Dynamic and Secure Memory Transformation in
Userspace

Robert Lyerly, Xiaoguang Wang, and Binoy Ravindran

Virginia Tech, Blacksburg, VA, USA
{rlyerly,xiaoguang,binoy}@vt.edu

Abstract. Continuous code re-randomization has been proposed as a
way to prevent advanced code reuse attacks. However, recent research
shows the possibility of exploiting the runtime stack even when perform-
ing integrity checks or code re-randomization protections. Additionally,
existing re-randomization frameworks do not achieve strong isolation,
transparency and efficiency when securing the vulnerable application. In
this paper we present Chameleon, a userspace framework for dynamic
and secure application memory transformation. Chameleon is an out-of-
band system, meaning it leverages standard userspace primitives to mon-
itor and transform the target application memory from an entirely sep-
arate process. We present the design and implementation of Chameleon
to dynamically re-randomize the application stack slot layout, defeat-
ing recent attacks on stack object exploitation. The evaluation shows
Chameleon significantly raises the bar of stack object related attacks
with only a 1.1% overhead when re-randomizing every 50 milliseconds.

1 Introduction

Memory corruption is still one of the biggest threats to software security [43].
Attackers use memory corruption as a starting point to directly hijack program
control flow [18,22,9], modify control data [24,25], or steal secrets in mem-
ory [20]. Recent works have shown that it is possible to exploit the stack even
under new integrity protections designed to combat the latest attacks [23, 31, 24,
25]. For example, position-independent return-oriented programming (PIROP) [23]
leverages a user controlled sequence of function calls and un-erased stack memory
left on the stack after returning from functions (e.g., return addresses, initial-
ized local data) to construct a ROP payload. Data-oriented programming (DOP)
also heavily relies on user-controlled stack objects to change the execution path
in an attacker-intended way [24-26]. Both of these attacks defeat existing code

This is the author’s version of the work posted here per publisher’s guidelines for your
personal use. Not for redistribution. The final authenticated version is published in
the Proceedings of the 25th European Symposium on Research in Computer Security
(ESORICS 2020), Guildford, United Kingdom, September 14-18, 2020.

2 R. Lyerly et al.

re-randomization mechanisms, which continuously permute the locations of func-
tions [50] or hide function locations to prevent memory disclosure vulnerabilities
from constructing gadget chains [14].

In this work, we present Chameleon, a continuous stack randomization frame-
work. Chameleon, like other continuous re-randomization frameworks, periodi-
cally permutes the application’s memory layout in order to prevent attackers
from using memory disclosure vulnerabilities to exfiltrate data or construct ma-
licious payloads. Chameleon, however, focuses on randomizing the stack — it
randomizes the layout of every function’s stack frame so that attackers cannot
rely on the locations of stack data for attacks. In order to correctly reference local
variables in the randomized stack layout, Chameleon also rewrites every func-
tion’s code, further disrupting code reuse attacks that expect certain instruction
sequences (either aligned or unaligned). Chameleon periodically interrupts the
application to rewrite the stack and inject new code. In this way, Chameleon
can defeat attacks that rely on stack data locations such as PIROP or DOP.

Chameleon is also novel in how it implements re-randomization. Existing
works build complex runtimes into the application’s address space that add non-
trivial performance overhead from code instrumentation [17, 14, 50, 1]. Chameleon
is instead an out-of-band framework that executes in userspace in an entirely
separate process. Chameleon attaches to the application using standard OS in-
terfaces for observation and re-randomization. This provides strong isolation be-
tween Chameleon and application — attackers cannot observe the re-randomization
process (e.g., observe random number generator state, dump memory layout in-
formation) and Chameleon does not interact with any user-controlled input.
Additionally, cleanly separating Chameleon from the application allows much of
the re-randomization process to proceed in parallel. This design adds minimal
overhead, as Chameleon only blocks the application when switching between ran-
domized stack layouts. Chameleon can efficiently re-randomize an application’s
stack layout with randomization periods in the range of tens of milliseconds.

In this paper, we make the following contributions:

— We describe Chameleon, a system for continuously re-randomizing applica-
tion stack layouts,

— We detail Chameleon’s stack randomization process that relies on using
compiler-generated function metadata and runtime binary reassembly,

— We describe how Chameleon uses the standard ptrace and userfaultfd OS
interfaces to efficiently transform the application’s stack and inject newly-
rewritten code,

— We evaluate the security benefits of Chameleon and report its performance
overhead when randomizing code on benchmarks from the SPEC CPU 2017 [42]
and NPB [4] benchmark suites. Chameleon’s out-of-band architecture allows
it to randomize stack slot layout with only 1.1% overhead when changing
the layout with a 50 millisecond period,

— We describe how Chameleon disrupts a real-world attack against the popular
nginx webserver

Dynamic and Secure Memory Transformation in Userspace 3

The rest of this paper is organized as follows: in Section 2, we describe the
background and the threat model. We then present the design and implementa-
tion of Chameleon in Section 3. We evaluate Chameleon security properties and
performance in Section 4. We discuss related works in Section 5 and conclude
the paper in Section 6.

2 Background and Threat Model

Before describing Chameleon, we first describe how stack object related attacks
target vulnerable applications, including detailing a recent presented position-
independent code reuse attack. We then define the threat model of these attacks.

2.1 Background

Traditional code reuse attacks rely on runtime application memory information
to construct the malicious payload. Return-oriented programming (ROP) [36, 40]
chains and executes several short instruction sequences ending with ret instruc-
tions, called gadgets, to conduct Turing-complete computation. After carefully
constructing the ROP payload of gadget pointers and data operands, the at-
tacker then tricks the victim process into using the ROP payload as stack data.
Once the ROP payload is triggered, gadget pointers are loaded into the pro-
gram counter (which directs control flow to the gadgets) and the operand data
is populated into registers to perform the intended operations (e.g., prepare pa-
rameters to issue an attacker-intended system call). Modern attacks, such as
JIT-ROP [41], utilize a memory disclosure vulnerability to defeat coarse-grained
randomization techniques such as ASLR [29] by dynamically discovering gadgets
and constructing gadget payloads.

Position-independent ROP (PIROP) [23] proposes a novel way to reuse exist-
ing pointers on the stack (e.g., function addresses) as well as relative code offsets
to construct the ROP payload. PIROP constructs the ROP payload agnostic to
the code’s absolute address. It leverages the fact that function call return ad-
dresses and local variables may remain on the stack even after the function
returns, meaning the next function call may observe stack local variables and
code pointers from the previous function call. By carefully controlling the appli-
cation input, the attacker triggers specific call paths and constructs a stack with
attacker-controlled code pointers and operand data. This stack construction pro-
cedure is called stack massaging (Figure 1 (a)). The next step modifies some bits
of the code pointers to make them point to the intended gadgets (Figure 1 (b)).
This is called code pointer and data operand patching. Since code pointers left
from stack massaging point to code pages, it is possible to modify some bits of
the pointer using relative memory writes to redirect it to a gadget on the same
code page. Fundamentally, PIROP assumes function calls leave their stack slot
contents on the stack even after the call returns. By using a temporal sequence
of different function calls to write pointers to the stack, PIROP constructs a
skeleton of the ROP payload. Very few existing defenses break this assumption.

4 R. Lyerly et al.

PIROP Stack Massaging Code pointer & operand patching
code code
Func_A: Func A:
call Func_B Gadget 3 [
ret_to_A: -~ ret_to_A:
Func_B: Func_B:
call Func_C Gadget 2
ret_to_B: ret_to_B:
Func_C: — .Gadgen
e L
I
i
stack | stack [~
local variables of Func_A : local variables of Func_A
|
|

._local variables of Func_B Patched ROP operand

(a) (b)

Fig. 1. Position Independent ROP. (a) Stack massaging uses code pointers that remain
on the stack after the function returns. (b) Code pointer and operand patching write part
of the massaged stack memory with relative memory writes to construct the payload.

2.2 Threat Model and Assumptions

The attacker communicates with the target application through typical 1/0
interfaces such as sockets, giving the attacker the ability to send arbitrary input
data to the target. The attacker has the target application binary, thus they
are aware of the relative addresses inside any 4K memory page windows. The
attacker can exploit a memory disclosure vulnerability to read arbitrary memory
locations and can use PIROP to construct the ROP payload. The application
is running using standard memory protection mechanisms such that no page
has both write and execute permissions; this means the attacker cannot directly
inject code but must instead rely on constructing gadget chains. However, the
gadget chains crafted by the attacker can invoke system APIs such as mprotect
to create such regions if needed. The attacker knows that the target is running
under Chameleon’s control and therefore knows of its randomization capabilities.
We assume the system software infrastructure (compiler, kernel) is trusted and
therefore the capabilities provided by these systems are correct and sound.

3 Design

Chameleon continuously re-randomizes the code section and stack layout of
an application in order to harden it against temporal stack object reuse (i.e.
PIROP), stack control data smashing and stack object disclosures. As a result
of running under Chameleon, gadget addresses or stack object locations that are
leaked by memory disclosures and that help facilitate other attacks (temporal
stack object reuse, payload construction) are only useful until the next random-
ization, after which the attacker must re-discover the new layout and locations
of sensitive data. Chameleon continuously randomizes the application (hereafter

Dynamic and Secure Memory Transformation in Userspace 5

called the target or child) quickly enough so that it becomes probabilistically
impossible for attackers to construct and execute attacks against the target.

Similarly to previous re-randomization frameworks [50,17], Chameleon is
transparent — the target has no indication that it is being re-randomized. How-
ever, Chameleon’s architecture is different from existing frameworks in that it
executes outside the target application’s address space and attaches to the tar-
get using standard OS interfaces. This avoids the need for bootstrapping and
running randomization machinery inside an application, which adds complexity
and high overheads. Chameleon runs all randomization machinery in a sepa-
rate process, which allows generating the next set of randomization information
in parallel with normal target execution. This also strongly isolates Chameleon
from the target in order to make it extremely difficult for attackers to observe
the randomization process itself. These benefits make Chameleon easier to use
and less intrusive versus existing re-randomization systems.

3.1 Requirements

Chameleon needs a description of each function’s stack layout, including loca-
tion, size and alignment of each stack slot, so that it can randomize each stack
slot’s location. Ideally, Chameleon would be able to determine every stack slot’s
location, size and alignment by analyzing a function’s machine code. In real-
ity, however, it is impossible to tell from the machine code whether adjacent
stack memory locations are separate stack slots (which can be relocated inde-
pendently) or multiple parts of a single stack slot that must be relocated together
(e.g., a struct with several fields). Therefore, Chameleon requires metadata from
the compiler describing how it has laid out the stack.

While DWARF debugging information [21] can provide some of the required
information, it is best-effort and does not capture a complete view of execution
state needed for transformation (e.g., unnamed values created during optimiza-
tion). Instead, Chameleon builds upon existing work [5] that extends LLVM’s
stack maps [30] to dump a complete view of function activations. The compiler
instruments LLVM bitcode to track live values (stack objects, local variables)
by adding stack maps at individual points inside the code. In the backend, stack
maps force generation of a per-function record listing stack slot sizes, alignments
and offsets. Stack maps also record locations of all live values at the location
where the stack map was inserted. Chameleon uses each stack map to recon-
struct the frame at that location. The modified LLVM extends stack maps to
add extra semantic information for live values, particularly whether a live value
is a pointer. This allows Chameleon to detect at runtime if the pointer references
the stack, and if so, update the pointer to the stack slot’s randomized location.
The metadata also describes each function’s location and size, which Chameleon
uses to patch each function to match the randomized layout. All of the metadata
is generated at compile time and is lowered into the binary.

This information could potentially be inferred heuristically, e.g., from a decompiler

6 R. Lyerly et al.

Chameleon also needs to rewrite stack slot references in code to point to their
new locations and must transform existing execution state, namely stack mem-
ory and registers, to adhere to the new randomized layout. To switch between
different randomized stack layouts (named randomization epochs), Chameleon
must be able to pause the target, observe current target execution state, rewrite
the existing state to match the new layout and inject code matching the new lay-
out. Chameleon uses two kernel interfaces, ptrace and userfaultfd, to monitor
and transform the target. ptrace [48] is widely used by debuggers to inspect and
control the execution of tracees. ptrace allows tracers (e.g., Chameleon) to read
and modify tracee state (per-thread register sets, signal masks, virtual memory),
intercept events such as signals and system calls, and forcibly interrupt tracee
threads. userfaultfd [27] is a Linux kernel mechanism that allows delegating
handling of page faults for a memory region to user-space. When accesses to a
region of memory attached to a userfaultfd file descriptor cause a page fault,
the kernel sends a request to a process reading from the descriptor. The process
can then respond with the data for the page by writing a response to the file
descriptor. These two interfaces together give Chameleon powerful and flexible
process control tools that add minimal overhead to the target.

3.2 Re-Randomization Architecture

Chameleon uses the mechanisms described in Section 3.1 to transparently ob-
serve the target’s execution state and periodically interrupt the target to switch it
to the next randomization epoch. In between randomization epochs, Chameleon
executes in parallel with the target to generate the next set of randomized stack
layouts and code. Figure 2 shows Chameleon’s system architecture. Users launch
the target application by passing the command line arguments to Chameleon.
After reading the code and state transformation metadata from the target’s bi-
nary, Chameleon forks the target application and attaches to it via ptrace and
userfaultfd. From this point on, Chameleon enters a re-randomization loop. At
the start of a new randomization cycle, a scrambler thread iterates through every
function in the target’s code, randomizing the stack layout as described below.
At some point, a re-randomization timer fires, triggering a switch to the next
randomization epoch. When the re-randomization event fires, the event handler
thread interrupts the target and switches the target to the next randomization
epoch by dropping the existing code pages and transforming the target’s exe-
cution state (stack, registers) to the new randomized layout produced by the
scrambler. After transformation, the event handler writes the execution state
back into the target and resumes the child; it then blocks until the next re-
randomization event. As the child begins executing, it triggers code page faults
by fetching instructions from dropped code pages. A fault handler thread han-
dles these page faults by serving the newly randomized code. In this way the
entire re-randomization procedure is transparent to the target and incurs low
overheads. We describe each part of the architecture in the following sections.

Randomizing stack layouts. Chameleon randomizes function stack layouts by
logically permuting stack slot locations and adding padding between the slots.

Dynamic and Secure Memory Transformation in Userspace 7

Chameleon Target Application
start next randomization Application
(signal) Event foo Thread

Handler RIP

/—\ m s

x RBP

=3

[— RAX

\/ read/write thread state XMM15
[Xmm1a |
finished randomization (ptrace) -
(signal)

Code Pages (randomization n+1) Code Pages (randomization n) Code Pages (randomization n)
5
Fault &Q{\&
Handler aé){\o“\
l:l Randomization In Progress Page 6?54\6@

I:l Ready Code Page l:l Faulting Code Page §

Fig. 2. Chameleon system architecture. An event handler thread waits for events in
a target thread (e.g., signals), interrupts the thread, and reads/writes the thread’s
execution state (registers, stack) using ptrace. A scrambler thread concurrently pre-
pares the next set of randomized code for the next re-randomization. A fault handler
thread responds to page faults in the target by passing pages from the current code
randomization to the kernel through userfaultfd.

Chameleon also transforms stack memory references in code to point to their ran-
domized locations. When patching the code, Chameleon must work within the
space of the code emitted by the compiler. If, for example, Chameleon wanted
to change the size of code by inserting arbitrary instructions or changing the
operand encoding of existing instructions, Chameleon would need to update all
code references affected by change in size (e.g., jumps between basic blocks,
function calls/returns, etc.). Because finding and updating all code references is
known to not be statically solvable [47], previous re-randomization works either
leverage dynamic binary instrumentation (DBI) frameworks [32,7,17] or an in-
direction table [50, 3] in order to allow arbitrary code instrumentation. There are
problems with both approaches — the former often have large performance costs
while the latter does not actually re-randomize the stack layout, instead opting
to try and hide code pages from attackers. Chameleon instead applies stack lay-
out randomization without changing the size of code to avoid these problems.
In order to facilitate randomizing all elements of the stack, Chameleon modifies
the compiler to (1) pad function prologues and epilogues with nop instructions
that can be rewritten with other instructions and (2) force 4-byte immediate
encodings for all memory operands.

Chameleon both permutes the ordering and adds random amounts of padding
between stack slots; the latter is configurable so users can control how much
memory is used versus how much randomness is added between slots. Figure 3
shows how Chameleon randomizes the following stack elements: (1) Callee-saved

x86-64 backends typically emit small immediate operands using a 1-byte encoding

8 R. Lyerly et al.

(Caller Frame)

Saved R14

FBP—>

(Caller Frame) Local Variable 3

A

)

Return Address
Saved FBP
Saved R15
Saved R14
Saved R13

Saved R12 Local Variable 2
Saved RBX

)
.~ Stack transformati Saved R15
(unwind) Return Address

FBP —>

Local Variable 1 Chameleon
phodg,

Local Variable 1

Local Variable 2

Saved RBX

Local Variable 3

Saved FBP

Arguments Area

Saved R13

(Callee Frame) . Saved R12
\\Stack transformation

| (unwind)

Arguments Area

(Callee Frame)

Fig. 3. Stack slot randomization. Chameleon permutes the ordering and adds random
amounts of padding between slots.

registers: the compiler saves and restores callee-saved registers through push and
pop instructions. Chameleon uses the nop padding emitted by the compiler to
rewrite them as mov instructions, allowing the scrambler to place callee-saved
registers at arbitrary locations on the stack. Chameleon also randomizes the
locations of the return address and saved frame base pointer by inserting mov
intructions in the function’s prologue and epilogue. (2) Local variables: compil-
ers emit references to stack-allocated variables as offsets from the frame base
pointer (FBP) or stack pointer (SP). Chameleon randomizes the locations of
local variables by rewriting a variable’s offset to point to the randomized loca-
tion. Chameleon does not currently randomize the locations of stack arguments
for called functions as the locations are dictated by the ABI and would require
rewriting both the caller and callee with a new parameter passing convention.
We plan these transformations as future work.

Serving code pages. Chameleon needs a mechanism to transparently and ef-
ficiently serve randomized code pages to the child. While Chameleon could use
ptrace to directly write the randomized code into the address space of the child
application, this would cause large delays when swapping between randomization
epochs for applications with large code sections — Chameleon would have to bulk
write the entire code section on every re-randomization. Instead Chameleon uses
userfaultfd and page faults, which allows quicker switches between epochs by
demand paging code into the target application’s address space.

At startup, Chameleon attaches a userfaultfd file descriptor to the tar-
get’s code memory virtual memory area (VMA). userfaultfd descriptors can

Dynamic and Secure Memory Transformation in Userspace 9

only be opened by the process that owns the memory region for which faults
should be handled. Chameleon cannot directly open a userfaultfd descriptor
for the target but can induce the target application to create a descriptor and
pass it to Chameleon over a socket before the target begins normal execution.
Chameleon uses compel [15], a library that facilitates implanting parasites into
applications controlled via ptrace. Parasites are small binary blobs which exe-
cute code in the context of the target application. For Chameleon, the parasite
opens a userfaultfd descriptor and passes it to Chameleon through a socket.
To execute the parasite, Chameleon takes a snapshot of the target process’ main
thread (registers, signal masks). Then, it finds an executable region of mem-
ory in the target and writes the parasite code into the target. Because ptrace
allows writing a thread’s registers, Chameleon redirects the target thread’s pro-
gram counter to the parasite and begins execution. The parasite opens a control
socket, initializes a userfaultfd descriptor, passes the descriptor to Chameleon,
and exits at well-known location. Chameleon intercepts the thread at the exit
point, restores the thread’s registers and signal mask to their original values and
restores the code clobbered by the parasite.

After receiving the userfaultfd descriptor, Chameleon must prepare the
target’s code region for attaching (userfaultfd descriptors can only attach to
anonymous VMAs [44]). Chameleon executes an mmap system call inside the
target to remap the code section as anonymous and then registers the code
section with the userfaultfd descriptor. The controller then starts the fault
handler thread, which serves code pages through the userfaultfd descriptor
from the scrambler thread’s code buffer as the target accesses unmapped pages.

Switching between randomization epochs. The event handler begins switch-
ing the target to the new set of randomized code when interrupted by the re-
randomization alarm. The event handler interrupts the target, converts existing
execution state (registers, stack memory) to the next randomization epoch, and
drops existing code pages so the target can fetch fresh code pages on-demand.

The event handler issues a ptrace interrupt to grab control of the target. At
this point Chameleon needs to transform the target’s current stack to match the
new stack layout. The compiler-emitted stackmaps only describe the complete
stack layout at given points inside of a function, called transformation points. To
switch to the next randomization epoch, Chameleon must advance the target to
a transformation point. While the thread is interrupted, Chameleon uses ptrace
to write trap instructions into the code at transformation points found during
initial code disassembly and analysis. Chameleon then resumes the target thread
and waits for it to reach the trap. When it executes the trap, the kernel interrupts
the thread and Chameleon regains control. Chameleon then restores the original
instructions and begins state transformation.

Chameleon unwinds the stack using stackmaps similarly to other re-randomiz-
ation systems [50]. During unwinding, however, Chameleon shuffles stack objects
to their new randomized locations using information generated by the scrambler

Chameleon uses the int3 instruction

10 R. Lyerly et al.

(Figure 3). For each function, the scrambler creates a mapping between the
original and randomized offsets of all stack slots. This mapping is used to move
stack data from its current randomized location to the next randomized location.
To access the target’s stack, Chameleon reads the target’s register values using
ptrace and the target’s stack using /proc/<target pid>/mem. After reaching
a transformation point, Chameleon reads the thread’s entire stack into a buffer,
located using the target’s stack pointer. Chameleon passes the stack pointer,
register set and buffer containing stack data to a stack transformation library to
transform it to the new randomized layout.

The final step in re-randomization is to map the new code into the target’s
address space using userfaultfd. Chameleon executes an madvise system call
with the MADV_DONTNEED flag for the code section in the context of the tar-
get, which instructs the kernel to drop all existing code pages and cause fresh
page faults upon subsequent execution. The fault handler begins serving page
faults from the code buffer for the new randomization epoch and the target is
released to continue normal execution. At this point the target is now execut-
ing under a new set of randomized code. The event handler thread signals the
scrambler thread to begin generating the next randomization epoch. In this way,
switching randomization epochs blocks the target only to transform the target
thread’s stack and drop the existing code pages. The most expensive work of
generating newly randomized code happens in parallel with the target appli-
cation’s execution, highlighting one of the major benefits of cleanly separating
re-randomization into a separate process from the target application.

Multi-process applications. Chameleon supports multi-process applications
such as web servers that fork children for handling requests. When the target
forks a new child, the kernel informs Chameleon of a fork event. The new
process inherits ptrace status from the parent, meaning the event handler also
has tracing privileges for the new child. At this point, the controller instantiates
a new scrambler, fault handler and event handler for the new child. Chameleon
hands off tracer privileges from the parent to the child event handler thread so
the new handler can control the new child. In order to do this, Chameleon first
redirects the new child to a blocking read on a socket through code installed via
parasite. The original event handler thread then detaches from the new child,
allowing the new event handler thread to become the tracer for the new child
while it is blocked. After attaching, the new event handler restores the new child
to the fork location and removes the parasite. In this way, Chameleon always
maintains complete control of applications even when they fork new processes.

3.3 A Prototype of Chameleon

Chameleon is implemented in 6092 lines of C++ code, which includes the event
handler, scrambler and fault handler. Chameleon extends code from an open
source stack transformation framework [5] to generate transformation metadata

This file allows tracers to seek to arbitrary addresses in the target’s address space
to read/write ranges of memory

Dynamic and Secure Memory Transformation in Userspace 11

and transform the stack at runtime. Chameleon uses DynamoRIO [7] disassem-
ble and re-assemble the target’s machine code. Currently Chameleon supports
x86-64. Chameleon’s use of ptrace prevents attaching other ptrace-based ap-
plications such as GDB. However, it is unlikely users will want to use both,
as GDB is most useful during development and testing. However, Chameleon
could be extended to dump randomization information when the target crashes
to allow debugging core dumps in debuggers.

4 Evaluation

In this section we evaluate Chameleon’s capabilities both in terms of security
benefits and overheads:

— What kinds of security benefits does Chameleon provide? In particular, how
much randomization does it inject into stack frame layouts? This includes
describing a real-world case study of how Chameleon defeats a web server
attack. (Section 4.1)

— How much overhead does Chameleon impose for these security guarantees,
including how expensive are the individual components of Chameleon and
how much overhead does it add to the total execution time? (Section 4.2)

Experimental Setup. Chameleon was evaluated on an x86-64 server containing
an Intel Xeon 2620v4 with a clock speed of 2.1GHz (max boost clock of 3.0GHz).
The Xeon 2620v4 contains 8 physical cores and has 2 hardware threads per core
for a total of 16 hardware threads. The server contains 32GB of DDR4 RAM.
Chameleon is run on Debian 8.11 “Jessie” using Linux kernel 4.9. Chameleon
was configured to add a maximum padding of 1024 bytes between stack slots.
Chameleon was evaluated using benchmarks from the SNU C version of the
NPB benchmarks [4,38] and SPEC CPU 2017 [42]. Benchmarks were compiled
with all optimizations (-03) using the previously described compiler, built on
clang/LLVM v3.7.1. The single-threaded version of NPB was used.

4.1 Security Analysis

We first analyze both the quality of Chameleon runtime re-randomization in
the target and describe the security of the Chameleon framework itself. Because
Chameleon, like other approaches [17, 50, 45], relies on layout randomization to
disrupt attackers, it cannot make any guarantees that attacks will not succeed.
There is always the possibility that the attacker is lucky and guesses the exact
randomization (both stack layout and randomized code) and is able to construct
a payload to exploit the application and force it into a malicious execution.
However, with sufficient randomization, the probability that such an attack will
succeed is so low as to be practically impossible.

Target Randomization: Chameleon randomizes the target in two dimensions:
randomizing the layout of stack elements and rewriting the code to match the

12 R. Lyerly et al.

8.8
8.6 I I
8.4

g\% ‘\3“ c;;* S‘?(‘C IR Qﬁ\

Number of Bits
©

6\ \
©F "
< sﬁ o

&° &

Fig. 4. Average number of bits of entropy for a stack element across all functions within
each binary. Bits of entropy quantify in how many possible locations a stack element
may be post-randomization — for example, 2 bits of entropy mean the stack element
could be in 2% = 4 possible locations with a i = 25% chance of guessing the location.

randomized layout. We first evaluated how well randomizing the stack disrupts
attacks that utilize known locations of stack elements. When quantifying the
randomization quality of a given system, many works use entropy or the number
of randomizable states as a measure of randomness. For Chameleon, entropy
refers to the number of potential locations a stack element could be placed, i.e.,
the number of randomizable locations.

Figure 4 shows the average entropy created by Chameleon for each bench-
mark. For each application, the y-axis indicates the geometric mean of the num-
ber of bits of entropy across all stack slots in all functions. Chameleon provides a
geometric mean 9.17 bits of entropy for SPEC and 9.03 bits for NPB. Functions
with more stack elements have higher entropy as there are a larger number of
permutations. SPEC’s benchmarks tend to have higher entropy because they
have more stack slots. While an attacker may be able to guess the location of
a single stack element with 9 bits of entropy (probability of 2% = 0.00195), the
attacker must chain together knowledge of multiple stack locations to make a
successful attack. For an attack that must corrupt three stack slots, the attacker
has a 0.00195% = 7.45 x 10~° probability of correctly guessing the stack loca-
tions, therefore making successful attacks probabilistically impossible. It is also
important to note that the amount of entropy can be increased arbitrarily by
increasing the amount of padding between stack slots, which necessarily creates
much larger stacks. We conclude that Chameleon makes it infeasible for attackers
to guess stack locations needed in exploits.

Next, we evaluated how Chameleon’s code patching disturbs gadget chains.
Attackers construct malicious executions by chaining together gadgets that per-
form a very basic and low-level operation. Gadgets, and therefore gadget chains,
are very frail — slight disruptions to a gadget’s behavior can disrupt the en-
tire intended functionality of the chain. As part of the re-randomization process,
Chameleon rewrites the application’s code to match the randomized stack layout.
A side effect of this is that gadgets may be disrupted — Chameleon may over-
write part or all of a gadget, changing its functionality and disrupting the gadget
chain. To analyze how many gadgets are disrupted, we searched for gadgets in

Dynamic and Secure Memory Transformation in Userspace 13

100
90

80
70
60
50
40
30
20
10
0

g Q © N G A4 \s
«\ &g\b Qs\e‘\ w‘\a c;;* SVQ N W S \)%“ ®Q%\
&
> & &

Disrupted (%)

o

@AIl @Non-trivial

Fig. 5. Percent of gadgets disrupted by Chameleon’s code randomization

the benchmark binaries and cross-referenced gadget addresses with instructions
rewritten by Chameleon. We used Ropper, a gadget finder tool, to find all ROP
gadgets (those that end in a return) and JOP gadgets (those that end in a call
or jump) in the application binaries. We searched for gadgets of 6 instructions
or less, as longer gadgets become increasingly hard to use due to unintended
gadget side effects (e.g., clobbering registers).

Figure 5 shows the percent of gadgets disrupted as part of Chameleon’s stack
randomization process. When searching the binary, Ropper may return single-
instruction gadgets that only perform control flow. We term these “trivial” gad-
gets and provide results with and without trivial gadgets. Chameleon disrupted
a geometric mean of 55.81% gadgets or 76.32% of non-trivial gadgets. While
Chameleon did not disrupt all gadgets, it disrupted enough that attackers will
have a hard time chaining together functionality without having to use one of
the gadgets altered by Chameleon. To better understand the attacker’s dilemma,
previous work by Cheng et al. [12] mentions that the shortest useful ROP attack
produced by the Q ROP compiler [37] consisted of 13 gadgets. Assuming gadgets
are chosen with a uniform random possibility from the set of all available gad-
gets, attackers would have a probability of (1 —0.5582) = 2.44 x 10~° of being
able to construct an unaltered gadget chain, or a (1 — 0.7632)* = 7.36 x 10~
probability if using non-trivial gadgets. Therefore, probabilistically speaking it
is very unlikely that the attacker will be able to construct gadget chains that
have not been altered by Chameleon.

Defeating Real Attacks. To better understand how re-randomization can
help protect target applications from attackers, we used Chameleon to disrupt a
flaw found in a real application. Nginx [35] is a lightweight and fast open-source
webserver used by a large number of popular websites. CVE-2013-2028 [16] is
a vulnerability affecting nginx v1.3.9/1.4.0 in which a carefully crafted set of
requests can lead to a stack buffer overflow. When parsing an HTTP request,
the Nginx worker process allocates a page-sized buffer on the stack and calls
recv to read the request body. By using a “chunked” transfer encoding and
triggering a certain sequence of HT'TP parse operations through specifically-sized
messages, the attacker can underflow the size variable used in the recv operation

https://github.com/sashs/Ropper

14 R. Lyerly et al.

on the stack buffer and allow the attacker to send an arbitrarily large payload.
VNSecurity published a proof-of-concept attack [46] that uses this buffer overflow
to build a ROP gadget chain that remaps a piece of memory with read, write
and execute permissions. After creating a buffer for injecting code, the ROP
chain copies instruction bytes from the payload to the buffer and “returns” to
the payload by placing the address of the buffer as the final return address on
the stack. The instructions in the buffer set up arguments and call the system
syscall to spawn a shell on the server. The attacker can then remotely connect
to the shell and gain privileged access to the machine.

Chameleon randomizes both the stack buffer and the return address targeted
by this attack. There are four stack slots in the associated function, meaning the
vulnerable stack buffer can be in one of four locations in the final ordering. Using
a maximum slot padding size of 1024, Chameleon will insert anywhere between
0 and 1024 bytes of padding between slots. The slot has an alignment restriction
of 16, meaning there are % = 64 possible amounts of padding that can be
added between the vulnerable buffer and the preceding stack slot. Therefore,
Chameleon can place the buffer at 4 « 64 = 256 possible locations within the
frame for 8 bits of entropy. Thus, an attacker has a probability of 2% = 0.0039
of guessing the correct buffer location. Additionally, the attacker must guess the
location of the return address, which could be at 4x 105% = 512 possible locations
to initiate the attack, meaning the attacker will have probability of 7.62 x 106

of correctly placing data to start the attack.

Attacking Chameleon. We also analyzed how secure Chameleon is itself from
attackers. Chameleon is most vulnerable when setting up the target as Chameleon
communicates with the parasite over Unix domain sockets. However, these sock-
ets are short lived, only available to local processes (not over the network) and
only pass control flags and the userfaultfd file descriptor — Chameleon can eas-
ily validate the correctness of these messages. After the initial application setup,
Chameleon only interacts with the outside world through ptrace and ioctl (for
userfaultfd). The only avenue that attackers could potentially use to hijack
Chameleon would be through corrupting state in the target binary/application
which is then subsequently read during one of the re-randomization periods. Al-
though it is conceivable that attackers could corrupt memory in such a way as
to trigger a flaw in Chameleon, it is unlikely that they would be able to gain
enough control to perform useful functionality; the most likely outcomes of such
an attack are null pointer exceptions caused by Chameleon following erroneous
pointers when transforming the target’s stack. Additionally, because Chameleon
is a small codebase, it could potentially be instrumented with safeguards and
even formally verified. This is a large benefit of Chameleon’s strong isolation —
it is much simpler to verify its correctness. Thus, we argue that Chameleon’s
system architecture is safe for enhancing the security of target applications.

4.2 Performance

We next evaluated the performance of target applications executing under Chame-
leon’s control. As mentioned in Sections 3.2, Chameleon must perform a number

Dynamic and Secure Memory Transformation in Userspace 15

N oW o !
a o 0«

Slowdown (%)
=
¢

g T 1 el

5 ® pagRio) © < v W W ® > o
« o < & W RO ¢
RO \6 Qs\ o c;a \ ®
>

< N

@100ms @50ms @10ms

Fig. 6. Overhead when running applications under Chameleon versus execution with-
out Chameleon. Overheads rise with smaller re-randomization periods, but are negli-
gible in most cases.

1600 7977
1400
1200
1000
800
600

= [l g ﬂﬁ mnﬂmmmmmﬂ il

& ® ® 4% O 3 L0 W & R LR
(105«\ 9\‘; Qs\"’(\%&h“a 5’\ \S‘?&’) < > W S \)%0\\\\9
@
> 6‘20 &

Transformation Time (microseconds)

@100ms @50ms @10ms

Fig. 7. Time to switch the target between randomization epochs, including advancing
to a transformation point, transforming the stack and dropping existing code pages.

of duties to continuously re-randomize applications. In particular, Chameleon
runs a scrambler thread to generate a new set of randomized code, runs a fault
handler to respond to code page faults with the current set of randomized code,
and periodically switches the target application between randomization epochs.

Figure 6 shows the slowdown of each benchmark when re-randomizing the
application every 100ms, 50ms and 10ms versus execution without Chameleon.
More frequent randomizations makes it harder for attackers to discover and
exploit the current target application’s layout at the cost of increased overhead.
For SPEC, Chameleon re-randomizes target applications with a geometric mean
1.19% and 1.88% overhead with a 100ms and 50ms period, respectively. For NPB,
the geometric means are 0.53% and 0.77%, respectively. Re-randomizing with a
10ms period raises the overhead to 18.8% for SPEC and 4.18% for NPB. This
is due to the time it takes the scrambler thread to randomize all stack layouts
and rewrite the code to match — with a 10ms period, the event handler thread
must wait for the scrambler to finish generating the next randomization epoch
before switching the target. With 100ms and 50ms periods, the scrambler’s code
randomization latency is completely hidden.

We also analyzed how long it took Chameleon to switch between random-
ization epochs as described in Section 3.2. Figure 7 shows the average switching
cost for each benchmark. Switching between randomization epochs is an inex-

16 R. Lyerly et al.

pensive process. For both 100ms and 50ms periods, it takes a geometric mean of
335us for SPEC and 250us for NPB to perform the entire procedure transforma-
tion. For these two re-randomization periods, only deepsjeng and LU take longer
than 600us. This is due to large on-stack variables (e.g., LU allocates a 400KB
stack buffer) that must be copied between randomized locations. Nevertheless,
as a percentage of the re-randomization period, transformations are inexpensive:
0.2% of the 100ms re-randomization period and 0.5% of the 50ms period. We also
measured page fault overhead of 5.06us per fault. While Chameleon causes page
faults throughout the lifetime of the target to bring in new randomized pages,
we measured that this usually added less than 0.1% overhead to applications.

There are several performance outliers for the 10ms transformation period.
deepsjeng, nab and UA’s overheads increase drastically due to code random-
ization overhead. When the event handler thread receives a signal to start a
re-randomization, it advances the target to a transformation point and blocks
until the scrambler thread signals it has finished re-randomizing the code. Be-
cause these applications have higher code randomization costs, the event handler
thread is blocked waiting for a significant amount of time.

We conclude that Chameleon is able to inject significant amounts of entropy
in target applications while adding minimal overheads.

5 Related Works

Stack object-based attacks were proposed a long time ago but are regaining pop-
ularity due to the recent data oriented attacks and position-independent code
reuse attacks [24-26, 23]. Traditional “stack smashing” attacks overflow the stack
local buffer and modify the return address on the stack so that upon returning
from the vulnerable function, the application jumps to the malicious payload [2].
There are a number of techniques proposed to prevent the return address from
being corrupted, such as stack canaries and shadow stacks [13,8,49]. Stack ca-
naries place a random value in between the function return address and the
stack local buffer and re-checks the value before function returns. The program
executes the warning code and terminates if the canary value is changed [13].
Shadow stacks further enforce backward control flow integrity by storing the
function return values in a separate space [49, 8]. Both approaches focus on pro-
tecting direct control data on stack without protecting other stack objects.
Recent works have shown that stack objects other than function return ad-
dresses could also be used to generate exploits. Goktas et al. proposed using
function return addresses and the initialized data that function calls left on the
stack to construct position-independent ROP payloads. This way of legally using
function calls to construct the malicious payload on the stack is named “stack
massaging” [23]. Similarly, attackers can also manipulate other non-control data
on the stack to fully control the target. Hu et al. proposed a general approach to
automatically synthesize such data-oriented attacks, named data-oriented pro-
gramming (DOP) [24,25]. They used the fact that non-control data corruption
could potentially be used to modify the program’s control flow and implement

Dynamic and Secure Memory Transformation in Userspace 17

memory loads and stores. By using a gadget dispatcher (normally a loop and a
selector), the attacker could keep the program executing data-oriented gadgets.
Note that both of these attacks leverage non-control data on the stack, bypassing
existing control flow integrity checks.

Strict boundary checking could be a solution to preventing memory exploits.
Such boundary checking could be either software-based [33, 28, 39] or hardware-
based [34,19]. For example, Intel MPX introduces new bounds registers and
an instruction set for boundary checking [34]. Besides the relatively large per-
formance overhead introduced by strict boundary checks, the integrity-based
approaches cannot defeat the stack object manipulation caused by temporal
function calls [23]. StackArmor statically instruments the binary and randomly
allocates discontinuous stack pages [10]. Although StackArmor can break the
linear stack address space into discrete pages, the function call locality allows
position-independent code reuse to succeed within a stack page size [23]. Timely
code randomization breaks the constant locations used in the the program lay-
out, making it hard for attackers to reuse existing code to chain gadgets [50,
11, 6]. However, these approaches transform the code layout but not the stack
slot layout, giving attackers the ability to exploit stack objects. Chameleon is
designed to disrupt these kinds of attacks by continuously randomizing both the
stack layout and code. By changing the stack layout, Chameleon makes it more
difficult for attackers to corrupt specific stack elements.

6 Conclusion

We have presented the design, implementation and evaluation of Chameleon, a
practical system for continuous stack re-randomization. Chameleon continually
generates randomized stack layouts for all functions in the application, rewriting
each function’s code to match. Chameleon periodically interrupts the target to
rewrite its existing execution state to a new randomized stack layout and injects
matching code. Chameleon controls target applications from a separate address
space using the widely available ptrace and userfaultfd kernel primitives,
maintaining strong isolation between Chameleon and the target. The evaluation
showed that Chameleon’s lightweight user-level page fault handling and code
transformation significantly raises the bar for stack exploitation with minimal
overhead to target application.

The source code of Chameleon is publicly available as part of the Popcorn
Linux project at http://popcornlinux.org.

7 Acknowledgments

This work is supported in part by the US Office of Naval Research (ONR) under
grants N00014-18-1-2022 and N00014-16-1-2711, and by NAVSEA /NEEC under
grant N00174-16-C-0018.

18

R. Lyerly et al.

References

10.

11.

12.

13.

14.

15.
16.

Misiker Tadesse Aga and Todd Austin. Smokestack: thwarting dop attacks with
runtime stack layout randomization. In 2019 IEEE/ACM International Symposium
on Code Generation and Optimization (CGO), pages 26-36. IEEE, 2019.

One Aleph. Smashing the stack for fun and profit.
http: //www.shmoo.com/phrack/Phrack49/p49-14, 1996.

Michael Backes and Stefan Niirnberger. Oxymoron: Making Fine-grained Memory
Randomization Practical by Allowing Code Sharing. Proc. 23rd Usenix Security
Sym, pages 433-447, 2014.

David H Bailey, Eric Barszcz, John T Barton, David S Browning, Robert L. Carter,
Leonardo Dagum, Rod A Fatoohi, Paul O Frederickson, Thomas A Lasinski, Rob S
Schreiber, et al. The nas parallel benchmarks summary and preliminary results.
In Supercomputing’91: Proceedings of the 1991 ACM/IEEE conference on Super-
computing, pages 158-165. IEEE, 1991.

Antonio Barbalace, Robert Lyerly, Christopher Jelesnianski, Anthony Carno, Ho-
Ren Chuang, Vincent Legout, and Binoy Ravindran. Breaking the boundaries
in heterogeneous-ISA datacenters. In ACM SIGPLAN Notices, volume 52, pages
645-659. ACM, 2017.

David Bigelow, Thomas Hobson, Robert Rudd, William Streilein, and Hamed
Okhravi. Timely rerandomization for mitigating memory disclosures. In Proceed-
ings of the 22nd ACM SIGSAC Conference on Computer and Communications
Security, pages 268-279. ACM, 2015.

Derek Bruening. Efficient, Transparent, and Comprehensive Runtime Code Ma-
nipulation. PhD thesis, Massachusetts Institute of Technology, Sept 2004.
Nathan Burow, Xinping Zhang, and Mathias Payer. Shining light on shadow stacks.
arXiw preprint arXiw:1811.03165, 2018.

Nicholas Carlini, Antonio Barresi, Mathias Payer, David Wagner, and Thomas R
Gross. Control-flow bending: On the effectiveness of control-flow integrity. In 2/th
USENIX Security Symposium (USENIX Security 15), pages 161-176, 2015.

Xi Chen, Asia Slowinska, Dennis Andriesse, Herbert Bos, and Cristiano Giuffrida.
Stackarmor: Comprehensive protection from stack-based memory error vulnerabil-
ities for binaries. In NDSS. Citeseer, 2015.

Yue Chen, Zhi Wang, David Whalley, and Long Lu. Remix: On-demand live ran-
domization. In Proceedings of the Sizth ACM Conference on Data and Application
Security and Privacy, pages 50-61. ACM, 2016.

Yueqgiang Cheng, Zongwei Zhou, Miao Yu, Xuhua Ding, and Robert H Deng.
ROPecker: A Generic and Practical Approach for Defending against ROP Attacks.
In Symposium on Network and Distributed System Security (NDSS), 2014.
Crispin Cowan, Calton Pu, Dave Maier, Jonathan Walpole, Peat Bakke, Steve
Beattie, Aaron Grier, Perry Wagle, , and Qian Zhang. StackGuard: Automatic
Adaptive Detection and Prevention of Buffer-Overflow Attacks. In Proceedings of
the Tth USENIX Security Symposium, August 1998.

Stephen Crane, Christopher Liebchen, Andrei Homescu, Lucas Davi, Per Larsen,
Ahmad-Reza Sadeghi, Stefan Brunthaler, and Michael Franz. Readactor: Practical
Code Randomization Resilient to Memory Disclosure. In 36th IEEE Symposium
on Security and Privacy (Oakland), May 2015.

CRIU. CRIU Compel. https://criu.org/Compel, Accessed: 2019-04-14.
CVE-2013-2028. https://cve.mitre.org/cgi-bin/cvename.cgi?’name=CVE-2013-
2028, Accessed: 2019-04-14.

17.

18.

19.

20.

21.
22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

Dynamic and Secure Memory Transformation in Userspace 19

Lucas Davi, Christopher Liebchen, Ahmad-Reza Sadeghi, Kevin Z Snow, and
Fabian Monrose. Isomeron: Code Randomization Resilient to (just-in-time)
Return-oriented Programming. Proc. 22nd Network and Distributed Systems Se-
curity Sym.(NDSS), 2015.

Lucas Davi, Ahmad-Reza Sadeghi, Daniel Lehmann, and Fabian Monrose. Stitch-
ing the Gadgets: On the Ineffectiveness of Coarse-Grained Control-Flow Integrity
Protection. In Proceedings of the 23rd USENIX Conference on Security, SEC’14,
2014.

Joe Devietti, Colin Blundell, Milo M. K. Martin, and Steve Zdancewic. Hard-
bound: Architectural Support for Spatial Safety of the C Programming Language.
In Proceedings of the 13th International Conference on Architectural Support for
Programming Languages and Operating Systems, 2008.

Zakir Durumeric, Frank Li, James Kasten, Johanna Amann, Jethro Beekman,
Mathias Payer, Nicolas Weaver, David Adrian, Vern Paxson, Michael Bailey, et al.
The matter of heartbleed. In Proceedings of the 2014 conference on internet mea-
surement conference, pages 475-488. ACM, 2014.

DWARF Standards Committee. The DWARF Debugging Standard, February 2017.
Enes Goktas, Elias Athanasopoulos, Herbert Bos, and Georgios Portokalidis. Out
of Control: Overcoming Control-Flow Integrity. In Proceedings of the 2014 IEEE
Symposium on Security and Privacy, SP '14, 2014.

Enes Goktas, Benjamin Kollenda, Philipp Koppe, Erik Bosman, Georgios Portoka-
lidis, Thorsten Holz, Herbert Bos, and Cristiano Giuffrida. Position-independent
code reuse: On the effectiveness of aslr in the absence of information disclosure.
In 2018 IEEE European Symposium on Security and Privacy (EuroSE&P), pages
227-242. TEEE, 2018.

Hong Hu, Zheng Leong Chua, Sendroiu Adrian, Prateek Saxena, and Zhenkai
Liang. Automatic generation of data-oriented exploits. In 24th USENIX Secu-
rity Symposium (USENIX Security 15), pages 177-192, 2015.

Hong Hu, Shweta Shinde, Sendroiu Adrian, Zheng Leong Chua, Prateek Saxena,
and Zhenkai Liang. Data-oriented programming: On the expressiveness of non-
control data attacks. In 2016 IEEE Symposium on Security and Privacy (SP),
pages 969-986. IEEE, 2016.

Kyriakos K Ispoglou, Bader AlBassam, Trent Jaeger, and Mathias Payer. Block
oriented programming: Automating data-only attacks. In Proceedings of the 2018
ACM SIGSAC Conference on Computer and Communications Security, pages
1868-1882. ACM, 2018.

kernel.org. Userfaultfd. https://www.kernel.org/doc/Documentation/vm/user
faultfd.txt, Accessed: 2019-04-14.

Taddeus Kroes, Koen Koning, Erik van der Kouwe, Herbert Bos, and Cristiano
Giuffrida. Delta pointers: Buffer overflow checks without the checks. In Proceedings
of the Thirteenth EuroSys Conference, page 22. ACM, 2018.

Linux Kernel Address Space Layout Randomization.
http://lwn.net/Articles/569635/, Accessed: 2019-04-14.

LLVM Compiler Infrastructure. Stack maps and patch points in LLVM.
https://llvm.org/docs/StackMaps.html, Accessed: 2019-04-14.

Kangjie Lu, Marie-Therese Walter, David Pfaff, Stefan Niimberger, Wenke Lee,
and Michael Backes. Unleashing use-before-initialization vulnerabilities in the linux
kernel using targeted stack spraying. In NDSS, 2017.

Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Geoff
Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazelwood. Pin: building

20

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.
49.

R. Lyerly et al.

customized program analysis tools with dynamic instrumentation. In Acm sigplan
notices, volume 40, pages 190-200. ACM, 2005.

Santosh Nagarakatte, Jianzhou Zhao, Milo M.K. Martin, and Steve Zdancewic.
SoftBound: Highly Compatible and Complete Spatial Memory Safety for C. In
Proceedings of the 2009 ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI 09, 2009.

Oleksii Oleksenko, Dmitrii Kuvaiskii, Pramod Bhatotia, Pascal Felber, and
Christof Fetzer. Intel mpx explained: A cross-layer analysis of the intel mpx sys-
tem stack. Proceedings of the ACM on Measurement and Analysis of Computing
Systems, 2(2):28, 2018.

Will Reese. Nginx: the high-performance web server and reverse proxy. Linux
Journal, 2008(173):2, 2008.

Ryan Roemer, Erik Buchanan, Hovav Shacham, and Stefan Savage. Return-
oriented programming: Systems, Languages, and Applications. ACM Transactions
on Information and System Security (TISSEC), 15(1):2, 2012.

Edward J Schwartz, Thanassis Avgerinos, and David Brumley. Q: Exploit hard-
ening made easy. In USENIX Security Symposium, pages 25—41, 2011.

Sangmin Seo, Gangwon Jo, and Jaejin Lee. Performance characterization of the
nas parallel benchmarks in opencl. In 2011 IEEFE international symposium on
workload characterization (IISWC), pages 137-148. IEEE, 2011.

Konstantin Serebryany, Derek Bruening, Alexander Potapenko, and Dmitriy
Vyukov. AddressSanitizer: A fast address sanity checker. In Presented as part of the
2012 USENIX Annual Technical Conference (USENIX ATC 12), pages 309-318,
2012.

Hovav Shacham. The Geometry of Innocent Flesh on the Bone: Return-Into-Libc
without Function Calls (on the x86). In Proceedings of the 14th ACM Conference
on Computer and Communications Security, October 2007.

Kevin Z Snow, Fabian Monrose, Lucas Davi, Alexandra Dmitrienko, Christopher
Liebchen, and Ahmad-Reza Sadeghi. Just-in-time Code Reuse: On the Effective-
ness of Fine-grained Address Space Layout Randomization. In Security and Privacy
(SP), 2013 IEEE Symposium on, pages 574-588. IEEE, 2013.

Standard Performance Evaluation Corporation. SPEC CPU 2017.
https://www.spec.org/cpu2017, Accessed: 2019-04-14.

Lészl6 Szekeres, Mathias Payer, Tao Wei, and Dawn Song. Sok: Eternal War in
Memory. In Security and Privacy (SP), 2018 IEEE Symposium on, pages 48—62.
IEEE, 2013.

The Linux man-pages project. mmap(2) - Linux manual page.
http://man7.org/linux/man-pages/man2/mmap.2.html, April 2020.

Ashish Venkat, Sriskanda Shamasunder, Hovav Shacham, and Dean M Tullsen.
Hipstr: Heterogeneous-isa program state relocation. In ACM SIGARCH Computer
Architecture News, volume 44, pages 727-741. ACM, 2016.

Analysis of nginx 1.3.9/1.4.0 stack buffer overflow and x64 exploitation (CVE-
2013-2028). https://www.vnsecurity.net/research/2013/05/21/analysis-of-nginx-
cve-2013-2028.html, Accessed: 2019-04-14.

Ruoyu Wang, Yan Shoshitaishvili, Antonio Bianchi, Machiry Aravind, John
Grosen, Paul Grosen, Christopher Kruegel, and Giovanni Vigna. Ramblr: Mak-
ing Reassembly Great Again. In Proceedings of the 2017 Network and Distributed
System Security Symposium, 2017.

Wikipedia. Ptrace. http://en.wikipedia.org/wiki/Ptrace, Accessed: 2019-04-14.
Wikipedia. Shadow stack. https://en.wikipedia.org/wiki/Shadow_stack, Accessed:
2019-04-14.

Dynamic and Secure Memory Transformation in Userspace 21

50. David Williams-King, Graham Gobieski, Kent Williams-King, James P Blake, Xin-
hao Yuan, Patrick Colp, Michelle Zheng, Vasileios P Kemerlis, Junfeng Yang, and
William Aiello. Shuffler: Fast and Deployable Continuous Code Re-Randomization.
In OSDI, pages 367-382, 2016.

