
On Multiprocessor Utility Accrual Real-Time Scheduling With

Statistical Timing Assurances

Hyeonjoong Cho?, Haisang Wu†, Binoy Ravindran?, and E. Douglas Jensen‡

?ECE Dept., Virginia Tech

Blacksburg, VA 24061, USA

{hjcho,binoy}@vt.edu

†Juniper Networks, Inc.

Sunnyvale, CA 94089, USA

hswu@ieee.org

‡The MITRE Corporation

Bedford, MA 01730, USA

jensen@mitre.org

Abstract

We present the first Utility Accrual (or UA) real-time scheduling algorithm for multiprocessors,

called gMUA. The algorithm considers an application model where real-time activities are subject

to time/utility function time constraints, variable execution time demands, and resource overloads

where the total activity utilization demand exceeds the total capacity of all processors. We con-

sider the scheduling objective of (1) probabilistically satisfying lower bounds on each activity’s

maximum utility and (2) maximizing the system-wide, total accrued utility. We establish several

properties of gMUA including optimal total utility (for a special case), conditions under which

individual activity utility lower bounds are satisfied, a lower bound on system-wide total accrued

utility, and bounded sensitivity for assurances to variations in execution time demand estimates.

Our simulation experiments validate our analytical results and confirm the algorithm’s effective-

ness and superiority.

Keywords: Time utility function, utility accrual scheduling, multiprocessor systems, statistical

guarantees.



1 Introduction

Embedded real-time systems that are emerging in many domains such as robotic systems in the

space domain (e.g., NASA/JPL’s Mars Rover [9]) and control systems in the defense domain (e.g.,

airborne trackers [8]) are fundamentally distinguished by the fact that they operate in environ-

ments with dynamically uncertain properties. These uncertainties include transient and sustained

resource overloads due to context-dependent activity execution times and arbitrary activity arrival

patterns. Nevertheless, such systems’ desire the strongest possible assurances on activity timeli-

ness behavior. Another important distinguishing feature of these systems is their relatively long

execution time magnitudes—e.g., in the order of milliseconds to minutes.

When resource overloads occur, meeting deadlines of all activities is impossible as the demand

exceeds the supply. The urgency of an activity is typically orthogonal to the relative importance

of the activity—-e.g., the most urgent activity can be the least important, and vice versa; the most

urgent can be the most important, and vice versa. Hence when overloads occur, completing the

most important activities irrespective of activity urgency is often desirable. Thus, a clear distinction

has to be made between urgency and importance, during overloads. During under-loads, such

a distinction need not be made, because deadline-based scheduling algorithms such as EDF are

optimal (on one processor).

Deadlines by themselves cannot express both urgency and importance. Thus, we consider the

abstraction of time/utility functions (or TUFs) [14] that express the utility of completing an appli-

cation activity as a function of that activity’s completion time. We specify deadline as a binary-

valued, downward “step” shaped TUF; Figure 1(a) shows examples. Note that a TUF decouples

importance and urgency—i.e., urgency is measured as a deadline on the X-axis, and importance is

denoted by utility on the Y-axis.

-
Time

6
Utility

0
(a)

-
Time

6
Utility

0

bbb

(b)

-
Time

6
Utility

S
SS

0

HH

(c)

Figure 1: Example TUF Time Constraints: (a) Step TUFs; (b) AWACS TUF [8]; and (c) Coastal Air defense

TUFs [17]



Many embedded real-time systems also have activities that are subject to non-deadline time

constraints, such as those where the utility attained for activity completion varies (e.g., decreases,

increases) with completion time. This is in contrast to deadlines, where a positive utility is accrued

for completing the activity anytime before the deadline, after which zero, or infinitively negative

utility is accrued. Figures 1(a)-1(c) show example such time constraints from two real applications

(see [8] and references therein for application details). When activity time constraints are specified

using TUFs, which subsume deadlines, the scheduling criteria is based on accrued utility, such as

maximizing sum of the activities’ attained utilities. We call such criteria, utility accrual (or UA)

criteria, and scheduling algorithms that optimize them, as UA scheduling algorithms.

On single processors, UA algorithms that maximize total utility under step TUFs (see algorithms

in [20]) default to EDF during under-loads, since EDF satisfies all deadlines during under-loads.

Consequently, they obtain the maximum total utility during under-loads. During overloads, they

favor more important activities (since more utility can be attained from them), irrespective of ur-

gency. Thus, deadline scheduling’s optimal timeliness behavior is a special-case of UA scheduling.

1.1 Scheduling on Multiprocessors

Multiprocessor architectures (e.g., Symmetric Multi-Processors or SMPs, Single Chip Heteroge-

neous Multiprocessors or SCHMs) are becoming more attractive for embedded systems primarily

because major processor manufacturers (Intel, AMD) are making them decreasingly expensive.

This makes such architectures very desirable for embedded system applications with high com-

putational workloads, where additional, cost-effective processing capacity is often needed. Re-

sponding to this trend, RTOS vendors are increasingly providing multiprocessor platform support

— e.g., QNX Neutrino is now available for a variety of SMP chips [19]. But this exposes the

critical need for real-time scheduling for multiprocessors — a comparatively undeveloped area

of real-time scheduling which has recently received significant research attention, but is not yet

well supported by the RTOS products. Consequently, the impact of cost-effective multiprocessor

platforms for embedded systems remains nascent.

One unique aspect of multiprocessor scheduling is the degree of run-time migration that is al-



lowed for job instances of a task across processors (at scheduling events). Example migration

models include: (1) full migration, where jobs are allowed to arbitrarily migrate across proces-

sors during their execution. This usually implies a global scheduling strategy, where a single

shared scheduling queue is maintained for all processors and a processor-wide scheduling deci-

sion is made by a single (global) scheduling algorithm; (2) no migration, where tasks are statically

(off-line) partitioned and allocated to processors. At run-time, job instances of tasks are sched-

uled on their respective processors by processors’ local scheduling algorithm, like single processor

scheduling; and (3) restricted migration, where some form of migration is allowed—e.g., at job

boundaries.

Carpentar et al. [6] have catalogued multiprocessor real-time scheduling algorithms considering

the degree of job migration. The Pfair class of algorithms [4] that allow full migration have been

shown to achieve a schedulable utilization bound (below which all tasks meet their deadlines)

that equals the total capacity of all processors — thus, they are theoretically optimal. However,

Pfair algorithms incur significant overhead due to their quantum-based scheduling approach [10].

Thus, scheduling algorithms other than Pfair (e.g., global EDF) have also been studied though their

schedulable utilization bounds are lower.

Global EDF scheduling on multiprocessors is subject to the “Dhall effect” [11], where a task

set with total utilization arbitrarily close to 1.0 cannot be scheduled satisfying all deadlines. To

overcome this, researchers have studied global EDF’s behavior under restricted individual task

utilizations. For example, on M processors, Srinivasan and Baruah show that when the max-

imum individual task utilization, umax, is bounded by M/ (2M − 1), EDF’s utilization bound

is M2/ (2M − 1) [22]. In [12], Goossens et. al show that EDF’s utilization bound is M −
(M − 1) umax. This work was later extended by Baker for the more general case of deadlines

less than or equal to periods in [3]. In [5], Bertogna et al. show that Baker’s utilization bound does

not dominate the bound of Goossens et. al, and vice versa.

While most of these past works focus on the hard real-time objective of always meeting all dead-

lines, recently, there has been efforts that consider the objective of bounding the tardiness of tasks.

In [21], Srinivasan and Anderson derive a tardiness bound for a suboptimal Pfair scheduling algo-



rithm. In [1], for a restricted migration model, where migration is allowed only at job boundaries,

Andersen et. al present an EDF-based partitioning scheme and scheduling algorithm that ensures

bounded tardiness. In [10], Devi and Anderson derive the tardiness bounds for global EDF when

the total utilization of a task system may equal the number of available processors.

1.2 Contributions

In this paper, we consider the problem of global UA scheduling on an SMP system with M num-

ber of identical processors. We consider global scheduling (as opposed to partitioned scheduling)

because of its improved schedulability and flexibility [13]. Further, in many embedded architec-

tures (e.g., those with no cache), its migration overhead has a lower impact on performance [5].

Moreover, applications of interest to us [8, 9] are often subject to resource overloads, during when

the total application utilization demand exceed the total processing capacity of all processors.

When that happens, we hypothesize that global scheduling can yield greater scheduling flexibility,

resulting in greater accrued activity utility, than partitioned scheduling.

We consider repeatedly occurring application activities (e.g., tasks) that are subject to TUF time

constraints, variable execution times, and overloads. To account for uncertainties in activity execu-

tion behaviors, we consider a stochastic model, where activity execution demand is stochastically

expressed. Activities repeatedly arrive with a known minimum inter-arrival time. For such a model,

our objective is to: (1) provide statistical assurances on individual activity timeliness behavior in-

cluding probabilistically-satisfied lower bounds on each activity’s maximum utility; (2) provide

assurances on system-level timeliness behavior including assured lower bound on the sum of ac-

tivities’ attained utilities; and (3) maximize the sum of activities’ attained utilities.

This problem has not been studied in the past and is NP-hard. We present a polynomial-time,

heuristic algorithm for the problem called the global Multiprocessor Utility Accrual scheduling

algorithm (or gMUA). We establish several properties of gMUA including optimal total utility

for the special case of step TUFs and application utilization demand not exceeding global EDF’s

utilization bound, conditions under which individual activity utility lower bounds are satisfied, and

a lower bound on system-wide total accrued utility. We also show that the algorithm’s assurances



have bounded sensitivity to variations in execution time demand estimates, in the sense that the

assurances hold as long as the variations satisfy a sufficient condition that we present. Further, we

show that the algorithm is robust against a variant of the Dhall effect.

Therefore, the contribution of the paper is the gMUA algorithm. To the best of our knowledge,

we are not aware of any other efforts that solve the problem solved by gMUA.

The rest of the paper is organized as follows: Section 2 describes our models and scheduling

objective. In Section 3, we discuss the rationale behind gMUA and present the algorithm. We de-

scribe the algorithm’s properties in Section 4 and report our simulation-based experimental studies

in Section 5. The paper concludes in Section 6.

2 Models and Objective

2.1 Activity Model

We consider the application to consist of a set of tasks, denoted T={T1, T2, ..., Tn}. Each task

Ti has a number of instances, called jobs, and these jobs may be released either periodically or

sporadically with a known minimal inter-arrival time. The jth job of task Ti is denoted as Ji,j .

The period or minimal inter-arrival time of a task Ti is denoted as Pi. All tasks are assumed to be

independent, i.e., they do not share any resource or have any precedences. The basic scheduling

entity that we consider is the job abstraction. Thus, we use J to denote a job without being task

specific, as seen by the scheduler at any scheduling event.

A job’s time constraint is specified using a TUF. Jobs of the same task have the same TUF. We

use Ui() to denote the TUF of task Ti. Thus, completion of the job Ji,j at time t will yield an utility

of Ui(t).

TUFs can be classified into unimodal and multimodal functions. Unimodal TUFs are those for

which any decrease in utility cannot be followed by an increase. Figure 1 shows examples. TUFs

which are not umimodal are multimodal. In this paper, we focus on non-increasing unimodal

TUFs, as they encompass majority of the time constraints in our motivating applications.

Each TUF Ui of Ji,j has an initial time Ii,j and a termination time Xi,j . Initial and termination

times are the earliest and the latest times for which the TUF is defined, respectively. We assume



that Ii,j is the arrival time of job Ji,j , and Xi,j− Ii,j is the period or minimal inter-arrival time Pi of

the task Ti. If Ji,j’s Xi,j is reached and execution of the corresponding job has not been completed,

an exception is raised, and the job is aborted.

2.2 Job Execution Time Demands

We estimate the statistical properties, e.g., distribution, mean, variance, of job execution time

demand rather than the worst-case demand because: (1) applications of interest to us [8, 9] exhibit

a large variation in their actual workload. Thus, the statistical estimation of the demand is much

more stable and hence more predictable than the actual workload; (2) worst-case workload is

usually a very conservative prediction of the actual workload [2], resulting in resource over-supply;

and(3) allocating execution times based on the statistical estimation of tasks’ demands can provide

statistical performance assurances, which is sufficient for our motivating applications.

Let Yi be the random variable of a task Ti’s execution time demand. Estimating the execution

time demand distribution of the task involves two steps: (1) profiling its execution time usage, and

(2) deriving the probability distribution of that usage. A number of measurement-based, off-line

and online profiling mechanisms exist (e.g., [24]). We assume that the mean and variance of Yi are

finite and determined through either online or off-line profiling.

We denote the expected execution time demand of a task Ti as E(Yi), and the variance on the

demand as V ar(Yi).

2.3 Statistical Timeliness Requirement

We consider a task-level statistical timeliness requirement: Each task must accrue some per-

centage of its maximum possible utility with a certain probability. For a task Ti, this requirement

is specified as {νi, ρi}, which implies that Ti must accrue at least νi percentage of its maximum

possible utility with the probability ρi. This is also the requirement of each job of Ti. Thus, for

example, if {νi, ρi} = {0.7, 0.93}, then Ti must accrue at least 70% of its maximum possible utility

with a probability no less than 93%. For step TUFs, ν can only take the value 0 or 1. Note that the

objective of always satisfying all task deadlines is the special case of {νi, ρi} = {1.0, 1.0}.



This statistical timeliness requirement on the utility of a task implies a corresponding require-

ment on the range of task sojourn times. Since we focus on non-increasing unimodal TUFs, upper-

bounding task sojourn times will lower-bound task utilities.

2.4 Scheduling Objective

We consider a two-fold scheduling criterion: (1) assure that each task Ti accrues the speci-

fied percentage νi of its maximum possible utility with at least the specified probability ρi; and

(2) maximize the system-level total attained utility. We also desire to obtain a lower bound on the

system-level total attained utility. Also, when it is not possible to satisfy ρi for each task (e.g., due

to overloads), our objective is to maximize the system-level total utility.

This problem is NP-hard because it subsumes the NP-hard problem of scheduling dependent

tasks with step TUFs on one processor [7].

3 The gMUA Algorithm

3.1 Bounding Accrued Utility

Let si,j be the sojourn time of the jth job of task Ti, where the sojourn time is defined as the

period from the job’s release to its completion. Now, task Ti’s statistical timeliness requirement can

be represented as Pr(Ui(si,j) ≥ νi × Umax
i ) ≥ ρi. Since TUFs are assumed to be non-increasing,

it is sufficient to have Pr(si,j ≤ Di) ≥ ρi, where Di is the upper bound on the sojourn time of

task Ti. We call Di “critical time” hereafter, and it is calculated as Di = U−1
i (νi × Umax

i ), where

U−1
i (x) denotes the inverse function of TUF Ui(). Thus, Ti is (probabilistically) assured to accrue

at least the utility percentage νi = Ui(Di)/U
max
i , with the probability ρi.

Note that the period or minimum inter-arrival time Pi and the critical time Di of the task Ti have

the following relationships: (1) Pi = Di for a binary-valued, downward step TUF; and (2) Pi ≥ Di,

for other non-increasing TUFs.



3.2 Bounding Utility Accrual Probability

Since task execution time demands are stochastically specified (through means and variances),

we need to determine the actual execution time that must be allocated to each task, such that

the desired utility accrual probability ρi is satisfied. Further, this execution time allocation must

account for the uncertainty in the execution time demand specification (i.e., the variance factor).

Given the mean and the variance of a task Ti’s execution time demand Yi, by a one-tailed version

of the Chebyshev’s inequality, when y ≥ E(Yi), we have:

Pr[Yi < y] ≥ (y − E(Yi))
2

V ar(Yi) + (y − E(Yi))2
(1)

From a probabilistic point of view, Equation 1 is the direct result of the cumulative distribution

function of task Ti’s execution time demands—i.e., Fi(y) = Pr[Yi ≤ y]. Recall that each job

of task Ti must accrue νi percentage of its maximum utility with a probability ρi. To satisfy this

requirement, we let ρ′i = (Ci−E(Yi))
2

V ar(Yi)+(Ci−E(Yi))2
≥ ρi and obtain the minimum required execution time

Ci = E(Yi) +
√

ρ′i×V ar(Yi)

1−ρ′i
.

Thus, the gMUA algorithm allocates Ci execution time units to each job Ji,j of task Ti, so that

the probability that job Ji,j requires no more than the allocated Ci execution time units is at least

ρi—i.e., Pr[Yi < Ci] ≥ ρ′i ≥ ρi. We set ρ′i = (max {ρi}) 1
n , ∀i to satisfy requirements. Supposing

that each task is allocated Ci time within its Pi, the actual demand of each task often vary. Some

jobs of the task may complete its execution before using up its allocated time and the others may

not. gMUA probabilistically schedules the jobs of a task Ti to provide assurance ρ′i (≥ ρi) as long

as they are satisfying a certain schedulability test.

Figure 2: Transformation Array and gMUA



Figure 2 shows our method of transforming the stochastic execution time demand (E(Yi) and

V ar(Yi)) into execution time allocation Ci. Note that this transformation is independent of our

proposed scheduling algorithm.

3.3 Algorithm Description

gMUA’s scheduling events include job arrival and job completion. To describe gMUA, we define

the following variables and auxiliary functions:

• ζr: current job set in the system including running jobs and unscheduled jobs.

• σtmp, σa: a temporary schedule; σm: schedule for processor m, where m ≤ M .

• Jk.C(t): Jk’s remaining allocated execution time.

• offlineComputing() is computed at time t = 0 once. For a task Ti, it computes Ci as

Ci = E(Yi) +
√

ρi×V ar(Yi)
1−ρi

.

• UpdateRAET(ζr) updates the remaining allocated execution time of all jobs in the set ζr.

• feasible(σ) returns a boolean value denoting schedule σ’s feasibility; feasible(Jk)

denotes job Jk’s feasibility. For σ (or Jk) to be feasible, the predicted completion time of each

job in σ (or Jk), must not exceed its critical time.

• sortByECF(σ) sorts jobs of σ in the order of earliest critical time first.

• findProcessor() returns the ID of the processor on which the currently assigned tasks have

the shortest sum of allocated execution times.

• append(Jk,σ) appends job Jk at rear of schedule σ.

• remove(Jk,σ) removes job Jk from schedule σ.

• removeLeastPUDJob(σ) removes job with the least potential utility density (or PUD) from

schedule σ. PUD is the ratio of the expected job utility (obtained when job is immediately ex-

ecuted to completion) to the remaining job allocated execution time, i.e., PUD of a job Jk is
Uk(t+Jk.C(t))

Jk.C(t)
. Thus, PUD measures the job’s “return on investment.” Function returns the removed

job.

• headOf(σm) returns the set of jobs that are at the head of schedule σm, 1 ≤ m ≤ M .



Algorithm 1: gMUA
Input : T={T1,...,Tn}, ζr={J1,...,JN}, M:# of processors1
Output : array of dispatched jobs to processor p, Jobp2
Data: {σ1, ..., σM}, σtmp, σa3

offlineComputing(T);4
Initialization: {σ1, ..., σM} = {0, ..., 0};5
UpdateRAET(ζr);6
for ∀Jk ∈ ζr do7

Jk.PUD = Uk(t+Jk.C(t))
Jk.C(t) ;8

σtmp = sortByECF( ζr );9
for ∀Jk ∈ σtmp from head to tail do10

if Jk.PUD > 0 then11
m = findProcessor();12
append(Jk, σm);13

for m = 1 to M do14
σa = null;15
while !feasible( σm) and !IsEmpty( σm ) do16

t = removeleastPUD( σm );17
append( t, σa );18

sortByECF( σa );19
σm += σa;20

{Job1, ..., JobM} = headOf( {σ1, ..., σM} );21
return {Job1, ..., JobM};22



A description of gMUA at a high level of abstraction is shown in Algorithm 1. The procedure

offlineComputing() is included in line 4, although it is executed only once at t = 0. When

gMUA is invoked, it updates the remaining allocated execution time of each job. The remaining

allocated execution times of running jobs are decreasing, while those of unscheduled jobs remain

constant. The algorithm then computes the PUDs of all jobs.

The jobs are then sorted in the order of earliest critical time first (or ECF), in line 9. In each

step of the for loop from line 10 to line 13, the job with the earliest critical time is selected to be

assigned to a processor. The processor that yields the shortest sum of allocated execution times

of all jobs in its local schedule is selected for assignment (procedure findProcessor()). The

rationale for this choice is that the shortest summed execution time processor results in the nearest

scheduling event for completing a job after assigning each job, which is to establish the same

schedule as the global EDF does. Then, the job Jk with the earliest critical time is inserted into the

local schedule σm of the selected processor m.

In the for-loop from line 14 to line 20, gMUA attempts to make each local schedule feasible by

removing the lowest PUD job. In line 16, if σm is not feasible, then gMUA removes the job with

the least PUD from σm until σm becomes feasible. All removed jobs are temporarily stored in a

schedule σa and then appended to each σm in ECF order. Note that simply aborting the removed

jobs may result in decreased accrued utility. This is because, the algorithm may decide to remove

a job which is estimated to have a longer allocated execution time than its actual one, even though

it may be able to accrue utility. For this case, gMUA gives the job another chance to be scheduled

instead of aborting it, which eventually makes the algorithm more robust. Finally, each job at the

head of σm, 1 ≤ m ≤ M is selected for execution on the respective processor.

gMUA’s time cost depends upon that of procedures sortByECF(), findprocessor(),

append(), feasible(), and removeLeastPUDJob(). With n tasks, sortByECF()

costs O(nlogn). For SMPs with restricted number of processors, findprocessor()’s costs

O(M). While append() costs O(1) time, both feasible() and removeLeastPUDJob()

costs O(n). The while-loop in line 16 iterates at most n times, costing the entire loop O(n2). Thus,

the algorithm costs O(Mn2). However, M of SMPs is usually small (e.g., 16) and bounded with



respect to the problem size of number of tasks. Thus, gMUA costs O(n2).

gMUA’s O(n2) cost is similar to that of many past UA algorithms [20]. Our prior implemen-

tation experience with UA scheduling at the middleware-level have shown that the overheads are

in the magnitude of sub-milliseconds [16] (sub-microsecond overheads may be possible at the

kernel-level). We anticipate a similar overhead magnitude for gMUA. Though this cost is higher

than that of many traditional algorithms, the cost is justified for applications with longer execution

time magnitudes (e.g., milliseconds to minutes) such as those that we focus here. Of course, this

high cost cannot be justified for every application.1

4 Algorithm Properties

4.1 Timeliness Assurances

We establish gMUA’s timeliness assurances under the conditions of (1) independent tasks that ar-

rive periodically, and (2) task utilization demand satisfies any of the schedulable utilization bounds

for global EDF (GFB, BAK, BCL) in [5].

Theorem 1 (Optimal Performance with Step Shaped TUFs). Suppose that only step shaped TUFs
are allowed under conditions (1) and (2). Then, a schedule produced by global EDF is also
produced by gMUA, yielding equal total utilities. This is a critical time-ordered schedule.

Proof. We prove this by examining Algorithm 1. In line 9, the queue σtmp is sorted in a non-
decreasing critical time order. In line 12, the function findProcessor() returns the index of
the processor on which the summed execution time of assigned tasks is the shortest among all
processors. Assume that there are n tasks in the current ready queue. We consider two cases: (1)
n ≤ M and (2) n > M . When n ≤ M , the result is trivial — gMUA’s schedule of tasks on each
processor is identical to that produced by EDF (every processor has a single task or none assigned).
When n > M , task Ti (M < i ≤ n) will be assigned to the processor whose tasks have the shortest
summed execution time. This implies that this processor will have the earliest completion for all
assigned tasks up to Ti−1, so that the event that will assign Ti will occur by this completion. Note
that tasks in σtmp are selected to be assigned to processors according to ECF. This is precisely the
global EDF schedule, as we consider a critical time of UA scheduling as a deadline of traditional
hard real-time scheduling. Under conditions (1) and (2), EDF meets all deadlines. Thus, each
processor always has a feasible schedule, and the if-block from line 16 to line 18 will never be
executed. Thus, gMUA produces the same schedule as global EDF.

1When UA scheduling is desired with low overhead, solutions and tradeoffs exist. Examples include linear-time
stochastic UA scheduling [15], and using special-purpose hardware accelerators for UA scheduling (analogous to
floating-point co-processors) [18].



Some important corollaries about gMUA’s timeliness behavior can be deduced from EDF’s be-

havior under conditions (1) and (2).

Corollary 2. Under conditions (1) and (2), gMUA always completes the allocated execution time
of all tasks before their critical times.

Theorem 3 (Statistical Task-Level Assurance). Under conditions (1) and (2), gMUA meets the
statistical timeliness requirement {νi, ρi} for each task Ti.

Proof. From Corollary 2, all allocated execution times of tasks can be completed before their
critical times. Further, based on the results of Equation 1, among the actual processor time of
task Ti’s jobs, at least ρi of them have lesser actual execution time than the allocated execution
time. Thus, gMUA can satisfy at least ρi critical times—i.e., the algorithm accrues νi utility with
a probability of at least ρi.

Theorem 4 (System-Level Utility Assurance). Under conditions (1) and (2), if a task Ti’s TUF has
the highest height Umax

i , then the system-level utility ratio, defined as the utility accrued by gMUA
with respect to the system’s maximum possible utility, is at least ρ1ν1Umax

1 /P1+...+ρnνnUmax
n /Pn

Umax
1 /P1+...+Umax

n /Pn
.

Proof. We denote the number of jobs released by task Ti as mi. Each mi is computed as ∆t
Pi

,
where ∆t is a time interval. Task Ti can accrue at least νi percentage of its maximum pos-
sible utility with the probability ρi. Thus, the ratio of the system-level accrued utility to the
system’s maximum possible utility is ρ1ν1Umax

1 m1+...+ρnνnUmax
n mn

Umax
1 m1+...+Umax

n mn
. Thus, the formula comes to

ρ1ν1Umax
1 /P1+...+ρnνnUmax

n /Pn

Umax
1 /P1+...+Umax

n /Pn
.

4.2 Dhall Effect

The Dhall effect [11] shows that there exists a task set that requires nearly 1 total utilization

demand, but cannot be scheduled to meet all deadlines under global EDF and RM even with infinite

number of processors. Prior research has revealed that this is caused by the poor performance of

global EDF and RM when the task set contains both high utilization tasks and low utilization tasks

together. This phenomena, in general, can also affect UA scheduling algorithms’ performance,

and counter such algorithms’ ability to maximize the total attained utility. We discuss this with an

example inspired from [23]. We consider the case when the execution time demands of all tasks

are constant with no variance, and gMUAi estimates them accurately.

Example A. Consider M + 1 periodic tasks that are scheduled on M processors under global

EDF. Let task τi, where 1 ≤ i ≤ M , have Pi = Di = 1, Ci = 2ε, and task τM+1 have PM+1 =

DM+1 = 1 + ε, CM+1 = 1. We assume that each task τi has a step shaped TUF with height hi



and task τM+1 has a step shaped TUF with height HM+1. When all tasks arrive at the same time,

tasks τi will execute immediately and complete their execution 2ε time units later. Task τM+1 then

executes from time 2ε to time 1 + 2ε. Since task τM+1’s critical time — we assume here it is the

same as its period — is 1+ ε, it begins to miss its critical time. By letting M →∞, ε → 0, hi → 0

and HM+1 → ∞, we have a task set, whose total utilization demand is near 1 and the maximum

possible total attained utility is infinite, but that finally accrues zero total utility even with infinite

number of processors.

We call this phenomena as the UA Dhall effect. Conclusively, one of the reasons why global

EDF is inappropriate as a UA scheduler is that it is prone to suffer this effect. However, gMUA

overcomes this phenomena.

Example B. Consider the same scenario as in Example A, but now, let the task set be scheduled

by gMUA. In Algorithm 1, gMUA first tries to schedule tasks like global EDF, but it will fail to do

so as we saw in Example A. When gMUA finds that τM+1 will miss its critical time on processor m

(where 1 ≤ m ≤ M ), the algorithm will select a task with lower PUD on processor m for removal.

On processor m, there should be two tasks, τm and τM+1. τm is one of τi where 1 ≤ i ≤ M . When

letting hi → 0 and HM+1 →∞, the PUD of task τm is almost zero and that of task τM+1 is infinite.

Therefore, gMUA removes τm and eventually accrues infinite utility as expected.

Under the case when Dhall effect occurs, we can establish UA Dhall effect by assigning ex-

tremely high utility to the task that will be removed by global EDF. In this sense, UA Dhall effect

is a special case of the Dhall effect. It also implies that the scheduling algorithm suffering from

Dhall effect will likely suffer from UA Dhall effect, when it schedules the tasks that are subject to

TUF time constraints.

The fact that gMUA is more robust against UA Dhall effect than global EDF can be observed in

our simulation experiments (see Section 5).

4.3 Sensitivity of Assurances

gMUA is designed under the assumption that task expected execution time demands and the

variances on the demands — i.e., the algorithm inputs E(Yi) and V ar(Yi) – are correct. How-



ever, it is possible that these inputs may have been miscalculated (e.g., due to errors in application

profiling) or that the input values may change over time (e.g., due to changes in application’s exe-

cution context). To understand gMUA’s behavior when this happens, we assume that the expected

execution time demands, E(Yi)’s, and their variances, V ar(Yi)’s, are erroneous, and develop the

sufficient condition under which the algorithm is still able to meet {νi, ρi} for all tasks Ti.

Let a task Ti’s correct expected execution time demand be E(Yi) and its correct variance be

V ar(Yi), and let an erroneous expected demand E ′(Yi) and an erroneous variance V ar′(Yi) be

specified as the input to gMUA. Let the task’s statistical timeliness requirement be {νi, ρi}. We

show that if gMUA can satisfy {νi, ρi} with the correct expectation E(Yi) and the correct variance

V ar(Yi), then there exists a sufficient condition under which the algorithm can still satisfy {νi, ρi}
even with the incorrect expectation E ′(Yi) and incorrect variance V ar′(Yi).

Theorem 5. Assume that gMUA satisfies {νi, ρi},∀i, under correct, expected execution time de-
mand estimates, E(Yi)’s, and their correct variances, V ar(Yi)’s. When incorrect expected values,
E ′(Yi)’s, and variances, V ar′(Yi)’s, are given as inputs instead of E(Yi)’s and V ar(Yi)’s, gMUA

satisfies {νi, ρi},∀i, if E ′(Yi) + (Ci −E(Yi))
√

V ar′(Yi)
V ar(Yi)

≥ Ci,∀i, and the task execution time allo-
cations, computed using E ′(Yi)’s and V ar′(Yi), satisfy any of the schedulable utilization bounds
for global EDF.

Proof. We assume that if gMUA has correct E(Yi)’s and V ar(Yi)’s as inputs, then it satisfies
{νi, ρi}, ∀i. This implies that the Ci’s determined by Equation 1 are feasibly scheduled by gMUA
satisfying all task critical times:

ρi =
(Ci − E(Yi))

2

V ar(Yi) + (Ci − E(Yi))2
. (2)

However, gMUA has incorrect inputs, E ′(Yi)’s and V ar′(Yi), and based on those, it determines
C ′

is by Equation 1 to obtain the probability ρi,∀i:

ρi =
(C ′

i − E ′(Yi))
2

V ar′(Yi) + (C ′
i − E ′(Yi))2

. (3)

Unfortunately, C ′
i that is calculated from the erroneous E ′(Yi) and V ar′(Yi) leads gMUA to another

probability ρ′i by Equation 1. Thus, although we expect assurance with the probability ρi, we can
only obtain assurance with the probability ρ′i because of the error. ρ′ is given by:

ρ′i =
(C ′

i − E(Yi))
2

V ar(Yi) + (C ′
i − E(Yi))2

. (4)



Note that we also assume that tasks with C ′
i satisfy the global EDF’s utilization bound; otherwise

gMUA cannot provide the assurances. To satisfy {νi, ρi}, ∀i, the actual probability ρ′i must be
greater than the desired probability ρi. Since ρ′i ≥ ρi,

(C ′
i − E(Yi))

2

V ar(Yi) + (C ′
i − E(Yi))2

≥ (Ci − E(Yi))
2

V ar(Yi) + (Ci − E(Yi))2
.

Hence, C ′ ≥ Ci. From Equations 2 and 3,

C ′
i = E ′(Yi) + (Ci − E(Yi))

√
V ar′(Yi)

V ar(YI)
≥ Ci. (5)

Corollary 6. Assume that gMUA satisfies {νi, ρi},∀i, under correct, expected execution time de-
mand estimates, E(Yi)’s, and their correct variances, V ar(Yi)’s. When incorrect expected values,
E ′(Yi)’s, are given as inputs instead of E(Yi)’s but with correct variances V ar(Yi), gMUA sat-
isfies {νi, ρi},∀i, if E ′(Yi) ≥ E(Yi),∀i, and the task execution time allocations, computed using
E ′(Yi)’s, satisfy the schedulable utilization bound for global EDF.

Proof. This can be proved by replacing V ar′(Yi) with V ar(Yi) in Equation 5.

Corollary 6, a special case of Theorem 5, is intuitively straightforward: It essentially states that

if overestimated demands are schedulable, then gMUA can still satisfy {νi, ρi}, ∀i. Thus, it is

desirable to specify larger E ′(Yi)s as input to the algorithm when there is the possibility of errors

in determining the expected demands, or when the expected demands may vary with time.

Corollary 7. Assume that gMUA satisfies {νi, ρi}, ∀i, under correct, expected execution time
demand estimates, E(Yi)’s, and their correct variances, V ar(Yi)’s. When incorrect variances,
V ar′(Yi)’s, are given as inputs instead of correct V ar(Yi)’s but with correct expectations E(Yi)’s,
gMUA satisfies {νi, ρi},∀i, if V ar′(Yi) ≥ V ar(Yi), ∀i, and the task execution time allocations,
computed using E ′(Yi)’s, satisfy the schedulable utilization bound for global EDF.

5 Experimental Evaluation

We conducted simulation-based experimental studies to validate our analytical results and to

compare gMUA’s performance with global EDF. We consider two cases: (1) the demand of all

tasks are constant (i.e., no variance) and gMUA exactly estimates the execution time allocation,

and (2) the demand of all tasks statistically varies and gMUA probabilistically estimates the ex-

ecution time allocation for each task. The former experiment is conducted to evaluate gMUA’s

generic performance as opposed to EDF, while the latter is conducted to validate the algorithm’s

assurances.



5.1 Performance with Constant Demand

We consider an SMP machine with 4 processors. A task Ti’s period Pi(= Xi) and its expected

execution time E(Yi) are randomly generated in the range [1,30] and [1, α ·Pi], respectively, where

α is defined as max{Ci

Pi
|i = 1, ..., n} and V ar(Yi) are zero. According to [12], EDF’s schedulable

utilization bound depends on α as well as the number of processors. It implies that no matter how

many processors the system has, there exists task sets with total utilization demand (UD) close to

1.0, which cannot be scheduled under EDF satisfying all deadlines. Generally, the performance of

global schemes tends to decrease when α increases.

We consider two TUF shape patterns: (1) all tasks have step shaped TUFs, and (2) a heteroge-

neous TUF class, including step, linearly decreasing and parabolic shapes. Each TUF’s height is

randomly generated in the range [1,100].

2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0
0

20

40

60

80

100

 

 

A
U

R
 (%

)

Utilization Demand (UD)

 gMUA ( =0.4)
 gMUA ( =0.7)
 gMUA ( =1.0)
 EDF ( =0.4)
 EDF ( =0.7)
 EDF ( =1.0)

(a) AUR

2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0
0

20

40

60

80

100

 

 

C
M

R
 (%

)

Utilization Demand (UD)

 gMUA ( =0.4)
 gMUA ( =0.7)
 gMUA ( =1)
 EDF ( =0.4)
 EDF ( =0.7)
 EDF ( =1)

(b) CMR

Figure 3: Performance Under Constant Demand, Step TUFs

The number of tasks are determined depending on the given UD and the α value. We vary the

UD from 3 to 6.5, including the case where it exceeds the number of processors. We set α to

0.4, 0.7, and 1. For each experiment, more than 1000,000 jobs are released. To see the generic

performance of gMUA, we assume {νi, ρi} = {0, 1}.

Figures 3 and 4 show the accrued utility ratio (AUR) and critical-time meet ratio (CMR) of

gMUA and EDF, respectively, under increasing UD (from 3.0 to 6.5) and for the three α values.

AUR is the ratio of total accrued utility to the total maximum possible utility, and CMR is the ratio

of the number of jobs meeting their critical times to the total number of job releases. For a task



with a step TUF, its AUR and CMR are identical. But the system-level AUR and CMR can be

different due to the mix of different utility of tasks.

2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0
0

20

40

60

80

100

 

 

A
U

R
 (%

)

Utilization Demand (UD)

 gMUA ( =0.4)
 gMUA ( =0.7)
 gMUA ( =1)
 EDF ( =0.4)
 EDF ( =0.7)
 EDF ( =1)

(a) AUR

2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0
0

20

40

60

80

100

 

 

C
M

R
 (%

)

Utilization Demand (UD)

 gMUA ( =0.4)
 gMUA ( =0.7)
 gMUA ( =1)
 EDF ( =0.4)
 EDF ( =0.7)
 EDF ( =1)

(b) CMR

Figure 4: Performance Under Constant Demand, Heterogeneous TUFs

When all tasks have step TUFs and the total UD satisfies the global EDF’s schedulable utiliza-

tion bound, gMUA performs exactly the same to EDF. This validates Theorem 1.

EDF’s performance drops sharply after UD = 4.0 (for step TUFs), which corresponds to the

number of processors in our experiments. This is due to EDF’s domino effect (originally identified

for single processors) that occurs here, when UD exceeds the number of processors. On the other

hand, the performance of gMUA gracefully degrades as UD increases and exceeds 4.0, since

gMUA selects favors as many feasible, higher PUD tasks as possible, instead of simply favoring

earlier deadline tasks.

Observe that EDF begins to miss deadlines much earlier than when UD = 4.0, as indicated

in [5]. Even when UD < 4.0, gMUA outperforms EDF in both AUR and CMR. This is because

gMUA is likely to find a feasible or at least better schedule even when EDF cannot find a feasible

one, as we have seen in Section 4.2.

We also observe that α affects the AUR and CMR of both EDF and gMUA. Despite this effect,

gMUA outperforms EDF for the same α and UD for the reason that we describe above.

We observe similar and consistent trends for tasks with heterogeneous TUFs in Figure 4. The

figure shows that gMUA is superior to EDF under heterogeneous TUFs and when UD exceeds the

number of processors.



3 4 5 6 7 8 9

0

20

40

60

80

100

 

 

A
U

R
 (=

C
M

R
) (

%
)

Utilization Demand (UD)

 T1
 T2
 T3
 T4
 T5
 T6

(a) Task-level

2 3 4 5 6 7 8 9 10
0

20

40

60

80

100

 

 

A
U

R
 a

nd
 C

M
R

 (%
)

Utilization Demand (UD)

 AUR
 CMR

(b) System-level

Figure 5: Performance Under Statistical Demand, Step TUFs

5.2 Performance with Statistical Demand

We now evaluate gMUA’s statistical timeliness assurances. The task settings used in our simu-

lation study are summarized in Table 1. The table shows the task periods and the maximum utility

(or Umax) of the TUFs. For each task Ti’s demand Yi, we generate normally distributed execution

time demands. Task execution times are changed along with the total UD. We consider both step

and heterogeneous TUF shapes as before.

Table 1: Task Settings
Task Pi Umax

i ρi E(Yi) V ar(Yi)
T1 25 400 0.96 3.15 0.01
T2 28 100 0.96 13.39 0.01
T3 49 20 0.96 18.43 0.01
T4 49 100 0.96 23.91 0.01
T5 41 30 0.96 14.98 0.01
T6 49 400 0.96 24.17 0.01

Figures 5(a) shows AUR and CMR of each task under increasing total UD of gMUA. For a task

with step TUFs, task-level AUR and CMR are identical, as satisfying the critical time implies the

accrual of a constant utility. But the system-level AUR and CMR are different as satisfying the

critical time of each task does not always yield the same amount of utility.

Figure 5(a) shows that all tasks under gMUA accrue 100% AUR and CMR within the global

EDF’s bound (i.e., UD<≈2.5 here), thus satisfying the desired {νi, ρi} = {1, 0.96}, ∀i. This

validates Theorem 3.



2 3 4 5 6 7 8 9
0

20

40

60

80

100

 

 

A
U

R
 (%

)

Utilization Demand (UD)

 T1
 T2
 T3
 T4
 T5
 T6

(a) Task-level

2 3 4 5 6 7 8 9 10
0

20

40

60

80

100

 

 

A
U

R
 a

nd
 C

M
R

 (%
)

Utilization Demand (UD)

 AUR
 CMR

(b) System-level

Figure 6: Performance Under Statistical Demand, Heterogenous TUFs

Under the condition beyond what Theorem 3 indicates, gMUA achieves graceful performance

degradation in both AUR and CMR in Figure 5(b), as the previous experiment in Section 5.1

implies. In Figure 5(a), gMUA achieves 100% AUR and CMR for T1 over all range of UD. This is

because, T1 has a step TUF with higher height. Thus, gMUA favors T1 over others to obtain more

utility when it cannot satisfy the critical time of all tasks.

According to Theorem 4, the system-level AUR must be at least 96%. (For each task Ti, νi = 1,

because all TUFs are step shaped.) We observe that AUR and CMR of gMUA under the condition

of Theorem 4 are above 99.0%. This validates Theorem 4.

A similar trend is observed in Figure 6 for heterogeneous TUFs. We assign step TUFs for T1

and T4, linearly decreasing TUFs for T2 and T5, and parabolic TUFs for T3 and T6. For each task

Ti, νi is set as {1.0, 0.1, 0.1, 1.0, 0.1, 0.1}.

According to Theorem 4, the system-level AUR must be at least 0.96×(400/25+100×0.1/28+

20 × 0.1/49 + 100/49 + 30 × 0.1/41 + 400 × 0.1/49)/(400/25 + 100/28 + 20/49 + 100/49 +

30/41 + 400/49) = 62.5%. In Figure 6, we observe that the system-level AUR under gMUA

is above 62.5%. This further validates Theorem 4 for non step-shaped TUFs. We also observe

that the system-level AUR and CMR of gMUA degrade gracefully, since gMUA favors as many

feasible, high PUD tasks as possible.



6 Conclusions and Future Work

We present a global UA scheduling algorithm for SMPs, called gMUA. The algorithm considers

tasks that are subject to TUF time constraints, variable execution time demands, and resource

overloads. gMUA considers the two-fold scheduling objective of probabilistically satisfying utility

lower bounds for each task and maximizing the total accrued utility.

We establish that gMUA achieves optimal total utility for the special case of step TUFs and total

task utilization demand not exceeding EDF’s schedulable utilization bound, probabilistically sat-

isfies task utility lower bounds, and lower bounds system-wide total accrued utility. We also show

that the algorithm’s utility lower bound satisfactions have bounded sensitivity to variations in exe-

cution time demand estimates, and that the algorithm is robust against a variant of the Dhall effect.

When task utility lower bounds cannot be satisfied (due to increased utilization demand), gMUA

maximizes total utility, while gracefully degrading timeliness. Our simulation experiments vali-

date our analytical results and confirm the algorithm’s effectiveness and superiority. Our method of

transforming task stochastic demand into actual execution time allocation is independent of gMUA

and can be applied in other algorithmic contexts, where similar (stochastic scheduling) problem

arises.

Several aspects of our work are directions for further research. Examples include relaxing the

sporadic task arrival model to allow a stronger adversary (e.g., the unimodal arbitrary arrival

model), allowing greater task utilizations for satisfying utility lower bounds, and reducing the

algorithm overhead.

References

[1] J. Anderson, V. Bud, and U. C. Devi. An edf-based scheduling algorithm for multiprocessor soft real-time
systems. In IEEE ECRTS, pages 199–208, July 2005.

[2] H. Aydin, R. Melhem, D. Mosse, and P. Mejia-Alvarez. Dynamic and aggressive scheduling techniques for
power-aware real-time systems. In IEEE RTSS, pages 95 –105, December 2001.

[3] T. P. Baker. Multiprocessor edf and deadline monotonic schedulability analysis. In IEEE RTSS, pages 120–129,
Dec. 2003.

[4] S. Baruah, N. Cohen, C. G. Plaxton, and D. Varvel. Proportionate progress: A notion of fairness in resource
allocation. In Algorithmica, volume 15, page 600, 1996.

[5] M. Bertogna, M. Cirinei, and G. Lipari. Improved schedulability analysis of edf on multiprocessor platforms. In
IEEE ECRTS, pages 209– 218, 2005.



[6] J. Carpenter, S. Funk, et al. A categorization of real-time multiprocessor scheduling problems and algorithms.
In J. Y. Leung, editor, Handbook on Scheduling Algorithms, Methods, and Models, page 30.130.19. Chapman
Hall/CRC, Boca Raton, Florida, 2004.

[7] R. K. Clark. Scheduling Dependent Real-Time Activities. PhD thesis, Carnegie Mellon University, 1990.

[8] R. K. Clark, E. D. Jensen, et al. An adaptive, distributed airborne tracking system. In IEEE WPDRTS, April
1999.

[9] R. K. Clark, E. D. Jensen, and N. F. Rouquette. Software organization to facilitate dynamic processor scheduling.
In IEEE WPDRTS, April 2004.

[10] U. C. Devi and J. Anderson. Tardiness bounds for global edf scheduling on a multiprocessor. In IEEE RTSS,
2005.

[11] S. K. Dhall and C. L. Liu. On a real-time scheduling problem. Operations Research, 26(1):127140, 1978.

[12] J. Goossens, S. Funk, and S. Baruah. Priority-driven scheduling of periodic tasks systems on multiprocessors.
Real-Time Systems, 25(2-3):187–205, 2003.

[13] P. Holman and J. H. Anderson. Adapting pfair scheduilng for symmetric multiprocessors. In Journal of Embed-
ded Computing, to appear.

[14] E. D. Jensen, C. D. Locke, and H. Tokuda. A time-driven scheduling model for real-time systems. In IEEE
RTSS, pages 112–122, December 1985.

[15] P. Li and B. Ravindran. Fast, best effort real-time scheduling algorithms. IEEE Transactions on Computers,
53(9):1159 – 1175, 2004.

[16] P. Li, B. Ravindran, et al. A formally verified application-level framework for real-time scheduling on posix
real-time operating systems. IEEE Trans. Software Engineering, 30(9):613 – 629, Sept. 2004.

[17] D. P. Maynard, S. E. Shipman, et al. An example real-time command, control, and battle management application
for alpha. Technical report, CMU CS Dept., Dec. 1988. Archons Project TR 88121.

[18] J. D. Northcutt. Mechanisms for Reliable Distributed Real-Time Operating Systems – The Alpha Kernel. Aca-
demic Press, 1987.

[19] QNX. Symmetric multiprocessing. http://www.qnx.com/products/rtos/smp.html. Last accessed
October 2005.

[20] B. Ravindran, E. D. Jensen, and P. Li. On recent advances in time/utility function real-time scheduling and
resource management. In IEEE ISORC, pages 55 – 60, May 2005.

[21] A. Srinivasan and J. Anderson. Efficient scheduling of soft real-time applications on multiprocessors. In IEEE
ECRTS, pages 51–59, July 2003.

[22] A. Srinivasan and S. Baruah. Deadline-based scheduling of periodic task systems on multiprocessors. In Infor-
mation Processing Letters, pages 93–98, Nov 2002.

[23] O. U. P. Zapata and P. M. Alvarez. Edf and rm multiprocessor scheduling algorithms: Survey and performance
evaluation. http://delta.cs.cinvestav.mx/˜pmejia/multitechreport.pdf. Last accessed
October 2005.

[24] X. Zhang, Z. Wang, et al. System support for automated profiling and optimization. In ACM SOSP, pages 15–26,
October 1997.


