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Abstract

We present RT-P2P, a real-time peer-to-peer
(P2P) system that allows application-level end-to-end
timing requirements to be satisfied in P2P systems.
P2P systems are fundamentally characterized by: a
large number of geographically distributed nodes that
require little infrastructural support from the under-
lying network; an unbounded number of nodes (a
permanently evolving set of nodes); and consequently
no process/node with global knowledge of the system
structure. Interesting features of such networks in-
clude the fact that they allow a rich set of nodes to
act as relay points for other nodes, and a rich set
of overlay paths (selected by peers) to be constructed.
These features have traditionally made overlay routing
– where end hosts have the flexibility of routing traffic
to their destinations through the desired choice of
intermediate overlay nodes (unlike in IP routing) – a
very attractive approach for end-to-end performance
optimizations in P2P networks. Key aspects of our
RT-P2P infrastructure include a real-time P2P proto-
col, real-time communication algorithm, and analyti-
cal performance models. We analytically establish the
timing properties of RT-P2P. Our simulation studies
validate our analytical results.

1. Introduction

In this paper, we consider distributed real-time
systems working over large-scale unreliable networks,
e.g., those without a fixed network infrastructure or
subject to interference, including mobile and wireless
ad-hoc networks. Scalability and the ad-hoc nature
of such system undoubtedly increase the complexity
to tackle the real-time requirements under run-time

uncertainties, including arbitrary message losses and
node failures. For example, a tactical system in the
battlefield may consist of sensor networks, satellite
terminals and combat system [1], [2], which should
be capable of identifying, tracking and attacking mul-
tiple objects with strict real-time constraints. There
might be more than thousands of communication and
computation nodes connected by ad-hoc and dynamic
links under a harsh communication environment.

Traditional Client-Server model is hard to be de-
ployed adaptively in such a large-scale ad-hoc envi-
ronment with end-to-end timing assurance [3], [4]. As
we know, Client-Server architecture typically involves
a small cluster of servers to fulfill the service requests
from connected clients [5]. Such architecture is server-
dependent and can apply well above pre-configured
static infrastructures [5]. However, (1) due to the
ad-hoc property, the critical nodes in the system
may leave from the server connections, which may
provoke the failure of the entire real-time system; (2)
moreover, the system consists of dynamic and hybrid
networks, which makes it impractical to timely pre-
configure the system to a Client-Server architecture
without a prior knowledge of the underlying infras-
tructures; (3) scalability-wise, newly joined clients
will demand more network resources, such as servers
and bandwidth, yet they are limited in most situa-
tions.

In our study, we found Peer-to-Peer (P2P) overlay
networks can solve the above constraints on dis-
tributed real-time systems without any hierarchical
organization or centralized control. P2P system is a
special distributed system overlayed above the under-
lying physical networks, where all responsibilities are
uniformly divided among all participants, known as
peers [6], [7]. Typically, a P2P system exhibits the
following features [5], which make a natural fit to the
aforementioned system requirements.



• Resource aggregation. In P2P systems, peers
can serve both as clients and servers. In light
of this, P2P systems can leverage the resources
from all peers rather than conventional central-
ized resources where a very limited number of
servers provide the core value to the services.

• Dynamism and Ad-hoc communication.
P2P systems assume a highly dynamic working
environment, where resources, such as compu-
tation nodes, will be entering and leaving the
system frequently and arbitrarily. Also, system
communications are built on ad-hoc links.

• No hierarchical organization. P2P systems
can directly work atop hybrid existing networks
without hierarchical organization.

• Massive scalability. P2P systems can accom-
modate millions of peers. For example, Skype,
a VoIP software based on P2P technology, has
been well-known to accommodate millions of
users to talk online simultaneously [8].

In light of the above features, we bring up the
concept of real-time P2P system (RT-P2P), which is
capable of ensuring system end-to-end real-time con-
straints. Previous work in P2P system mainly focused
on specific applications without timing constraints,
such as file sharing and file storage in [7], [9], [10].
For example, in [9], Rowstron et al introduced the
P2P protocol and APIs of Pastry, which provides
the functionalities of global file sharing. Although the
reliability of Pastry is proved to be high, they did
not consider the real-time properties. On the other
hand, although some of the existing P2P applications
imply certain timing constraints, such as multime-
dia streaming [8], [10], they can only work on IP
networks, and the timing constraints are egoistically
defined without considering requirements from global
tasks. For example, when Skype shares the bandwidth
with TCP flows, Skype will dominate the bandwidth
with no pity on the tasks built upon TCP flows [11].
Such selfish behavior undoubtedly undermines the
system-wide timeliness behaviors. By no means, those
P2P applications can be recognized as real-time P2P
systems.

Our major contributions of this work include (1)
proposing the novel concept of real-time peer-to-peer
system; (2) designing the protocols and real-time
communication algorithms for RT-P2P with the con-
sideration of system uncertainties; (3) presenting an
analytical model for RT-P2P with theoretical insights
into the scalability and timeliness properties; (3)
completing a series of simulations based on RT-P2P
algorithms, which validates real-time performance of

RT-P2P.
The rest of the paper is organized as follows. In

Section 2, we discuss system models and protocols
of RT-P2P. In Section 3, we build the theoretical
model to analyze the real-time properties for RT-P2P.
In Section 4, we present a real-time communication
algorithm to enhance the real-time feature of RT-
P2P. In Section 5, we report our simulation studies
about scalability and timeliness performances. We
conclude the paper in Section 6.

2. Real-time Peer-to-Peer System

2.1. Rationale

In RT-P2P system, the core problem beside
scheduling is real-time communication, including
query routing (i.e. algorithms about searching a
wanted peer in P2P community). In this paper, we
assume all the nodes in RT-P2P are underloaded,
which means local tasks on each node can always be
scheduled to satisfy the real-time requirements. This
assumption allows us to focus on real-time communi-
cation in RT-P2P instead of scheduling issues.

In real-time applications, system will frequently
query the P2P community for the objects that can
provide required services. Query models which are
widely used in state-of-the-art P2P paradigms, in-
clude Centralized Directory Model, Request Flood
Model and DHT Model [5], [6]. In centralized di-
rectory model, peers publish the service and routing
information on a central server, such as Napster [12].
This model can be easily deployed, but it has the
scalability problem and may face a single point of
failure. In request flood model, peers broadcast their
requests among all the community. It can reach a
scalability of hundreds of thousands of nodes, such
as Gnutella [13]. However, the message overhead is
heavy for this method. In DHT model, each peer is
assigned a random ID upon registration, and each
peer also knows a given number of other peers [5].
When a service is advertised on such a system, an
ID is assigned to the service based on a hash of the
service name. Peers will then forward the routing
information of this service towards the peer whose
ID is closest to the service ID in hash table. When
a peer requests a service from the P2P system, the
request will go to the peer with the ID most similar
to the service ID. This process is repeated until a
routing record is found. Although DHT model is very
efficient for large-scale system, it has the problem that
the service IDs must be known ahead of the query [5].



In many real-time applications, such as [14], ser-
vice IDs can hardly been known before posting a
request for a given service. In this paper, we present
a super-peer-based backbone to facilitate real-time
communication. Based on this backbone, a gossip-
based query algorithm is properly designed to dis-
seminate the query and detect the routing paths.
Gossip scheme can exhibit highly scalable and ro-
bust behavior under dynamic and unreliable network
conditions [15], which makes a well fit to the system
requirement. In respect of message overhead, RT-
P2P smartly utilizes the neighborhood information
to avoid redundant queries. Once the gossip scheme
returns feasible routing paths, network probabilistic
theory will help estimate optimal paths for real-
time communication in consideration of system un-
certainties. Moreover, peers are allowed to register
at multiple super-peers, which not only enhances
the reliability of ad-hoc communications but also
improves the scalability. From the theoretical and
simulated results discussed later, RT-P2P is approved
to outperform the P2P strategy without super-peer
backbone and the traditional Client-Server paradigm
with gossip-based query in both scalability (number
of peers) and reliability (task success probability).

2.2. Distributed Task Model

We consider a distributed task abstraction that
models a causally-dependent, multi-node sequential
flow of execution. An example of such an execution
flow is one that is caused by a series of nested, re-
mote method invocations—e.g., invocation of remote
method A causes the invocation of remote method B;
invocation of method B, in turn, causes the invocation
of remote method C, and so on. Such an execution
flow can also be caused by a series of chained, publi-
cation and subscription events, or due to topical data
dependencies—e.g., publication of topic A depends
on subscription of topic B; publication of B, in turn,
depends on subscription of topic C, and so on.

Thus, a distributed task can be viewed as being
composed of a set of subtasks, where a subtask con-
stitutes the portion of the task’s execution on a node.
If the task models a series of nested, remote method
invocations, then a subtask constitutes a maximal
length sequence of contiguous method executions on
a node. If the task models a series of chained, pub-
lication and subscription events, then a subtask con-
stitutes the execution of a subscription/publication
service on a node.

We call the initial subtask of a task as the task’s
root. The node hosting the root is called the task’s

root node. A task’s most recent subtask — i.e., the
task’s current execution locus — is called the task’s
head, and the node hosting this head is called the
task’s head node.

We assume that the number of subtasks of a task
is known. Also, the execution time estimates of the
subtasks are also assumed to be known. The appli-
cation is thus comprised of a set of tasks, denoted
T = {T1, T2, . . .}.

2.3. System Model

The system consists of a set of nodes, denoted as
NS = {n1, n2, n3, . . .}. Each node is represented by
a peer in the RT-P2P. RT-P2P can be described by
a graph G(V,E) with peers denoted as V and links
between peers denoted as E, where N = |V | and M =
|E|.

Nodes, i.e. peers, in the real-time system usually
have different capabilities including available band-
width, processing speed and storage space, etc. Thus,
exploiting those capability difference can benefit the
timing assurance in real-time task processing and
communications, where “the more power, the more
responsibility” is obligated [16]. In terms of that, RT-
P2P employs a super-peer based backbone topology,
where a subset of peers with powerful capability,
called super-peers, are selected to coordinate peer
aggregation, query routing, object replication and
optimal (or heuristic) path selection.

Each super-peer aggregates and administrates a
group of peers, similarly to a parent-children tree
structure. It is worth mentioning that peers are only
connected with super-peers instead of interconnected
with each other in RT-P2P. As illustrated by Figure 1,
super-peers construct a backbone frame for RT-P2P
for intergroup communication and task processing.
According to [17], such super-peer-based backbone
topology will benefit system scalability and facilitate
the real-time communications by higher query routing
efficiency and lower traffic load. In addition, since the
major communications are administrated by super-
peers, the authenticated trustworthy super-peers will
enhance the security of RT-P2P.

In RT-P2P, peers may dynamically join or leave
the peer group or network. Super-peers are also dy-
namic; however, in the super-peer selection process,
relatively stable peers are preferred. We also assume
in the underlying physical networks, nodes may crash,
links may fail transiently or permanently, and mes-
sages may be lost, all arbitrarily.



Figure 1. RT-P2P

2.4. Peer Registration in RT-P2P

Peer arrival. On registration, a peer will first
broadcast its Request Joining Message (RJM) con-
taining its peerID (the unique ID of peers in RT-P2P)
and resource requirements (e.g., bandwidth) to the
neighboring super-peers within certain proximity. To
restrict the diameter of peer group size and ensure the
peer locality, RT-P2P employs a time-to-live (TTL)
mechanism or some network services like traceroute
as the proximity metric, depending on the application
requirement. Such property of low diameter can guar-
antee a short length of query path and a low number
of message overhead [16].

Once a super-peer receives a RJM message, it will
reply with Joining Acceptance Message (JAM) if join
conditions have been satisfied, e.g., super-peer still
has space to accommodate this peer, and security
authorization of this peer has been passed. Otherwise,
it will keep silent. It is worth mentioning that a peer
can register at multiple super-peers. This feature will
allow RT-P2P to overcome random attacks and tackle
the smooth mobility of peers [16].

Once a registration has been completed, a super-
peer will have the registration information about
this newly arrived peer in its routing table, such as
peerID and service meta-data which describes the
services this peer can provide. In addition, backbone
information (e.g., neighboring super-peer ID) is also
contained in the routing table to enable the commu-
nications among super-peers.

As we know, the peers in RT-P2P are highly
dynamic and unpredictable. So the routing table of
super-peers should be updated periodically.

Peer departure. A peer in RT-P2P may fail or
leave without notice. Accordingly, peer departure can
be found when super-peer refreshes its routing table
or other peer fails contacting this peer. If peer de-
parture is known beforehand, the peer will advertise
its departure to the related super-peers to enforce

a refresh on their routing tables. Upon refreshing
the routing table for peer departure, super-peer will
remove the related index information from its routing
table, and then release the resource assigned to that
peer so new peer can join and use it.

2.5. Super-peer Administration in RT-
P2P

Super-peers constitute the backbone of RT-P2P so
as to enhance the real-time communication, including
query routing and real-time processing. Each super-
peer can be linked with a restricted amount (msp)
of other super-peers, where msp is defined as the
dimension of RT-P2P, denoted as D.

Adding new super-peer. With the increase of
network size and the evolution of underlying net-
works, new super-peers should be added to adopt new
peers or migrated peers. New super-peer should be
elected from the candidate peers with certain qualifi-
cation requirements, such as security authentication,
available bandwidth, computation power and stabil-
ity. The integration of new super-peer is supervised
by one of the existing neighboring super-peers or
qualified peers (in case of newly joined subnet which
has no super-peers). In the process, index information
of the peers, which will be managed by this new
super-peer, should be copied or transferred from other
super-peers or peers. Backbone index of neighboring
super-peers should also be constructed for this new
super-peer. At the end, it will advertise its existence
to the peers in its group and neighboring super-peers
in the backbone. Thus some peers in other group
might immigrate to its group for better resources,
such as bandwidth and proximate locality. Some of
the similar algorithms are detailed in [16], [18].

Removing super-peer. Super-peers are dynamic
in RT-P2P so they may leave without notice as well,
though such notification is preferred. If a super-peer
knows its departure in advance, it will broadcast this
information to the peers in its group and require
them to transfer to other super-peers. In addition,
neighboring super-peers in the backbone will also be
notified to update their backbone index. In case a
super-peer fails without notice, one proximate neigh-
boring peer will take over the coordination of the
above transition.

If a super-peer still works in RT-P2P as an or-
dinary peer after leaving off the position, it should
reconnect to the RT-P2P as a normal peer with the
procedures described in Section 2.6.

Replacing super-peer. The replacement of
super-peers involves the steps of adding new super-



peer to take over the responsibility, transferring the
index information in routing table and then removing
the previous responsible super-peer. Detailed steps
can be referred to the above two subsections similarly.

2.6. Query Routing in RT-P2P

When a peer completes a subtask, it will search
for the next peer that can handle the consecutive sub-
task. In respect of the query, a gossip-based scheme is
exploited. First, the required service will be described
by metadata, which will be encapsuled in the query
message and then sent through the super-peer back-
bone to identify the peer that can provide this service.
During the gossip process, source super-peer will first
check its routing table for the required service. If
there exists such a peer in its group, it will direct
subtask information to that peer for further process.
Otherwise, the source super-peer will randomly query
its super-peer neighbors (called first-round query).
The number of queried super-peers in each round is
defined as fan out number. If on the first round, the
object is not identified in the queried super-peers,
they, except those who previously forwarded the same
message, will continue to forward this query to their
neighbors (second round query). This process will be
repeated until the object is found or timing restriction
is met. To meet the real-time requirement, we employ
a TTL mechanism to assure the timing constraints.
During the gossip process, super-peer IDs on the way
will be inserted into the message header for future
routing.

We should keep in mind each super-peer will only
forward the same query once according to the unique
query ID. After the object is located, destination
super-peer will reply the query to the source accord-
ing to the routing information in the message header.
Then source will activate the subtask on the object
by sending detailed subtask information, such as run-
time parameters. Because multiple routing paths may
be found, we need to identify those that can meet the
real-time requirements. For this purpose, we propose
a real-time communication algorithm, which will be
discussed in Section 4.

Reducing message overhead from query. Be-
cause excessive message overhead may lead to conges-
tion problem and undermine the real-time properties
of RT-P2P, we make efforts to reduce that overhead
through the following method.

Super-peers will exchange their neighboring infor-
mation with each other from time to time. Thus,
before a super-peer A starts forwarding the query to
one of its neighboring super-peers B, it will check

local copy of B’s neighboring information. If B has
a neighboring super-peer C with lower super-peer ID
number than A, A will not forward the query to B.
This algorithm only allow one neighbor C to forward
message to B. Therefore, it can significantly reduce
the redundant queries.

3. Theoretical Analysis of RT-P2P

In this section, we will theoretically analyze RT-
P2P from the perspectives of timeliness and message
overhead. In light of that, we will analytically com-
pare RT-P2P’s theoretical performance with some
other systems in later sections.

3.1. Probabilistic timeliness assurance

To understand the performance of RT-P2P practi-
cally, we consider the message loss ratio, which is the
probability that a query message can fail during the
transmission between two neighboring super-peers. It
could arise from comprehensive reasons, such as node
failure and message loss.

To reduce the complexity of analysis, we assume
the message loss ratios in RT-P2P are equal to the
same value mlr. Please keep in mind that in practical
applications, message loss ratio may vary among
different hops and even be non-stationary with the
elapse of time. However, in the coordination of RT-
P2P, we can define a restriction that two super-peers
can be linked as neighbors only if the message loss
ratio between them is less than or equal to mlr. In
that way, we are pursuing a worst case analysis.

In addition, it is also assumed that each super-
peer can accommodate np peers, and each peer are
registered at mp super-peers.

Timeliness property of RT-P2P. Let Ir be
the number of newly queried super-peers after query
round r, Ur be the number of uninformed super-peers
at the end of query round r, and Qr be the average
query fan out number of each super-peer at the query
round r with Qr 6 D, where D is the dimension of
RT-P2P. On the initial condition before query starts,
I0 = 1, U0 = Nsp − 1 where Nsp is the number of
super-peers in RT-P2P, and Q0 = Q where Q is the
initial query fan out number. Iteratively, we can have

Ur = Ur−1 × [1− Qr · (1−mlr)
Nsp − 1

]Ir−1 ; (1)

Ir−1 = Ur−2 − Ur−1, (2)

Qr = Q×
(

Ur

Nsp − 1

)(mp−1)/2

, (3)



where Nsp = dN ·mp/(np +1)e with N as the number
of peers in RT-P2P.

Resulting from that, the success probability of
subtask k can be carried out as

Pk =





1−
(

Nsp−1−mp
Nsp−1−Ufr

)
(

Nsp−1
Nsp−1−Ufr

) mp 6 Ufr;

1 mp > Ufr,

(4)

where fr represents the final round restricted by the
TTL mechanism.

Then, the success probability of one task is

PT = Pm−1
k , (5)

where m is the number of distributed subtasks be-
longing to the task.

If we have ntask tasks in the task set, the success
probability of the task set can be obtained by

PTS = Pntask

T . (6)

Message overhead of RT-P2P. To complete
subtask k, the incurred message overhead is

Nk =
fr∑

r=1

[Qr−1 × Ir−1]. (7)

Furthermore, we can work out the message over-
head to execute one task as

NT =

{
Nk ×

∑m−2
i=0 P i

k m > 1;
0 m 6 1.

(8)

So for one task set, the message overhead can be
mathematically expressed as

NTS = NT × ntask. (9)

Based on the analytical study about timeliness and
message overhead, we can quantitatively illustrate the
theoretical performance of RT-P2P in Figure 2(a) and
Figure 2(b). For those two plots, we set the number of
subtasks as 3. As shown in those two plots, when the
number of query rounds increases and fan out number
is high, both task success probability and message
overhead will increase due to the incremental queries
from gossip rounds. We can also utilize this model in
future research to target the optimal settings for RT-
P2P, where the trade-off between high task success
probability and relatively low message overhead will
be explored. For the convenience of illustration, we
will discuss further theoretical results together with
the experimental studies in Section 5.
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Figure 2. RT-P2P

4. Improvements on Real-time Com-
munication

Once a query returns a result according to the
above discussions in Section 2, there might be a
couple of routing paths in the outcome. Our purpose
in this section is to discuss how to select a suitable
path to the destination with probabilistic end-to-end
timing assurance.

4.1. Inaccurate Network Information

In distributed real-time systems, end-to-end delay
bound is one of the major criteria when we explore
a feasible path. Towards that end, identifying a path
capable of meeting the end-to-end delay requirement
implies the knowledge of network state, such as link
and peer metrics. However, such information of the
network state may be inaccurate due to the following
features of RT-P2P.



1) RT-P2P is a dynamic system. Network state
including underlying network status may inher-
ently change with the time.

2) RT-P2P is a large-scale system. Aggregating un-
derlying network information may bring impre-
cision.

3) Due to the resource limitation, it is always not
possible to frequently update the network infor-
mation.

To explore the real-time communication for RT-
P2P, we employ probabilistic models to deal with
such network uncertainties. In that context, we can
select the paths which are most likely to meet the
end-to-end delay bound. Accordingly, the source peer
should associate the stochastic properties of network
components, i.e., probability distribution functions
(pdf’s), to a performance metric [19]. Such pdf’s
can be obtained not only from the advertised in-
formation from the peers, but also from the local
construction based on parameters and characteristics
of the network components. In our study, we focus
on exploiting the probabilistic model. Other aspects,
such as detailed discussions on how to keep and access
the state information, can be found in [20].

4.2. Probabilistic Model on Paths with
End-to-End Delay Requirements

Before the discussion of our probabilistic model, we
should note it is more heuristic to first sort and select
a few candidate paths by certain network criteria,
such as response sequence of query routing, source-
to-destination distance (e.g., IP network hops), and
available bandwidth. Although such heuristic proce-
dure may be inaccurate and not optimal, it does
normally provide a good candidate set for us and
saves much computational cost in the selection al-
gorithm from probabilistic model. Otherwise, we will
be trapped in a NP-hard problem, which has been
proved in [19].

Suppose we have a global end-to-end communica-
tion delay requirement, denoted as Dmax, and the pdf
fDl,p

(dl,p) of the delay Dl,p on link l, where l is a link
in the candidate path p.

To meet the end-to-end communication delay re-
quirement, we should have

∑

l,p

Dl,p 6 Dmax. (10)

Given a path p, we assume D1,p, D2,p, · · · , DL,p,
are independent, where L denotes the number of links
on path p. Furthermore, we denote the end-to-end
communication delay on path p as Dp = D1,p+D2,p+

Algorithm 1: Path Selection Algorithm
[Path SELECTION( )]

Create an empty metric set θ;1

Generate a set of candidate paths according to certain2

network criteria, such as bandwidth, etc.;
for each candidate path p do3

if
∑
l,p

(αl,p + βl,p) < Dmax then
4

Select this path;5

Stop.6

else if
∑
l,p

αl,p > Dmax then
7

Continue to next path;8

else9

Calculate (12) for this path;10

Record the result to θ.11

Select the path with highest probability from θ as the12

routing path;

· · ·+DL,p. In terms of that, we can carry out the pdf
of Dp as

fDp(dp) = fD1,p(d1,p) ∗ fD2,p(d2,p) ∗ · · · ∗ fDL,p
(dL,p).

(11)
Consequently, we can calculate the probability of

(10) as

P (Dp 6 Dmax) =
∫ Dmax

−∞
fDp(t)dt. (12)

It is worth mentioning we normally do a quantiza-
tion on the time scale so that the above integration
should be easily converted to a sum operation for the
discrete variables. In addition, the convolution in (11)
can be completed in a faster way, such as FFT.

Furthermore, we assume that the delay Dl,p on link
l of path p is distributed over the range of [αl,p, αl,p +
βl,p], inclusively.

Theorem 1. There exists a non-zero probability for
a path to satisfy the end-to-end delay requirement iff∑
l,p

αl,p < Dmax.

Proof: If all the links on the path are using
their minimal time and still cannot meet the delay
requirement Dmax, then there is no solution for this
path to meet such end-to-end delay requirement.
Accordingly, for a path to satisfy the delay constraint,
we should hold this theorem [19].

Theorem 2. If
∑
l,p

(αl,p + βl,p) < Dmax, path p has a

timing assurance probability of 1.

Proof: It is intuitive that if all the links on the
path cost their maximal time and still can meet the



delay requirement Dmax, then this path will hold
a probability of 1 to meet such end-to-end delay
requirement.

Based on the above discussions, we can generate
a path selection algorithm as Algorithm 1. To im-
prove the system reliability, normally we can employ
the scheme of multi-path transmission. If that, our
algorithm should be revised to select multiple paths
rather than one in the final step.

4.3. Special Cases

Identical density functions. In this special sce-
nario, we consider that all the link delays of all the
paths are following the same pdf, i.e., fDl,p

(dl,p) ≡
fY (y) for all l, p. It is easy to see in this situation the
optimal path is also the one with minimal hops [19].
In that way, we can simplify the path selection algo-
rithm quite a bit.

However, we should notice that whenever the pdf’s
are not the same, we cannot claim the optimal path
is also the one with minimal hops. Actually, it may
be the worst selection, e.g., its

∑
l,p

αl,p > Dmax.

Normal distribution. Suppose that all the link
delays follow normal distribution N(µl,p, σ

2
l,p),where

µl,p and σ2
l,p represent the mean and the variance

of the link delay for link l in path p, respectively.
According to the property of normal distribution,
the sum of independent normal distributed variables
should also follow a normal distribution. In our case,
path delay Dp thus follow a normal distribution.
Mathematically, it can be expressed as

Dp ∼ N(µp, σ
2
p), (13)

where µp =
∑
l,p

µl,p, σ
2
p =

∑
l,p

σ2
l,p.

Consequently, we have

P (Dp 6 Dmax) = Φ(
Dmax − µp

σp
), (14)

where Φ(·) is the cumulative distribution function of
standard normal distribution N(0, 1). Since all nodes
are underloaded in task scheduling, we can simply
select the optimal path that minimizes the metric

Dmax − µp

σp
. (15)

Intuitively, we can see the optimal path should be
among those having a small mean and small standard
deviation.

In this section, we specify two special cases where
we can simplify the algorithm with less computational
cost. Studies could be further extended to other
special distributions, such as uniform distribution.
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Figure 3. Simulated Results: Real-time
Properties vs. Scalability (number of nodes)

5. Simulation Results

In this section, we present our simulation studies
on RT-P2P in terms of scalability, timeliness, and
message overhead under different task and network
conditions, such as number of subtasks, network size
and message loss ratio. In addition, some comparisons
between theoretical and simulated results are demon-
strated to validate our analytical models for RT-P2P.

Because the query routing scheme of RT-P2P
originates from gossip, we refer Han et al.’s algo-
rithm – RTG-L [14], a typical gossip-based real-time
algorithm built upon Client-Server model, as the
baseline. Also, we validate our design of super-peer
backbone by comparing RT-P2P with a modified P2P
algorithm without such backbone, simply called P2P.
(According to our literature search, till now there
is no existing real-time P2P system to make further
comparison.)



100 200 300 400 500 600 700 800 900 100011001200
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Number of Nodes

T
as

k 
S

uc
ce

ss
 P

ro
ba

bi
lit

y

RT−P2P
P2P(No Super−peer)
RTG−L

(a) Task success probability

100 200 300 400 500 600 700 800 900 100011001200
0

2000

4000

6000

8000

10000

12000

Number of Nodes

M
es

sa
ge

 O
ve

rh
ea

d 
(m

es
sa

ge
s)

RT−P2P
P2P(No Super−peer)
RTG−L

(b) Message overhead

Figure 4. Theoretical Results: Real-time
Properties vs. Scalability (number of nodes)

We will compare RT-P2P with RTG-L and P2P
(without super-peer backbone) in the perspectives of
scalability (number of nodes), reliability (influence
from message loss) and task load (number of sub-
tasks). The number of simulations is 200 in total.
We consider such settings: the message loss ratio is
0.01, query fan out number is 3, and TTL = 6 time
units (i.e., 6 query rounds). Each task contains 3
subtasks, where task succeeds iif all its 3 subtasks
are successfully completed. Specifically, we consider a
RT-P2P with the dimension of 3, where each super-
peer accommodates 6 peers.

Figure 3(a) illustrates when the network size in-
creases from 100 to 1200 nodes, RT-P2P and P2P can
hold a task success probability over 0.95 with few de-
crescence while RTG-L drops significantly from 0.94
to 0.63. As we know, RT-P2P utilizes a super-peer
backbone topology with multiple registration scheme
to adapt for the massive scalability and network

dynamism. Thus, its query routing efficiency is much
higher than RTG-L. Without super-peer backbone,
P2P still functions better than RTG-L with a higher
task probability. Although the task success probabil-
ity of P2P (no super-peers) is just slightly worse than
RT-P2P, its message overhead almost doubles that of
RT-P2P as displayed by Figure 3(b).

In terms of message overhead, Figure 3(b) fur-
ther shows RT-P2P generates much less message
overhead than RTG-L does. For example, when the
number of nodes is 1200, RT-P2P’s message overhead
is 1652 while RTG-L’s is 9663 which is 5.8 times
greater than RT-P2P’s. In addition, we can notice the
message overhead of RT-P2P increases much slower
than RTG-L and P2P when network size expands.
The above observations not only indicate a better
scalability of RT-P2P than RTG-L and P2P, but also
approve that super-peer backbone and peer’s multiple
registration scheme of RT-P2P play the fundamental
roles to enhance the task success probability and
reduce message overhead.

Corresponding to the simulations shown in Fig-
ure 6, Figure 4 illustrates the theoretical results
based on the analytical model discussed in previous
sections. We can observe our simulated results con-
form closely to the theoretical models in both task
success probability and message overhead, which in
turn validates the correctness of our theoretical mod-
els. To save the space, we will not demonstrate the
corresponding theoretical results for later simulations
though they still match well.

Another interesting comparison between RT-P2P
and RTG-L is in terms of message loss ratio. We
repeat the simulation 200 times. For both algorithms,
the number of subtasks is 3, and the network con-
tains 1000 nodes. Other settings are all the same
with previous simulations. From Figure 5(a), we can
observe that when channel condition becomes worse,
the task success probability will be undermined in all
three algorithms. Comparatively, when message loss
ratio increases, RT-P2P exhibits significantly better
task success probability than RTG-L and P2P do. For
instance, when mlr = 30%, the success probability of
RT-P2P is around 0.81 while RTG-L is unacceptably
cut down to 0.03 and P2P is just 0.57 at the time. On
the other hand, we may find, from Figure 5(b), the
message overheads of all three algorithms commonly
decrease when packet loss ratio increases. It is because
that the higher transmission failure probability will
discontinue more transmissions that should have been
in consecutive nodes. As a result, less overhead will
be issued. However, RT-P2P’s message overhead is
orders of magnitude lower than that of RTG-L and
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Figure 5. Real-time Properties vs. Message
Loss Ratio

is about half of P2P’s overhead, especially when
message loss ratio is lower than 10%. When message
loss ratio is extremely high, they all converge to 3
because message will only be issued to the 3 queried
peers in the first-round gossip.

Furthermore, we look into the influence from task
load (i.e. number of subtasks), where simulation is
executed with a network of 1000 nodes. Figure 6(a)
illustrates when more subtasks are required to be
executed, the success probability will decrease for all
RT-P2P, P2P and RTG-L, which is because even if
one subtask fails the whole task will claim a failure.
However, RT-P2P and P2P can sustain a success
probability above 85%, while RTG-L is very sensitive
to the change in the number of subtasks. For example,
when the number of subtasks becomes 6, the success
probabilities of RT-P2P and P2P are both close to
0.93 while RTG-L’s is unacceptably cut down to 0.46
in the simulation. Also, we should mention RT-P2P’s
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Figure 6. Real-time Properties vs. Task Load

task success probability is slightly higher than that of
P2P because of its super-peer backbone. It is worth
noticing when there is only one subtask in the task
which means current node can do the work without
invoking the next node, the task success probability
is anyway around 1 in all three algorithms.

Under the same network condition, we now look
at the message overhead in Figure 6(b). It is evident
all three algorithms will incur more message overhead
with the augment of subtask amount. Specifically, the
message overhead of RTG-L is drastically influenced
by the number of subtasks. For example, when the
number of subtasks increases from 1 to 10, over
2.8×104 additional packets are sent out by RTG-L. In
contrast, RT-P2P only requires 7000 more messages,
and P2P requires 12000 more messages. Moreover,
we should see when the number of subtasks is 1,
the message overhead is zero because there is no
communication required to locate next node since
local node can complete the task itself.



From the experimental study, we notice RT-P2P
exhibits better scalability and real-time properties
than RTG-L and P2P in that RT-P2P utilizes the
P2P model plus the super-peer backbone and mul-
tiple registration scheme while RTG-L employs only
server resources (C/S model) and P2P doesn’t adopt
the super-peer backbone.

6. Conclusions and Future Work

In this paper, we present RT-P2P, a real-time peer-
to-peer architecture that allows application-level end-
to-end timing requirements to be satisfied in P2P sys-
tems. We discussed the protocols, such as peer arrival,
peer departure, and super-peer administration, which
are oriented towards the real-time requirements. In
addition, we also bring forward a real-time path se-
lection algorithm with probabilistic end-to-end timing
assurance under run-time system uncertainties.

An analytical model is built for RT-P2P in this
paper, which provides us an insight to the fundamen-
tal understanding of RT-P2P. Our simulation results
reveal a better scalability and timeliness behavior
of RT-P2P in comparison with Client-Server model
based real-time gossip algorithm. The simulation
study also validates the correctness of our theoretical
model.

Many research directions can be pursued in future
work. For example, as RT-P2P involves large amount
of peers in real-time applications, security issues
should be investigated to enhance the fault-resilience
of RT-P2P. Future study can be also oriented to
optimize RT-P2P with proper parameter settings,
such as network dimension and query fan out number.
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