here for your personal use. Not
for redistribution. The definitive Version of Record was published in 13th European
Workshop on Systems Security (EuroSec ’20), April 27, 2020, Heraklion, Greece, https:
//doi.org/10.1145/3380786.3391398.

reference monitor model, the potentially malicious code is confined
in a sandbox with a limited number of entrances to validate the
reference requests. The reference requests are made in the form
of remote procedure calls to the monitor. Based on a pre-defined
policy, the monitor may enforce an access control model [6, 28],
check the program integrity [1, 15] or behavior [2], transform the
the program state [29], etc.

One well-known problem of such reference monitor systems is
the conflicting goals of strong monitor isolation and low communica-
tion cost. Some existing works use process-level isolation [21, 22, 26]
or hypervisor-based isolation [4, 13, 27] to enforce a strict isolation
between the monitor and the untrusted application code. However,
the fact that the monitor resides in a separate address space from the
monitored code leads to unavoidable performance overheads when
the untrusted code frequently traps to the monitor. For example, a
number of Multi-Variant eXecution systems (MVX, a code-hijacking
detection technique) use the ptrace interface to isolate security
monitors [6, 21, 26]. The main drawback of an out-of-process mon-
itor design is the performance overhead that can be up to 9x when
running commodity server applications such as Nginx [26]. On the
other hand, in-process monitors often have cheaper communication
costs since no context switch is needed. However, protecting the
monitor code itself becomes a new problem. For example, Shuf-
fler [29] uses an in-process monitor to continuously randomize the
application code location to defeat code reuse attacks. Meanwhile,
Shuffler also randomizes itself to prevent the monitor from being
exploited. The extra effort to protect monitor code itself makes it
hard to be applied to general cases.

Some other research uses protection domains within the target ad-
dress space to isolate the monitor code. For example, segmentation
in x86-32 CPU can be used to define logically isolated memory re-
gions for sensitive data isolation [15, 30]. Unfortunately, the x86-64
architecture has mostly dropped support for segment limit in 64-bit
mode. The monitor can also be placed in the Operating System (OS)
kernel. Kernel-based monitors are logically separated from the tar-
get application code. However, with recent side channel protection
(Kernel Page Table Isolation), the kernel and application address
spaces are separated which adds to an already high user/kernel
world switch latency [19]. Furthermore, they may have limited
access to the target memory, since recent processor features such
as SMEP and SMAP prevent kernel code from executing/access-
ing user space memory to prevent ret2usr like attacks [12]. Finally,
developing application reference monitors inside the kernel is a

https://doi.org/10.1145/3380786.3391398
https://doi.org/10.1145/3380786.3391398
https://doi.org/10.1145/3380786.3391398
https://doi.org/10.1145/3380786.3391398

EuroSec ’20, April 27, 2020, Heraklion, Greece Xiaoguang Wang, SengMing Yeoh, Pierre Olivier, and Binoy Ravindran

nontrivial work because it is very hard to avoid introducing un-
intended bugs to the system TCB [26]. Other technologies such
as Trusted Execution Environments [10] have also been shown to
have a high switching cost [14].

In this paper, we present MonGuard, a system to protect in-
process reference monitors and shared libraries. MonGuard exploits
the Intel Memory Protection Keys (MPK) hardware extension [11].
MPK provides intra-address space memory permission checks in
addition to the existing hardware memory protection architecture.
Specifically, it allows the application memory to be split into sev-
eral domains with different access permissions (write disabled or
access disabled). The application can update the access permission
of memory domains instantly by writing the permission bit array to
a register. As this does not involve page table update, the MPK per-
mission switch can be very fast. For example, it only takes less than
a few hundred CPU cycles for each memory permission switch [24].
MPK only checks data accesses but not instruction fetches. As such,
most existing works leverage MPK to protect sensitive data from
being accessed (Heartbleed [8] alike attacks) inside the process
space [9, 20, 24].

MonGuard, on the other hand, leverages MPK to protect an
in-process monitor from being exploited. Specifically, MonGuard
combines execute-only memory and code randomization to hide
the in-process monitor from application code. Furthermore, the
sensitive instructions inside the monitor are instrumented so that
even if powerful attackers find the hidden monitor the unintended
monitor code execution will be detected. To demonstrate the us-
ability of MonGuard, we build a multi-variant execution prototype
with MonGuard. The evaluation shows that our prototype performs
4x faster than the out-of-process monitor approach when running
Nginx workload and 10% faster than a state of the art in-process
MVX monitor [26]. Overall, we make the following contributions:

• We present the design and implementation of a system pro-
tecting in-process reference monitors and shared libraries
with Intel Memory Protection Keys;

• We build a multi-variant execution monitor prototype based
on the system mentioned above;

• We present evaluation results showing that MonGuard can
effectively isolate the monitor with minimal performance
overhead on the SPEC INT benchmark suite and Nginx.

2 BACKGROUND AND THREAT MODEL
2.1 Background
Intel MPK: Memory Protection Keys for Userspace (PKU) was in-
troduced as an extension of the memory management architecture
in Intel Xeon Scalable family (a.k.a Skylake-SP) [7]. It provides a
mechanism to enforce page-granularity protection without modi-
fying the page tables when an application updates the protection
permission (PKEY). Therefore, it does not require TLB shoot downs
and subsequent TLBmisses. With MPK, bits 62:59 of each page table
entry can be associated with one of the 16 available keys (PKEY).
A new 32-bit thread-private protection key rights register for user
pages (PKRU) was introduced to store the permissions of the 16
keys. For each key, there are two bits in the PKRU indicating the
permissions for the thread currently running on that core: write

disabled and access disabled. To set/change permissions of a mem-
ory domain, an unprivileged instruction wrpkru can be used to
update the PRKU register. The memory permissions can be update
instantly. This is different from the memory domain mechanism
in ARM and PowerPC, where the kernel maintains the memory
domain privilege [31]. Note that the memory key protection only
works for memory data accesses. Interestingly, if the code pages
are associated with an access disabled protection key, the code will
be no longer read but still can be executed. This implements the
execute-only memory (XoM) [3]. MonGuard leverages XoM to pre-
vent trampoline code from leaking out the monitor location.

Intra-Process Isolation: An application can be split into dif-
ferent protection domains. This is especially useful for sensitive
data protection (e.g., SSL key). Researchers have proposed using
OS primitives [17], x86 segmentation [16], and even virtualization
techniques [18] to protect sensitive data inside the address space.
For example, light-weight contexts (lwCs) modifies the OS kernel
to provide independent units of isolation within a process [17].
Following this direction, recent work leverage Intel MPK to achieve
sensitive data isolation with cheaper performance cost [9, 20, 24].
For example, libmpk is proposed as a library to virtualize the pro-
tection keys for the scalability problem [20]. ERIM further utilizes
binary analysis/rewriting to prevent unintended sensitive MPK
instructions from being maliciously used [24]. Although the MPK
memory permission switch can be very efficient, MPK itself does
not guarantees the code page safety.

2.2 Threat Model
We assume the attacker has access to the target binaries, such as
application, its shared libraries, as well as the monitor. At runtime,
the attacker can only access the target process remotely through the
standard I/O interface, namely a socket connection. The attacker can
send arbitrary data to the target process. We assume a trustworthy
TCB including the OS kernel and the compiler toolchain.

3 DESIGN AND IMPLEMENTATION
3.1 Overview
Figure 1 shows a high-level overview of the application address
space layout when running under MonGuard. Application code
and data memory are separated from the monitor and shared li-
braries through a call gate which directly transfers the control from
application code to the reference monitor. The call gate contains
direct jump instructions to the monitor code. MonGuard further
marks the call gate code pages with access disabled. As a result,
attackers are unable to read the call gate code memory to locate
the monitor in the address space, thereby preventing just-in-time
payload generation attacks [23].

By doing so, MonGuard ensures the call gate is the only legal
entrance to invoke the reference monitor. Since the monitor was
loaded at a random offset from the application code, it is difficult to
locate the monitor address without having any direct pointer infor-
mation. The only pointer information (monitor/library addresses)
in the application context is embedded in the trampoline code as
immediates (within the jump instructions). While an attacker may
try to brute-force the address space in order to modify the monitor
credential data (e.g. change the result of a monitor request), those

Secure and Efficient In-process Monitor (and Library) Protection with Intel MPK EuroSec ’20, April 27, 2020, Heraklion, Greece

Application Context

… …
call monitor_code
… …
call func@libc
… …

Reference Monitor

Shared Libraries

… …

instrumentation around
sensitive instructions

random
gap

Monitor/Library Context (MPK Protected)

Executable-no-Read

Trampoline (call gate)

Figure 1: System overview of MonGuard with application
context and the monitor (shared libraries) context. The call
gate memory is executable but not readable.

attempts to write to data from the potentially malicious application
code will be prevented by MPK protection (Section 3.2).

3.2 Monitor Memory Isolation
MonGuard leverages MPK to enable the “one-way visibility” of a ref-
erence monitor. MonGuard logically splits the application address
space into an application context and a monitor/library context.
Only the monitor/library context is allowed to access the applica-
tion context, but not vice versa. To achieve that, MonGuard prepares
two memory protection keys for the monitor (including the shared
libraries) code and data respectively.

The first protection key (PKEY 1) is assigned to all code pages,
which includes the code of the monitor, shared libraries and the
trampoline call gate. PKEY 1 disallows the read permission of those
code pages, making themonitor code execute-only. This can prevent
the issue of direct code address leakage, which might be used for
dynamical vulnerability discovery and payload generation [23]. Ap-
plication code can be also optionally assigned with PKEY 1, further
preventing attackers from directly reading from the application’s
code pages. The second protection key (PKEY 2) is associated with
the monitor and shared library data pages. The attribute of PKEY
2 will be updated based on the execution context. When the code
execution is in the application context, PKEY 2 is set with access
disabled. However, when the application calls the monitor or library
code through the trampoline, the monitor enables the data access
by clearing the access disabled bit of PKEY 2 in the PRKU register.
Before leaving the monitor context, the monitor sets the access
disabled bit again, thereby ensuring the monitor’s data integrity.

Currently, MonGuard isolates both the reference monitor and
the shared library data from the application code context, which
makes the attack surface as small as possible. To achieve that,
MonGuard intercepts all the library calls and updates PKEY 2 ac-
cordingly to allow legal library calls. MonGuard does not isolate
the stack and heap memory during the application-monitor context
switch. In MonGuard’s design, we assume the monitor does not
call the application code. Therefore, the application code will never
have a chance to manipulate the monitor’s stack. Heap is another
potential target for attacker. In current monitor implementation,
we did not use any dynamic memory. However, we do provide a
hooked MonGuard mmap implementation to associate 4k pages with
PKEYs. A more comprehensive solution might be to embed a simple

malloc()/free() implementation on top of the protected mmap’ed
memory.

3.3 Monitor Instrumentation
Besides monitor data, monitor code is also a prime target for attack-
ers. Although the monitor and the libraries are hidden from the
application code by Address Space Layout Randomization (ASLR),
there is a probability a powerful attacker may perform a brute-force
search of the 64-bit address space. For example, an attacker could
use an infinite loop to fork child processes to jump into random
addresses within the address space. If the attacker is able to contin-
uously cause jumps to memory locations and observe the effects
of these jumps (e.g. an infinite loop instead of a trap), they might
be able to figure out the location of the monitor code pages. This
technique was similarly used in the Blind-ROP attack [5]. With
MPK, the PKEYs can only remove the read permission of the code
page but not the execution permissions. The possibility of unin-
tended monitor code execution is considered harmful since the
attacker may have the ability to construct ROP payload and bypass
the monitor checks.

To solve that, MonGuard adds instrumentation to sensitive moni-
tor instructions. First, MonGuard inserts an instruction that touches
monitor memory before every indirect control transfer instruction,
for example, the indirect jmp/call and the ret instructions. These
indirect control instructions can be used to launch an attack and
redirect control back to the application code. When an attacker
attempts to chain gadgets with a jump to the instructions preceding
a return instruction the memory touch instruction will cause an
MPK fault as this access did not go through the call gate to switch
the PKRU permissions. The wrprku instruction is another instruc-
tion an attacker should not be able to have control over. MonGuard
adopts a similar instrumentation method as used by ERIM [24].
Specifically, it inserts an additional check to the %eax value right
after the wrprku instruction which removes protection to prevent
PKRU register from being maliciously used to remove protection
from pages.

3.4 Implementation
In MonGuard, the monitor needs to be compiled as a position-
independent shared library (i.e., libmonguard.so) so that it can
be loaded at a random location inside the 64-bit process address
space. We use LD_PRELOAD to load the monitor into the applica-
tion address space. The Linux LD_PRELOAD environment variable
instructs the dynamic linker to preload the shared library before
processing the application’s dependency list. MonGuard also lever-
ages LD_PRELOAD to override symbols in other dynamically linked
libraries such as libc, enabling it to intercept calls to shared libraries
from application context.

3.4.1 MonGuard Call Gates. The MonGuard call gate is a jmp in-
struction followed by the memory permission (PKRU) update. The
jmp instruction is originally from the PLT code, which transfers
control to the monitor. MonGuard leverages the structure of the
shared library to hide the location of the monitor. Specifically, the
compiler generates the PLT/GOT for each external library function
(e.g., printf in libc). Each PLT entry contains an indirect jump with
the destination address stored in GOT (the .got.plt section in ELF

EuroSec ’20, April 27, 2020, Heraklion, Greece Xiaoguang Wang, SengMing Yeoh, Pierre Olivier, and Binoy Ravindran

binaries). The loader resolves the external function address and fills
in the corresponding GOT entry in what is known as on-demand
symbol resolution (lazy-binding). However, there is a subtle security
issue - the GOT contains the the monitor and libraries addresses
which can then be leaked.

<monitor_call@plt> jmpq *GOT[n]
<monitor_call@plt> pushq $n
<monitor_call@plt> jmpq RESOLVER_ADDR

Before PLT patching :

<monitor_call@plt> movabs MONITOR_ADDR, %rax
<monitor_call@plt> jmpq *%rax
<monitor_call@plt> nop
<monitor_call@plt> … …

After PLT patching :

Figure 2: Original PLT slot patched to new PLT slot

The premise of MonGuard relies on the reference monitor being
well hidden against potential attackers. Since we have preloaded
the libc calls with our call gates, the .got.plt slots now contain
pointers to the hidden reference monitor. To prevent the program
from leaking information about the location of the reference moni-
tor in the address space, we take advantage of musl-libc’s lack of
lazy binding support. By the time the constructor of MonGuard is
called, the jmp instruction in the PLT has already been resolved to
reference its respective slot in the .got.plt section containing the
address of the call targets in the shared library. We patch the PLT
slots with immediate addresses corresponding to their respective
jump targets, and clear the .got.plt slots (As shown in Figure 2).
Subsequently, we apply the execute-only memory protection to the
PLT code pages. This patching is performed on program startup in
the MonGuard constructor.

Once the application invokes a monitor call, the patched PLT
redirects the control to the monitor code. The monitor clears the
%rax value to prevent any potential monitor address leakage. Next,
the monitor deactivates the PKEY protection for monitor data and
will reactivate it when leaving the monitor. An extra benefit of
using the trampoline jmp instruction to update MPK protection is
that we can hide the sensitive wrpkru instructions from the appli-
cation code. For those unintended wrpkru instructions occurred
in the application code, we could adopt similar techniques used
in ERIM [24] or Hodor [9]. For example, using binary rewrite to
replace the unintended wrpkru instructions with semantically same
instructions [24] , or using the debug register to monitor the unin-
tended wrpkru use [9]. In order to prevent internal libc functions
from calling other libc functions through the PLT and going through
the call gate again, we passed the -Bsymbolic flag to the linker when
building musl-libc, thereby preventing symbol inter-positioning.

Listing 1 shows the pseudo code of a monitor call gate. The
monitor defines a global dummy variable (line 1 in Listing 1). We
instrument a dummy variable write before each indirect control
transfer instruction, preventing a powerful attacker from perform-
ing a ROP attack into the monitor code and hijacking the control
flow back to application code. Themonitor DEACTIVATE is a macro
of inline assembly removing the PKEY data access protection. After
completing the real monitor code in line 9, the monitor re-enables

the protection by using ACTIVATE macro. The ACTIVATE macro’s
implementation is very similar to the call gate used by ERIM [24].
Specifically, it enables the MPK protection by updating the PKRU
and checks the eax value after the wrpkru instruction to prevent
the control flow hijack breaking the integrity of the gate code.

1 int canary = 0; // Barrier variable
2 int monitor_call@Ref_Monitor ()
3 {
4 // Clear %rax used in .plt trampoline
5 asm("xor %rax ,%rax");
6 DEACTIVATE (); // Disable data protection
7
8 /* Reference monitor implementation */
9 real_monitor_code ();
10
11 // Touch monitor data
12 asm("mov $0x0 , %0",=r(canary));
13 ACTIVATE (); // Re-enable protection
14 return retval;
15 }

Listing 1: Pseudo code of a monitor call routine

3.4.2 Writing a Monitor Call. MonGuard automatically intercepts
external library calls (e.g., libc calls). Security researchers can im-
plement other monitor calls, for example to check memory in-
tegrity [15] or transform the code [29]. To write a monitor call,
developers have to declare the monitor call function type and com-
pile/link the monitor call skeleton (an empty function) to the appli-
cation binary. The real monitor call should be implemented inside
the monitor code (e.g., linked into libmonguard.so). Developers
should also take care of the monitor call instrumentation inside
the application code in order to use the monitor call. After that,
applications can involve the monitor call safely under MonGuard
protection. Note that the instrumented application can also run
“natively” (without invoking monitor) if it is not launched with the
LD_PRELOAD monitor library.

4 CASE STUDY AND EVALUATION
In this section, we first study a use case of the in-process monitor
protected with MonGuard, next we report the evaluation results.

Case Study: An MVX Monitor. We implemented a Multi-Va-
riant eXecution (MVX) monitor using MonGuard. MVX is a tech-
nique aiming to detect software attacks based on control flow hi-
jacking [6, 13, 21, 26]. It does so by running in parallel multiple
instances of the same program, named variants, that are function-
ally equivalent but which implementations differ. A MVX monitor
feeds the variants with same inputs and monitor their behavior. The
difference of implementation between the variant makes that an
attack leads to a divergence of their behavior. When it happens, the
MVX system raises a security flag. For example, when the variants’
address spaces are fully non-overlapping [25], a ROP chain jumping
to an absolute address will lead to the crash of one variant.

Figure 3 shows the layout of our in-process MVX monitor under
MonGuard protection. The monitor and libc context is protected
with the techniques mentioned in Section 3. There are two variants
currently running as two processes. The master variant (variant 1)
handles the I/O directly, e.g., the socket connection. The follower
variant (variant 2) duplicates the execution for the intrusion de-
tection. For most cases, the duplicated execution will not cause

Secure and Efficient In-process Monitor (and Library) Protection with Intel MPK EuroSec ’20, April 27, 2020, Heraklion, Greece

Variant 1

MVX Monitor

Variant 2

MVX Monitor

libc
libc

Protected by MonGuard

IPC

Kernel

… …
call fun@libc
... …

… …
call fun@libc
... …

1

2

3

1

2’

3’

2

Figure 3: In-process MVX monitor protection with
MonGuard.

any problem because of the process space isolation. However, the
duplication may double update the system wide state, for exam-
ple, writing a memory buffer to a local file twice. In this case, the
MVX monitor simulates the file write by updating the side effects
(e.g., the return value of the write call). In our MVX monitor, we
intercept and simulate the system state at the libc call level.

Evaluation: First, we evaluate the performance overhead of
a MonGuard-based monitor and a ptrace-based monitor under
CPU intensive (SPEC INT2006) and I/O intensive (Nginx) work-
loads. SPEC INT2006 consists of several CPU-intensive benchmarks,
stressing the system’s processor and memory subsystems. Nginx is
a widely used web server in production environment. In our eval-
uation, both monitors only intercept the external procedure calls
(system calls, libc calls) without any further inspections. Figure 4
shows the evaluation results. For most CPU intensive workload, the
ptrace monitor and the MonGuard monitor perform similarly. How-
ever, ptrace-based monitor brings 4.5x performance overhead for
I/O intensive work (e.g., Nginx). This is likely because Nginx issues
more frequent external procedure calls than CPU intensive work-
load, which amplifies the overhead for the costly out-of-process
monitor. To prove our assumption, we profiled the external proce-
dure call rate (number per second). Nginx performs 31,847 system
calls per second while 403.gcc performs 9,281 system calls per sec-
ond. Other applications only issue less than 500 system calls per
second on our test machine.

Next, we evaluate the performance of the MVX monitor men-
tioned at the beginning of this section. Our MVX prototype is
compiled as a shared library protected by MonGuard. Currently,
the MVX monitor simulates 35 libc calls for the follower variant
execution. For example, the file descriptor related functions such as
fopen, fdopen, close; the networking and event poll related func-
tions such as epoll_create, sendfile, writev, etc. We measured
the performance of running two Nginx variants under our MVX
monitor. We also used the ApacheBench as the workload generator
and tested on the loopback (0.1ms network latency) as mentioned
in a state-of-the-arts MVX system (ReMon [26]). With MonGuard,

 0%

 50%

 100%

 150%

 200%

 250%

 300%

 350%

 400%

 450%

 500%

401.bzip2

403.gcc

429.m
cf

458.sjeng

464.h264ref

N
ginx

N
o
rm

al
iz

ed
 p

er
fo

rm
an

ce
 o

v
er

h
ea

d

 MonGuard Monitor

 Ptrace Monitor

Figure 4: Performance overhead of MonGuard and a ptrace
monitor (Normalized to application running w/o monitors).

MVX monitor brings 2.7x overhead for Nginx workload, which
outperforms the 3x overhead of ReMon [26].

5 DISCUSSION
Generalization: Intra-Process Monitors with Intel MPK: The
capacity of Intel MPK to provide memory protection on a per-thread
basis within a single address space, combined with the low latency
of the protection domain switch operation, make for some inter-
esting applications beyond its use in MVX systems. The principles
presented in this paper could be generalized to other tracing/moni-
toring security applications in which a trusted monitor needs to be
isolated from the untrusted monitored program. Using MPK, the
monitor can be placed within the untrusted program address space
and protected from the rest of the untrusted code. Locating the
monitor within the monitored process should allow for low latency
switching between monitored and monitoring code. As a result, the
performance should be enhanced compared to traditional solutions
placing the monitor in another process or in the kernel/hypervi-
sor [13, 22, 26, 27]. There are several examples of systems beyond
MVX that may benefit from protecting a trusted monitor with MPK,
such as sandbox and fault isolation [30, 31], malware tracers/mon-
itors [22], fine-grained system call tracing/filtering [26], etc. We
believe it would be an interesting topic to convert those existing
tools to use process monitors protected by MPK-based approach.

Limitations of Intel MPK: Although it is an interesting tech-
nology, MPK does not come without limitations. First of all, there
is a limited set of protection keys (16) that may not suit all mon-
itoring scenarios. This limitation can be removed by virtualizing
the keys [20], however this comes at the cost of lower performance.
A second limitation stems from the fact that the PKRU switch
operation is, for performance reasons, an unprivileged instruc-
tion. Combined with the fact that MPK does not check memory
accesses on instruction fetches, it raises concerns about PKRU ma-
nipulation by untrusted code, either directly or indirectly through
techniques such as Return-Oriented Programming (ROP). Thus,
isolation schemes must be complemented with static code analy-
sis [24] to validate each update of the PKRU register. Sequences of
bytes forming PKRU manipulating instructions may also appear

EuroSec ’20, April 27, 2020, Heraklion, Greece Xiaoguang Wang, SengMing Yeoh, Pierre Olivier, and Binoy Ravindran

due to the variable size of the x86-64 instruction set, in a similar
manner as ROP gadgets. Solution have been proposed including
binary rewriting techniques [24] as well as traps based on hardware
watchpoints [9] to address that issue. Finally, simply updating the
PKRU upon security domain switch does not prevent the leakage
of registers content between domains. This can be exploited to
mount an attack. Although the solution is to save, scrub and restore
registers values, this may impact the latency of security domain
switch operations.

6 CONCLUSION
We have presented the design and implementation of MonGuard, a
system to protect in-process monitor and the libraries. MonGuard
leverages Intel MPK to efficiently update memory access permis-
sions. MonGuard implements execute-only memory and code ran-
domization to hide the monitor code. We have built a prototype
of MonGuard and use it to implement a protected in-process MVX
monitor. The evaluation shows MonGuard can greatly improve the
monitor performance with reasonable intra-component isolation.

ACKNOWLEDGMENTS
Wewould like to thank the anonymous reviewers for their insightful
comments. This work is supported in part by US Office of Naval
Research under grants N00014-16-1-2711 and N00014-18-1-2022.

REFERENCES
[1] Martín Abadi, Mihai Budiu, Úlfar Erlingsson, and Jay Ligatti. 2005. Control-Flow

Integrity: Principles, Implementations, and Applications. In Proceedings of the
12th ACM Conference on Computer and Communications Security (Alexandria, VA,
USA).

[2] Kurniadi Asrigo, Lionel Litty, and David Lie. 2006. Using VMM-based sensors to
monitor honeypots. In Proceedings of the 2nd international conference on Virtual
execution environments. 13–23.

[3] Michael Backes, Thorsten Holz, Benjamin Kollenda, Philipp Koppe, Stefan Nürn-
berger, and Jannik Pewny. 2014. You Can Run but You Can’T Read: Preventing
Disclosure Exploits in Executable Code. In Proceedings of the 2014 ACM SIGSAC
Conference on Computer and Communications Security (CCS ’14).

[4] Adam Belay, Andrea Bittau, Ali Mashtizadeh, David Terei, David Mazières, and
Christos Kozyrakis. 2012. Dune: Safe User-level Access to Privileged CPU Fea-
tures. In Proceedings of the 10th USENIX Conference on Operating Systems Design
and Implementation (OSDI’12).

[5] Andrea Bittau, Adam Belay, Ali Mashtizadeh, David Mazieres, and Dan Boneh.
2014. Hacking Blind. In Security and Privacy (SP), 2014 IEEE Symposium on. IEEE,
227–242.

[6] Benjamin Cox, David Evans, Adrian Filipi, Jonathan Rowanhill, Wei Hu, Jack
Davidson, John Knight, Anh Nguyen-Tuong, and Jason Hiser. 2006. N-Variant
Systems: A Secretless Framework for Security through Diversity.. In USENIX
Security Symposium. 105–120.

[7] David Mulnix. Accessed: 2020-02-14. Intel® Xeon® Processor Scalable Fam-
ily Technical Overview. https://software.intel.com/en-us/articles/intel-xeon-
processor-scalable-family-technical-overview.

[8] Zakir Durumeric, Frank Li, James Kasten, Johanna Amann, Jethro Beekman,
Mathias Payer, Nicolas Weaver, David Adrian, Vern Paxson, Michael Bailey, and
et al. 2014. The Matter of Heartbleed. In Proceedings of the 2014 Conference on
Internet Measurement Conference (Vancouver, BC, Canada) (IMC ’14). Association
for Computing Machinery, New York, NY, USA, 475–488.

[9] Mohammad Hedayati, Spyridoula Gravani, Ethan Johnson, John Criswell,
Michael L. Scott, Kai Shen, and Mike Marty. 2019. Hodor: Intra-Process Isolation
for High-Throughput Data Plane Libraries. In 2019 USENIX Annual Technical
Conference (USENIX ATC 19). USENIX Association, Renton, WA, 489–504.

[10] Intel 2013. Software Guard Extensions Programming Reference. Intel.
[11] Intel 2019. Intel 64 and IA-32 Architectures Software Developerś Manual. Intel.
[12] Vasileios P. Kemerlis, Michalis Polychronakis, and Angelos D. Keromytis. 2014.

ret2dir: Rethinking Kernel Isolation. In 23rd USENIX Security Symposium (USENIX
Security 14). USENIX Association, San Diego, CA, 957–972.

[13] Koen Koning, Herbert Bos, and Cristiano Giuffrida. 2016. Secure and Efficient
Multi-Variant Execution using Hardware-Assisted Process Virtualization. In

2016 46th Annual IEEE/IFIP International Conference on Dependable Systems and
Networks (DSN). IEEE, 431–442.

[14] Koen Koning, Xi Chen, Herbert Bos, Cristiano Giuffrida, and Elias Athanasopou-
los. 2017. No need to hide: Protecting safe regions on commodity hardware.
In Proceedings of the Twelfth European Conference on Computer Systems. ACM,
437–452.

[15] Volodymyr Kuznetsov, Laszlo Szekeres, Mathias Payer, George Candea, R. Sekar,
and Dawn Song. 2014. Code-Pointer Integrity. In 11th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 14). USENIX Association,
Broomfield, CO, 147–163.

[16] Hojoon Lee, Chihyun Song, and Brent Byunghoon Kang. 2018. Lord of the
X86 Rings: A Portable User Mode Privilege Separation Architecture on X86. In
Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications
Security (Toronto, Canada) (CCS ’18). Association for Computing Machinery, New
York, NY, USA, 1441–1454.

[17] James Litton, Anjo Vahldiek-Oberwagner, Eslam Elnikety, Deepak Garg, Bobby
Bhattacharjee, and Peter Druschel. 2016. Light-Weight Contexts: An OS Ab-
straction for Safety and Performance. In 12th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 16). USENIX Association, Savannah,
GA, 49–64.

[18] Yutao Liu, Tianyu Zhou, Kexin Chen, Haibo Chen, and Yubin Xia. 2015. Thwarting
Memory Disclosure with Efficient Hypervisor-Enforced Intra-Domain Isolation.
In Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communi-
cations Security (Denver, Colorado, USA) (CCS ’15). Association for Computing
Machinery, New York, NY, USA, 1607–1619.

[19] Pierre Olivier, Daniel Chiba, Stefan Lankes, Changwoo Min, and Binoy Ravin-
dran. 2019. A binary-compatible unikernel. In Proceedings of the 15th ACM
SIGPLAN/SIGOPS International Conference on Virtual Execution Environments.
59–73.

[20] Soyeon Park, Sangho Lee, Wen Xu, HyunGon Moon, and Taesoo Kim. 2019.
libmpk: Software Abstraction for Intel Memory Protection Keys (Intel MPK). In
2019 USENIX Annual Technical Conference (USENIX ATC 19). USENIX Association,
Renton, WA, 241–254.

[21] Babak Salamat, Todd Jackson, Andreas Gal, and Michael Franz. 2009. Orchestra:
intrusion detection using parallel execution and monitoring of program variants
in user-space. In Proceedings of the 4th ACM European conference on Computer
systems. ACM, 33–46.

[22] Monirul I. Sharif, Wenke Lee, Weidong Cui, and Andrea Lanzi. 2009. Secure
In-VMMonitoring Using Hardware Virtualization. In Proceedings of the 16th ACM
Conference on Computer and Communications Security (Chicago, Illinois, USA)
(CCS ’09). Association for Computing Machinery, New York, NY, USA, 477–487.

[23] Kevin Z Snow, Fabian Monrose, Lucas Davi, Alexandra Dmitrienko, Christopher
Liebchen, and Ahmad-Reza Sadeghi. 2013. Just-in-time Code Reuse: On the
Effectiveness of Fine-grained Address Space Layout Randomization. In Security
and Privacy (SP), 2013 IEEE Symposium on. IEEE, 574–588.

[24] Anjo Vahldiek-Oberwagner, Eslam Elnikety, Nuno O. Duarte, Michael Sammler,
Peter Druschel, and Deepak Garg. 2019. ERIM: Secure, Efficient in-Process Isola-
tion with Protection Keys (MPK). In Proceedings of the 28th USENIX Conference
on Security Symposium (Santa Clara, CA, USA) (SEC’19). USENIX Association,
USA, 1221–1238.

[25] Stijn Volckaert, Bart Coppens, and Bjorn De Sutter. 2016. Cloning your gadgets:
Complete ROP attack immunity with multi-variant execution. IEEE Transactions
on Dependable and Secure Computing 13, 4 (2016), 437–450.

[26] Stijn Volckaert, Bart Coppens, Alexios Voulimeneas, Andrei Homescu, Per Larsen,
Bjorn De Sutter, and Michael Franz. 2016. Secure and Efficient Application
Monitoring and Replication. In 2016 USENIXAnnual Technical Conference (USENIX
ATC 16). USENIX Association, Denver, CO, 167–179.

[27] Xiaoguang Wang, Yue Chen, Zhi Wang, Yong Qi, and Yajin Zhou. 2015. SecPod:
A Framework for Virtualization-based Security Systems. In 2015 USENIX Annual
Technical Conference (USENIX ATC 15). USENIX Association, Santa Clara, CA,
347–360.

[28] Wikipedia. Accessed: 2020-02-14. AppArmor. https://en.wikipedia.org/wiki/
AppArmor.

[29] David Williams-King, Graham Gobieski, Kent Williams-King, James P Blake,
Xinhao Yuan, Patrick Colp, Michelle Zheng, Vasileios P Kemerlis, Junfeng Yang,
and William Aiello. 2016. Shuffler: Fast and Deployable Continuous Code Re-
Randomization.. In OSDI. 367–382.

[30] Bennet Yee, David Sehr, Gregory Dardyk, J. Bradley Chen, Robert Muth, Tavis
Orm, Shiki Okasaka, Neha Narula, Nicholas Fullagar, and Google Inc. 2009. Native
Client: A Sandbox for Portable, Untrusted x86 Native Code. In Proceedings of the
30th IEEE Symposium on Security and Privacy.

[31] Yajin Zhou, Xiaoguang Wang, Yue Chen, and Zhi Wang. 2014. ARMlock:
Hardware-Based Fault Isolation for ARM. In Proceedings of the 2014 ACM SIGSAC
Conference on Computer and Communications Security (Scottsdale, Arizona, USA)
(CCS ’14). Association for Computing Machinery, New York, NY, USA, 558–569.

https://software.intel.com/en-us/articles/intel-xeon-processor-scalable-family-technical-overview
https://software.intel.com/en-us/articles/intel-xeon-processor-scalable-family-technical-overview
https://en.wikipedia.org/wiki/AppArmor
https://en.wikipedia.org/wiki/AppArmor

	Abstract
	1 Introduction
	2 Background and Threat Model
	2.1 Background
	2.2 Threat Model

	3 Design and Implementation
	3.1 Overview
	3.2 Monitor Memory Isolation
	3.3 Monitor Instrumentation
	3.4 Implementation

	4 Case Study and Evaluation
	5 Discussion
	6 Conclusion
	Acknowledgments
	References

