
Assured-Timeliness Integrity Protocols for Distributable Real-Time
Threads with in Dynamic Distributed Systems

Binoy Ravindran?, Edward Curley?, Jonathan Anderson?, and E. Douglas Jensen‡

?ECE Dept., Virginia Tech
Blacksburg, VA 24061, USA

{binoy,alias,andersoj}@vt.edu

‡The MITRE Corporation
Bedford, MA 01730, USA

jensen@mitre.org

Abstract

Networked embedded systems present unique challenges for system designers composing distributed applications with
dyanmic, real-time, and resilience requirements. We consider the problem of recovering from failures of distributable
threads with assured timeliness in dynamic systems with overloads, and node and (permanent/transient) network failures.
When a distributable thread encounters a failure that prevents its timely execution, the thread must be terminated. Thread
termination involves detecting and aborting thread orphans, and delivering exceptions to the farthest, contiguous surviving
thread segment for possible execution resumption. Thread termination operations must optimize system-wide timeliness.
We present a scheduling algorithm called HUA and two thread integrity protocols called D-TPR and W-TPR. We show
that they bound the orphan cleanup and recovery time with bounded loss of the best-effort property—i.e., high importance
threads are always favored over low importance ones (for feasible completion), irrespective of thread urgency. Our
implementation experience using the emerging Reference Implementation of Sun’s Distributed Real-Time Specification
for Java (DRTSJ) demonstrates the algorithm/protocols’ effectiveness.

1. Introduction

In distributed systems, action and information timeliness is often end-to-end—e.g., a causally dependent, multi-node,
sensor to shooter sequential flow of execution in network-centric warfare systems [3]. Designers and users of distributed
systems often need to dependably reason about (specify, manage, predict) end-to-end timeliness. Many emerging such
systems are being envisioned to be built using ad hoc network systems—e.g., those without a fixed network infrastructure
and have dynamic node membership and network topology changes, including mobile, ad hoc wireless networks [2].
Reasoning about timeliness, especially end-to-end, is a very difficult and unsolved problem in such dynamic uncertain
systems.

Object A Object DObject B

DT1

Object C

DT2

DT3

1-Way
Invocation

Figure 1. Distributable Threads

Maintaining end-to-end properties (e.g., timeliness, connectivity) of a
control or information flow requires a model of the flow’s locus in space and
time that can be reasoned about. Such a model facilitates reasoning about,
and resolving the contention for resources that occur along the flow’s lo-
cus. The distributable thread abstraction which first appeared in the Alpha
OS [13] and later in MK7.3 [17], OMG’s Real-Time CORBA 1.2 [14], and
Sun’s emerging Distributed Real-Time Specification for Java (DRTSJ) [1]
directly provides such a model as their first-class programming and schedul-
ing abstraction. A distributable thread is a single thread of execution with
a globally unique identity that extends and retracts through local and re-
mote objects. We focus on distributable threads as our end-to-end control
flow/scheduling abstraction, and hereafter, refer to them as threads except
as necessary for clarity.

A thread carries its execution context as it transits node boundaries, including its scheduling parameters (e.g., time
constraints, execution time), identity, and security credentials. The propagated thread context is intended to be used
by node schedulers for resolving all node-local resource contention among threads such as that for node’s physical

1

(e.g., CPU) and logical (e.g., locks) resources, according to a discipline that provides acceptably optimal system-wide
timeliness. Figure 1 shows the execution of threads [14].

We consider the problem of developing assurances on thread timing behavior in dynamic systems, in the presence of
application/network-induced uncertainties. The uncertainties include transient and sustained resource overloads (due to
context-dependent thread execution times), arbitrary thread arrivals, node failures, and transient and permanent link
failures (causing varying packet drop rate behaviors). Another distinguishing feature of motivating applications for this
model (e.g., [3]) is their relatively long thread execution time magnitudes—e.g., milliseconds to minutes.

When overloads occur, meeting time constraints of all threads is impossible as the demand exceeds the supply. The
urgency of a thread is sometimes orthogonal to the relative importance of the thread—-e.g., the most urgent thread
may be the least important, and vice versa; the most urgent may be the most important, and vice versa. Hence when
overloads occur, completing the most important threads irrespective of thread urgency is desirable. Thus, a distinction
has to be made between urgency and importance during overloads. (During underloads, such a distinction generally
need not be made—e.g., if all time constraints are deadlines, then EDF [8] can meet all deadlines.)

Deadlines cannot express both urgency and importance. Thus, we consider the time/utility function (or TUF)
timeliness model [9] that specifies the utility of completing a thread as a function of its completion time. We specify
a deadline as a binary-valued, downward “step” shaped TUF; Figure 2 shows examples. A thread’s TUF decouples its
importance and urgency—urgency is measured on the X-axis, and importance is denoted (by utility) on the Y-axis.

-
Time

6Utility

0

Figure 2. Step
TUFs

When thread time constraints are expressed with TUFs, the scheduling optimality criteria are
based on maximizing accrued utility—e.g., maximizing the total thread accrued utility. Such
criteria are called utility accrual (or UA) criteria, and sequencing (scheduling, dispatching)
algorithms that optimize UA criteria are called UA sequencing algorithms (e.g., [5, 11]).

UA algorithms that maximize total utility under downward step TUFs (e.g., [5, 11]) default
to EDF during underloads, since EDF satisfies all deadlines during underloads. Consequently,
they obtain the optimum total utility during underloads. During overloads, they inherently
favor more important threads over less important ones (since more utility can be attained from
the former), irrespective of thread urgency, and thus exhibit adaptive behavior and graceful
timeliness degradation. This behavior of UA algorithms is called “best-effort” [11] in the sense that the algorithms strive
their best to feasibly complete as many high importance threads — as specified by the application through TUFs —
as possible.1 Thus, high importance threads that arrive at any time always have a very high likelihood for feasible
completion (irrespective of their urgency).

Our Contributions. When nodes transited by threads fail, it can divide those threads into several pieces. Segments
of a thread that are disconnected from its node of origin (called the thread’s root), are called orphans. When threads
fail and cause orphans, application-supplied exception handlers must be released for execution on the orphan nodes.
Such handlers may have time constraints themselves and will compete for their nodes’ processor along with other
threads. Under a termination model, when handlers execute (not necessarily when they are released), they will abort
the associated orphans after performing recovery actions that are necessary to avoid inconsistencies. Once all handlers
complete, thread execution can potentially be resumed from the farthest, contiguous surviving thread segment (from the
thread’s root). Such a coordinated set of recovery actions will preserve the abstraction of a continuous reliable thread.

Scheduling of the orphan-cleanup exception handlers along with threads must contribute to system-wide timeliness
optimality. Untimely handler execution can degrade timeliness optimality—e.g.: high urgency handlers are delayed by
low urgency non-failed threads, thereby delaying the resumption of high urgency failed threads; high urgency, non-failed
threads are delayed by low urgency handlers.

A straightforward approach for scheduling handlers is to model them as traditional (single-node) threads, since these
are similar in nature, with similar scheduling parameters such as execution time and time constraints. Further, the
classical admission control strategy [6, 12, 16] can be used: When a thread T arrives on a node, if a feasible node
schedule can be constructed such that it includes all the previously admitted threads and their handlers, besides T and
its handler, then admit T and its handler; otherwise, reject. But this will cause the very fundamental problem that is
solved by UA schedulers through their best-effort decision making—i.e., a newly arriving thread is rejected because it
is infeasible, despite that thread being the most important. In contrast, UA schedulers will feasibly complete the high
importance newly arriving thread (with high likelihood), at the expense of not completing some previously arrived ones,
since they are now less important than the newly arrived.

In this paper, we consider the problem of recovering from thread failures with assured timeliness and best-effort
property. We consider distributable threads that are subject to TUF time constraints. Threads may have arbitrary
arrival behaviors, may exhibit unbounded execution time behaviors (causing node overloads), and may span nodes

1Note that the term “best effort” as used in the context of networks actually is intended to mean ”least effort.”

2

that are subject to arbitrary crash failures and a network with permanent/transient failures and unreliable transport
mechanisms. For such a model, we consider the scheduling objective of maximizing the total thread accrued utility.

We present a UA scheduling algorithm called Handler-assured Utility Accrual scheduling algorithm (or HUA) for
thread scheduling, and two protocols called Decentralized Thread Polling with bounded Recovery (or D-TPR) and Wireless
Thread Polling with bounded Recovery (or W-TPR) for ensuring thread integrity. D-TPR targets networks with generally
permanent network failures, and W-TPR targets mobile, ad hoc wireless networks with generally transient network
failures. We show that HUA and D-TPR/W-TPR ensure that handlers of threads that encounter failures during their
execution will complete within a bounded time, yielding bounded thread cleanup time. Yet, the algorithm/protocols
retain the fundamental best-effort property of UA algorithms with bounded loss—i.e., a high importance thread that
may arrive at any time has a very high likelihood for feasible completion. Our implementation experience using DRTSJ’s
emerging Reference Implementation (RI) demonstrates the algorithm/protocols’ effectiveness.

Similar to UA algorithms, thread integrity protocols have been developed in the past—e.g., Thread Polling with
bounded Recovery [6], Alpha’s Thread Polling [13], Node Alive protocol [7]. However, none of these efforts provide time-
bounded thread cleanup in the presence of node and (permanent/transient) network failures and unreliable transport
mechanisms. Further, [6] suffers from unbounded loss of the best-effort property due to its admission control strategy (we
show this in Section 3.3). In contrast, HUA and D-TPR/W-TPR provide bounded thread cleanup with bounded loss of
the best-effort property in the presence of (permanent/transient) network failures and unreliable transport mechanisms
— the first such algorithm/protocols. Thus, the paper’s contribution is the HUA and D-TPR/W-TPR.

The rest of the paper is organized as follows: In Section 2, we state our models and objectives. Section 3 presents
HUA, Section 4 presents D-TPR, and Section 5 presents W-TPR. In Section 6, we discuss our implementation experience.
We conclude the paper in Section 7.

2. Models and Objectives

Threads. Threads execute in local and remote objects by location-independent invocations and returns. A thread
begins its execution by invoking an object operation. The object and the operation are specified when the thread is
created. The portion of a thread executing an object operation is called a thread segment. Thus, a thread can be viewed
as being composed of a concatenation of thread segments.

A thread’s initial segment is called its root and its most recent segment is called its head. The head of a thread is
the only segment that is active. A thread can also be viewed as being composed of a sequence of sections, where a
section is a maximal length sequence of contiguous thread segments on a node. A section’s first segment results from
an invocation from another node, and its last segment performs a remote invocation.

A section’s execution time estimate is known when the thread arrives at the section’s node. This execution time
estimate includes that of the section’s normal code and its exception handler code, and can be violated at run-time (e.g.,
due to context dependence, causing processor overloads).

A thread’s total number of sections is unknown a-priori, as the thread is assumed to make remote invocations and
returns based on context-dependent application logic.

The application is thus comprised of a set of threads, denoted T = {T1, T2, T3, . . .}.
Timeliness Model. Each thread Ti’s time constraint is specified using a TUF, denoted Ui (t). A classical deadline is

unit-valued—i.e., Ui(t) = {0, 1}, since importance is not considered. Downward step TUFs (Figure 2) generalize classical
deadlines where Ui(t) = {0, {n}}. We focus on non-increasing (unimodal) TUFs, as they encompass the majority of
time constraints of interest to us (e.g., [4]).

Each TUF Ui has an initial time Ii, which is the earliest time for which the function is defined, and a termination time
Xi, which denotes the last point that the function crosses the X-axis. We assume that the initial time is the thread release
time; thus a thread’s absolute and relative termination times are the same. We also assume that Ui (t) > 0,∀t ∈ [Ii, Xi]
and Ui (t) = 0,∀t /∈ [Ii, Xi] ,∀i.

Abort Model. Each section of a thread has an associated exception handler. We consider a termination model for all
thread failures. If a thread has not completed by its termination time, a time constraint-violation exception is raised,
and handlers are released on all nodes hosting thread’s sections. When a handler executes, it will abort the associated
section after performing recovery actions that are necessary to avoid inconsistencies—e.g., rolling back/forward section’s
held logical and physical resources to safe states.

We consider a similar abort model for node and network failures. When a thread encounters a node/network failure
causing orphans, an integrity protocol (e.g., D-TPR) delivers failure-exception notifications to all the orphan nodes.
Those nodes then respond by releasing handlers which abort the orphans after executing recovery actions.

3

Each handler may have a time constraint, which is specified using a TUF. A handler’s TUF’s initial time is the time
of failure of the handler’s thread. The handler’s TUF’s termination time is relative to its initial time. Thus, a handler’s
absolute and relative termination times are not the same.

Each handler also has an execution time estimate. This estimate along with the handler’s TUF are described by the
handler’s thread when the thread arrives at a node. Violation of the termination time of a handler’s TUF will cause the
immediate execution of system recovery code on that node, which will recover the thread section’s held resources and
return the system to a consistent and safe state.

System and Failure Models. We consider a system model, where a set of processing components, generically referred
to as nodes, Ni ∈ N, i ∈ [1,m], are interconnected via a network. We consider a multihop network model (e.g., WAN,
MANET), with nodes interconnected through routers. Node clocks are synchronized—e.g., using [15].

Network is assumed to be unreliable. Nodes may fail arbitrarily by crashing (i.e., fail-stop). Network links may fail
transiently or permanently, causing network partitions, again, arbitrarily. Only an unreliable message transport protocol
like UDP is assumed. We describe thread integrity protocol-specific network assumptions in Sections 4 and 5.

Each node executes thread sections. The order of executing sections on a node is determined by the node scheduler.
We consider Real-Time CORBA 1.2’s [14] Case 2 approach for thread scheduling. According to this approach, node
schedulers use the propagated thread scheduling parameters and independently schedule thread sections to optimize
the system-wide timeliness optimality criterion. Though this results in approximate, global, system-wide timeliness,
Real-Time CORBA supports the approach due to its simplicity and capability for coherent end-to-end scheduling.

Scheduling Objectives. Our primary objective is to maximize the total thread accrued utility as much as possible.
Further, the orphan cleanup and recovery time must be bounded. This is the time between the detection of a thread
failure and the time at which all orphans of the thread complete. The algorithm must also exhibit the best-effort
property of UA algorithms (Section 1) to the extent possible.

3. The HUA Algorithm

3.1. Rationale

Section Scheduling. Since the task model is dynamic—i.e., when threads will arrive at nodes, and how many sections
a thread will have are statically unknown, node (section) schedules must be constructed solely exploiting the current
system knowledge. Since the objective is to maximize the total thread accrued utility, a reasonable heuristic is a “greedy”
strategy at each node: Favor“high return”thread sections over low return ones, and complete as many of them as possible
before thread termination times, as early as possible (since TUFs are non-increasing).

The potential utility that can be accrued by executing a thread section on a node defines a measure of that section’s
“return on investment.” We measure this using a metric called the Potential Utility Density (or PUD) [5]. On a node, a
section’s PUD measures the utility that can be accrued per unit time by immediately executing it on the node.

However, a section may encounter failures. We first define the concept of a section failure and a released handler :

Definition 1 (Section Failure). Consider a section Si of a thread Ti. We say that Si has failed when (a) Si violates the
termination time of Ti while executing, thereby raising a time constraint-violation exception on Si’s node; or (b) a failure-
exception notification is received at Si’s node regarding the failure of a section of Ti that is upstream or downstream of
Si, which designates Si as an “orphan-head.”

Definition 2 (Released Handler). A handler is released for execution when its section fails according to Definition 1.

Since a section’s best-case failure scenario is the absence of a failure for the section, the corresponding section PUD
can be obtained as the utility accrued by executing the section divided by the time spent for executing the section. The
section PUD for the worst-case failure scenario (one where the section fails, per Definition 1) can be obtained as the
utility accrued by executing the handler of the section divided by the total time spent for executing the section and the
handler.2 The section’s PUD can now be measured as the minimum of these two PUDs, as that is the worst-case.

Thus, on each node, HUA examines thread sections for potential inclusion in a feasible node schedule in the order of
decreasing section PUDs. For each section, the algorithm examines whether that section and its handler can be feasibly
completed (we discuss section and handler feasibility later in this subsection). If infeasible, the section and its handler
are rejected. The process is repeated until all sections are examined, and the schedule’s first section is dispatched for
execution on the node.

2In the worst-case failure scenario, utility is accrued only for executing the section’s handler; no utility is gained for executing the section,
though execution time is spent for executing the section and its handler.

4

A section Si that is rejected can be the head of its thread Ti; if so, Si is reconsidered for scheduling on Si’s node, say
Ni, until Ti’s termination time expires.

If a rejected section Si is not a head, then Si’s rejection is conceptually equivalent to the (crash) failure of Ni. This is
because, Si’s thread Ti has made a downstream invocation after arriving at Ni and is yet to return from that invocation
(that’s why Si is still a scheduling entity on Ni). If Ti had made a downstream invocation, then Si had executed before,
and hence was feasible and had a feasible handler at that time. Si’s rejection now invalidates that previous feasibility.
Thus, Si must be reported as failed and a thread break for Ti at Ni must be reported to have occurred to ensure
system-wide consistency on thread feasibility. The algorithm does this by interacting with the integrity protocol (e.g.,
D-TPR).

This process ensures that the sections that are included in a node’s schedule at any time have feasible handlers.
Further, all their upstream sections also have feasible handlers on their respective nodes. Thus, when any such section
fails (per Definition 1), its handler and the handlers of all its upstream sections will complete within a bounded time.

Note that no such assurances are afforded to sections that fail otherwise—i.e., the termination time expires for a
section Si, which has not completed its execution and is not executing when the expiration occurs. Thus, Si and its
handler are not part of the feasible schedule at the expiration time. For this case, Si’s handler is executed in a best-effort
manner—i.e., in accordance with its potential contribution to the total utility (at the expiration time).

Feasibility. Feasibility of a section on a node can be tested by verifying whether the section can be completed on the
node before the section’s distributable thread’s end-to-end termination time. Using a thread’s end-to-end termination
time for verifying the feasibility of a section of the thread may potentially overestimate the section’s slack, especially if
there are a significant number of sections that follow it in the thread. However, this is a reasonable choice, since the
total number of sections of a thread is unknown. If a thread’s total number of sections is known a-priori, then better
schemes (e.g., [10]) that intelligently distribute the thread’s total slack among all its sections can be considered.

For a section’s handler, feasibility means whether it can complete before its absolute termination time, which is
the time of thread failure plus the relative termination time of the section’s handler. Since the thread failure time
is impossible to predict, a reasonable choice for the handler’s absolute termination time is the thread’s end-to-end
termination time plus the handler’s termination time, as that will delay the handler’s latest start time as much as
possible. Delaying a handler’s start time on a node is appropriate toward maximizing the total utility, as it potentially
allows threads that may arrive later on the node but with an earlier termination time than that of the handler to be
feasibly scheduled.

There is always the possibility that a new section Si is released on a node after the failure of another section Sj at
the node (per Definition 1) and before the completion of Sj ’s handler on the node. As per the best-effort philosophy,
Si must immediately be afforded the opportunity for feasible execution on the node, in accordance with its potential
contribution to the total utility. However, it is possible that a schedule that includes Si on the node may not include
Sj ’s handler. Since Sj ’s handler cannot be rejected now, as that will violate the commitment previously made to Sj , the
only option left is to not consider Si for execution until Sj ’s handler completes, consequently degrading the algorithm’s
best-effort property. In Section 3.3, we quantify this loss.

3.2. Algorithm Overview

HUA’s scheduling events at a node include the arrival of a thread at the node, release of a handler at the node,
completion of a thread section or a section handler at the node, and the expiration of a TUF termination time at the
node. To describe HUA, we define the following variables and auxiliary functions (at a node):
• Sr is the current set of unscheduled sections including a newly arrived section (if any). Si ∈ Sr is a section. Sh

i

denotes Si’s handler. Ti denotes the thread to which a section Si and Sh
i belong. Si.X is Si’s termination time, which

is the same as that of Ti’s termination time. Si.ExT is Si’s estimated remaining execution time. Ui(t) denotes Si’s
TUF, which is the same as that of Ti’s TUF. Uh

i (t) denotes Sh
i ’s TUF.

• σr is the schedule (ordered list) constructed at the previous scheduling event. σ is the new schedule.
• H is the set of handlers that are released for execution on the node (per Definition 2), ordered by non-decreasing
handler termination times. H = ∅ if all released handlers have completed.
• Function updateReleaseHandlerSet() inserts a handler Sh

i into H if the scheduler is invoked due to Sh
i ’s release;

deletes a handler Sh
i from H if the scheduler is invoked due to Sh

i ’s completion. Insertion of Sh
i into H is at the position

corresponding to Sh
i ’s termination time.

• alertProtocol(Si) declares Si as failed (e.g., with D-TPR, this is done by Si’s node not sending POLL messages to
Si’s predecessor and successor section nodes).
• IsHead(S) returns true if S is a head; false otherwise. headOf(σ) returns the first section in σ.

5

• sortByPUD(σ) returns a schedule ordered by non-increasing section PUDs. If two or more sections have the same
PUD, then the section(s) with the largest ExT will appear before any others with the same PUD.
• Insert(S,σ,I) inserts section S in the ordered list σ at the position indicated by index I; if entries in σ exists with
the index I, S is inserted before them. After insertion, S’s index in σ is I. Remove(S,σ,I) removes section S from
ordered list σ at the position indicated by index I.
• feasible(σ) returns a boolean value indicating schedule σ’s feasibility. σ is feasible, if the predicted completion time
of each section S in σ, denoted S.C, does not exceed S’s termination time. S.C is the time at which the scheduler is
invoked plus the sum of the ExT ’s of all sections that occur before S in σ and S.ExT .

input: Sr, σr, H; output: selected thread Sexe;1:
Initialization: t := tcur; σ := ∅; HandlerIsMissed := false;2:
updateReleaseHandlerSet ();3:
for each section Si ∈ Sr do4:

if feasible(Si)=false then5:
reject(Si);6:

else Si.PUD = min

„
Ui(t+Si.ExT)

Si.ExT ,
Uh

i (t+Si.ExT+Sh
i .ExT)

Si.ExT+Sh
i

.ExT

«
7:

σtmp :=sortByPUD(Sr);8:
for each section Si ∈ σtmp from head to tail do9:

if Si.PUD > 0 then10:
Insert(Si, σ, Si.X);11:

Insert(Sh
i , σ, Si.X + Sh

i .X);12:
if feasible(σ)=false then13:

Remove(Si, σ, Si.X);
Remove(Sh

i , σ, Si.X + Sh
i .X);14:

if IsHead(Si)=false and Si ∈ σr then15:
alertProtocol(Si);16:

else break;17:

if H 6= ∅ then18:

for each section Sh ∈ H do19:

if Sh /∈ σ then20:
HandlerIsMissed := true;21:
break;22:

if HandlerIsMissed := true then23:
Sexe :=headOf(H);24:

else
σr := σ;25:
Texe:=headOf(σ);26:

return Sexe;27:

Algorithm 1: HUA: High Level Description

Algorithm 1 describes HUA at a high level of abstraction. When invoked at time tcur, HUA first updates the set H
(line 3) and checks the feasibility of the sections. If a section’s earliest predicted completion time exceeds its termination
time, it is rejected (line 6). Otherwise, HUA calculates the section’s PUD (line 7).

The sections are then sorted by their PUDs (line 8). In each step of the for -loop from line 9 to line 17, the section
with the largest PUD and its handler are inserted into σ, if it can produce a positive PUD. The schedule σ is maintained
in the non-decreasing order of section termination times. Thus, a section Si and Sh

i are inserted into σ at positions that
correspond to Si.X and Si.X + Sh

i .X, respectively.
If after inserting Si and Sh

i into σ, σ becomes infeasible, Si and Sh
i are removed (lines 13–14). If a section Si that is

removed is not a head and belonged to the schedule constructed at the previous scheduling event, the integrity protocol
is notified regarding Si’s failure (lines 15–16).

If one or more handlers have been released but have not completed their execution (i.e., H 6= ∅; line 18), the algorithm
checks whether any of those handlers are missing in the schedule σ (lines 19– 22). If any handler is missing, the handler
at the head of H is selected for execution (line 24). If all handlers in H have been included in σ, the section at the head
of σ is selected (line 26).

3.3. Algorithm Properties

Theorem 1. If a section Si fails (per Definition 1), then under HUA with zero overhead, its handler Sh
i will complete

no later than Si.X + Sh
i .X (barring Sh

i ’s failure).

Proof. If Si violates the thread termination time at a time t while executing, then Si is in HUA’s current schedule. This
implies that both Si and Sh

i were feasible, and Sh
i was scheduled to complete by Si.X + Sh

i .X.

6

If Si receives a notification on the failure of an upstream section S̄i at a time t, then all sections from S̄i to Si and
their handlers are feasible on their nodes, as otherwise the thread execution would not have progressed to Si. Thus, Sh

i

is scheduled to complete by Si.X + Sh
i .X. A similar argument holds for the case of Si receiving a notification on the

failure of a downstream section. Theorem follows.

Consider a thread Ti that arrives at a node and releases a section Si after the handler of a section Sj has been released
on the node (per Definition 2) and before that handler (Sh

j) completes. Now, HUA may exclude Si from a schedule
until Sh

j completes, resulting in some loss of the best-effort property. To quantify this loss, we define the concept of a
Non Best-effort time Interval (or NBI):

Definition 3. Consider a scheduling algorithm A. Let a section Si arrive at a time t with the following properties:
(a) Si and its handler together with all sections in A’s schedule at time t are not feasible at t, but Si and its handler are
feasible just by themselves; (b) One or more handlers (which were released before t) have not completed their execution
at t; and (c) Si has the highest PUD among all sections in A’s schedule at time t. Now, A’s NBI, NBIA, is defined as
the duration of time that Si will have to wait after t, before it is included in A’s feasible schedule. Thus, Si is assumed
to be feasible together with its handler at t + NBIA.

We now describe the NBI of HUA and other UA algorithms including DASA [5], LBESA [11], and AUA [6] (under
zero overhead):

Theorem 2. HUA’s worst-case NBI is t + max∀Sj∈σt

(
Sj .X + Sh

j .X
)
, where σt is HUA’s schedule at time t. DASA’s

and LBESA’s worst-case NBI is zero; AUA’s is +∞.

Proof. The time t that will result in the worst-case NBI for HUA is when σt = H 6= ∅. Since Si has the highest PUD and
is feasible, Si will be included in the feasible schedule σ, resulting in the rejection of some handlers in H. Consequently,
the algorithm will discard σ and will select the first handler in H for execution. In the worst-case, this process repeats
for each of the scheduling events that occur until all the handlers in σt complete. Since each handler in σt is scheduled
to complete by max∀Sj∈σt

(
Sj .X + Sh

j .X
)
, the earliest time that Si becomes feasible is t + max∀Sj∈σt

(
Sj .X + Sh

j .X
)
.

DASA and LBESA will examine Si at t, since a task arrival is always a scheduling event for them. Further, since
Si has the highest PUD and is feasible, they will include Si in their feasible schedules at t (before including any other
tasks), yielding a zero worst-case NBI.

AUA will examine Si at t, since a task arrival at any time is also a scheduling event under it. However, AUA is a
TUF/UA algorithm in the classical admission control mould and will reject Si in favor of previously admitted tasks,
yielding a worst-case NBI of +∞.

Theorem 3. The best-case NBI of HUA, DASA, and LBESA is zero; AUA’s is +∞.

Proof. HUA’s best-case NBI occurs when Si arrives at t and the algorithm includes Si and all handlers in H in the
feasible schedule σ (thus the algorithm only rejects some sections in σt to construct σ). Thus, Si is included in a feasible
schedule at time t, resulting in zero best-case NBI.

The best-case NBI scenario for DASA, LBESA, and AUA is the same as their worst-case.

4. The D-TPR Protocol

D-TPR targets systems with node and network failures that are generally permanent. The protocol is instantiated
in a software component called the Thread Integrity Manager (or TIM). Every node hosting thread sections has a TIM,
which continually runs D-TPR’s polling operation.

The TIM’s operations are considered to be administrative operations, and they are conducted with scheduling eligibil-
ity that exceeds all application threads. As a consequence, we ignore the (comparatively small, and bounded) processing
delays on each node in the analysis. For simplicity in analysis, we also assume perfectly synchronized clocks.

Figure 3 shows a sequence diagram for the operation of D-TPR for a healthy thread.

4.1. Polling

7

Table 1. D-TPR Messages
Message Contents From/To
POLL List of local section ID and remote section ID

pairs. Remote section-IDs are either predecessor
or successor sections to local section

travel back and forth between predecessor and
successor nodes

NEW HEAD timed out section and predecessor section node with upstream timeout to predecessor node
ENDORPHAN timed out section and successor section node with downstream timeout to successor node
ORPHANPROP orphaned section and successor section node with orphan section to successor node

Figure 3. D-TPR Healthy Oper-
ation

At every polling interval tp, the TIM on each node identifies the sections
that are locally hosted. The TIM then sends a POLL message to each of its
predecessor and successor nodes. Note that each node can host sections of
several threads so a single node may have several predecessor and successor
nodes.

Each POLL message (see Table 1) is a list of entries, where each entry
contains a type, the local section ID the entry corresponds to, and a remote
section ID. If the entry type is SUCCESSOR, the remote section ID will corre-
spond to the successor section of the local section in the entry. Similarly, the
remote section ID of PREDECESSOR corresponds to the predecessor section
of the local segment in the entry. In this way, the node receiving the POLL

message is able to discern (downstream or upstream) the message’s origin
and thus from which direction the section has been deemed healthy. This
distinction becomes important for break detection and is discussed further.

4.2. Break Detection

When an invocation is made, D-TPR creates two timers which are set to a delay D. D is assumed to be the delay
incurred in successfully transporting a message from one node to another in the network with very high probability, and
is empirically determined (similar to our measurements in Section 6).3 One timer is established for the downstream
section and the other is established for the upstream section. The TIM on the node making the invocation (upstream
side) creates a downstream-invocation timer that will cause a timeout when polling messages have not been received
from downstream frequently enough. The TIM on the node hosting the remote object to which the invocation is being
made (downstream side) creates an upstream-invocation timer that will cause a timeout when polling messages are not
received from upstream frequently enough.

When a POLL message is received from upstream, the upstream-invocation timer is reset to D and resumes counting
down. The same is true of the downstream-invocation timer when a POLL message is received from downstream. A
“thread break” is declared when either the upstream or downstream-invocation time reaches zero. Recovery is different
depending on which timer experiences the timeout.

Lemma 4. Consider a section Si and its successor section Sj. Under D-TPR, if Sj’s node fails, or Si becomes
unreachable from Sj (but not necessarily vice versa), then Si will detect a thread break between Si and Sj within tp + D.

Proof. TPR’s worst-case scenario for detecting this thread break occurs when Sj ’s node crashes immediately after Sj

sends the POLL message to Si (and the network successfully delivers that POLL to Si), or when Si becomes unreachable
from Sj immediately after Si receives Sj ’s POLL message. Consequently, Si will miss discovering the thread break when
it receives the POLL, and must wait for the lack of the next POLL from Sj to detect the break. The next POLL will
be sent no later than one tp, the lack of the receipt of which will be detected by Si no later than one D. The lemma
follows.

Lemma 5. Consider a section Sj and its predecessor Si. Under D-TPR, if Si’s node fails, or Sj becomes unreachable
from Si (but not necessarily vice versa), then Sj will detect a thread break between Si and Sj within tp + D. Sj and its
downstream sections are now said to be orphaned.

Proof. The proof is similar to that of Lemma 4.
3Thus, the lack of the receipt of a message at a destination node Nj within D of sending the message from a node Ni is considered a

network failure—e.g., Nj is unreachable from Ni; a network partition between Ni and Nj—with high probability.

8

4.3. Recovery

D-TPR’s recovery operations are administrative functions, and carries on below the level of application scheduling.
While recovery proceeds, D-TPR activities continue concurrently. This allows the protocol to recognize and deal with
multiple simultaneous breaks and cleanup operations.

Figure 4. D-TPR Unhealthy Upstream

If the upstream-invocation timer expires, the protocol as-
sumes that the upstream section is unreachable and declares
the local section associated with the timer to be an orphan.
D-TPR then attempts to accomplish two things: first, force
the upstream section to become the thread’s new head ; and
second, force the downstream section to become an orphan.

To force the upstream section to become the new head , the
protocol sends a NEW HEAD message upstream and stops up-
stream POLL messages, which refresh the upstream section.
If the upstream node receives the NEW HEAD message, the
upstream section will immediately begin behaving like a new
head . If the upstream node does not receive the message,
the upstream section’s downstream-invocation timer will ex-
pire (due to the stopped POLL messages) forcing the section to
become the new head .

In order to force the downstream section to become an or-
phan, the protocol sends an ORPHANPROP message downstream and modifies its downstream POLL messages to include
an orphan status. The downstream node will either receive the ORPHANPROP message and become an orphan, or the
downstream section’s timer will expire forcing it to become an orphan. When a section becomes an orphan, it propagates
the ORPHANPROP message in order to identify all orphans. Figure 4 shows this scenario.

Figure 5. D-TPR Unhealthy Downstream

When a section’s downstream-invocation timer expires, the
protocol assumes that the downstream sections are unreach-
able and declares itself the new headof the thread. The new
headthen sends an ENDORPHAN downstream and ceases down-
stream refresh polling. In this way, the downstream section will
either receive the ENDORPHAN notification and become an or-
phanor it’s upstream timer will expire, making the section an
orphan. Figure 5 shows this scenario.

Lemma 6. Under D-TPR, if a thread break occurs between Si

and its successor Sj, then Si will become the new head within
tp + 2D. Since the new head of a thread is always directly
upstream from a break, D-TPR therefore activates a new head
within tp + 2D.

Proof. A thread break between Si and Sj can occur in primar-
ily two ways: (I) Sj ’s node fails, or Si becomes unreachable
from Sj ; and (II) Si’s node fails, or Sj becomes unreachable
from Si. Lemma 4 identifies Case (I). Thus, Si will detect the thread break within tp + D, and immediately after, Si

will declare itself as the new head, within tp + D. Case (II) is identified in Lemma 5. Thus, Sj will detect the break
within tp + D and will send a NEW HEAD message to Si. Upon receipt of this message, Si will declare itself as the new
head, within a total of tp + 2D (after break detection), which is the worst-case. Lemma follows.

Lemma 7. Under D-TPR, if a thread break occurs between Si and its successor Sj, then Sj will identify itself as an
orphan within tp + 2D.

Proof. Proof is similar to that of Lemma 6. A thread break between Si and Sj can occur in primarily two ways: (I) Si’s
node fails, or Sj becomes unreachable from Si; and (II) Sj ’s node fails, or Si becomes unreachable from Sj . Case (I) is
identified in Lemma 5. Thus, Sj will detect the break within tp + D and will immediately declare itself as an orphan,
within tp + D. Case (II) is identified in Lemma 4. Thus, Si will detect the thread break within tp + D, declare itself
as the new head, and send an ENDORPHAN message to Sj . Upon receipt of this message, Sj will declare itself as an
orphan, within a total of tp + 2D (after break detection), which is the worst-case. Lemma follows.

9

4.4. Cleanup

A section that has been identified as an orphan will release the section’s exception handler for aborting the section
(i.e., the orphan) only if it has been designated an“orphan-head.”This can happen in one of three ways: (1) The current
head of the thread becomes an orphan; (2) A non-head orphan is returned to by an orphan-head and becomes a new
orphan-head; and (3) An orphan’s downstream-invocation timer expires forcing it to become a new orphan-head. .

Theorem 8. Under D-TPR/HUA, if a thread break occurs between a section Si and its successor Sj, then all orphans
from Sj till the thread’s current head Sj+k, for some k ≥ 1, will be aborted in the LIFO-order—i.e., from Sj+k to
Sj—and will complete by tp + (2 + k)D + σk

α=0(Sj+α.X + Sh
j+α.X), unless a section Sj+α becomes unreachable from

Sj+α+1, 0 ≤ α ≤ k − 1.

Proof. Let the thread’s execution sequence be: 〈· · ·Si, Sj , Sj+1, · · · , Sj+k〉. From Lemma 7, Sj will identify itself as
an orphan within tp + 2D. Following this, the ORPHANPROP message will be propagated from Sj to Sj+k within kD.
Thus, Sj+k will become the first orphan-head and thus the first orphan to be aborted, followed by Sj+k−1, Sj+k−2, until
Sj , following the LIFO-order, since Sj+k−α is always returned to by Sj+k−(α−1), 0 ≤ α ≤ k by the thread’s execution
sequence.

By Theorem 1, a section Sα’s handler will complete within Sα.X + Sh
α.X, once it is an orphan-designate. Thus, all

sections from Sj to Sj+k will complete within tp + 2D + kD + σk
α=0(Sj+α.X + Sh

j+α.X). Theorem follows.
If a section Sj+α becomes unreachable from Sj+α+1 (0 ≤ α ≤ k − 1), then Sj+α’s downstream invocation timer will

expire before that of Sj+α+1, designating Sj+α as an orphan-head before Sj+α+1 — the theorem’s exception.

Theorem 9. , Under D-TPR/HUA, if a thread breaks, then the thread’s orphans will complete within a bounded time.

Proof. This theorem follows from Theorem 8, except for the case when a section Sj+α becomes unreachable from Sj+α+1

(0 ≤ α ≤ k − 1) after a break occurs between Si and its successor Sj . If Sj+α becomes unreachable from its successor
Sj+α+1, then Sj+α’s downstream invocation timer will expire within tp + D (similar to Lemma 4, where Si ≡ Sj+α and
Sj ≡ Sj+α+1), designating Sj+α as orphan-head. By Theorem 1, now Sj+α will cleanup within tp+D+Sj+α.X+Sh

j+α.X.
Theorem follows.

5. The W-TPR Protocol

W-TPR is designed for mobile, ad hoc wireless networks, where communication is assumed to be unreliable and prone
to transient failures (D-TPR considers communication failures to be permanent). The protocol exploits the fact that a
thread is only adversely affected by a thread break if the head attempts to move across that break. In contrast, D-TPR
detects a break and assumes that the break will be permanent; so it preempts the possibility of the head crossing the
break by eliminating sections beyond the break point. W-TPR assumes that the breaks are not permanent.

W-TPR differs from D-TPR primarily in the way thread-breaks are determined. In D-TPR, breaks are recognized
when communication between two consecutive nodes of a thread fails for longer than the message delay D, with very
high probability. In W-TPR, breaks are never actually recognized. Instead, the protocol recognizes when communication
errors affect either an invocation or a return (head movement) and provides maintenance accordingly.

Figure 6. W-TPR Section State Diagram

Figure 6 shows the states and state transitions that a section
undergoes in W-TPR. Note that no breaks are ever declared
and that a section becomes an orphan only if it receives the
ORPHAN message from an upstream section. Sections assume
they are healthy until notified otherwise.

Downstream Head Movement. During an invocation, a
thread section Si makes a call on a remote object, which causes
a second section, Si+1 to be created on the remote node. In
order for the invocation to be successful, Si+1 must be created
and Si must be made aware of Si+1.

When an invocation is made, an invocation request is sent
downstream and the local section, Si, begins waiting for invo-
cation verification. The invocation is verified when the local
section receives an INV-ACK from the downstream node or a
POLL from the downstream node containing the section ID of

10

the remote section (see further). When the invocation is veri-
fied, the local section is stopped until the remote section performs a return (head moves upstream).

Figure 7 shows an example of a successful invocation.

Figure 7. W-TPR Healthy
Operation

When the invocation is received by the downstream node, the downstream node
attempts to finalize the invocation and sends an INV-ACK message to the upstream
section (to quickly notify it of the successful receipt of the invocation message).
Following this, the downstream node begins sending periodic POLL messages to the
upstream section, at every polling interval tp. When a healthy section receives a
POLL message from an orphan, the healthy section returns an ORPHAN message to
the orphan. If the orphan is not the orphan-head, similar to D-TPR, the ORPHAN

message is propagated upstream.
Table 2 describes W-TPR messages.
The protocol resends the invocation request until either the invocation is veri-

fied, or the protocol deems that communication with the downstream node is not
possible by waiting for an application-specified value tn to expire and no INV-ACK

or a POLL message is received from the downstream node during tn. If communi-
cation with the downstream node is not possible, then the local section maintains
head status and the application is notified that the invocation has failed. The
TIM also sends an ORPHAN message downstream, in the event that a partial in-
vocation was accomplished—i.e., the downstream node receives the invocation,
and the upstream node becomes unreachable from the downstream node. Thus
the downstream node’s INV-ACK/POLL messages are not received upstream, while
thread execution progresses on the downstream node and further downstream.

Figure 8. W-TPR Unhealthy Invoca-
tion

Figure 8 shows an unhealthy attempt at an invocation caused by
an upstream failure on the left and a downstream failure on the right.

Lemma 10. Under W-TPR, the location of a thread’s head is am-
biguous for at most tn.

Proof. Directly follows discussion.

Upstream Head Movement. When the head is moving from the
local node to an upstream node, the local node begins waiting for re-
turn verification from the upstream node. When the return message
is received by the upstream node, the upstream node sends a return
verification message RETURN-ACK downstream to the local node. If
the verification is not received within tn, then the return times-out
(see Figure 9), and the protocol forces the return message to be resent.
This process is repeated until the handshake successfully completes
or the section on the local node violates its timing constraint. Even
in the presence of upstream communication errors, the downstream
section never becomes an orphan. Since the section has already fin-

ished executing and has a healthy return value, it would be fruitless to abort this section before delivering its return
value.

Lemma 11. Under W-TPR, a thread’s head is never disconnected from the rest of the thread and no new head activation
is required.

Table 2. W-TPR Messages
Message Contents From/To
POLL section ID pair of Si and Si−1 downstream node to upstream node
INV-ACK section ID of section attempting invocation downstream node to upstream node after receiv-

ing an invocation
RETURN-ACK section ID of section attempting return upstream node to downstream node after return

success
ORPHAN section ID pair of Si (healthy) and Si+1 (orphan)

11

Proof. Follows directly from the previous discussion. By Lemma 10, after tn, the head moves downstream after a fully
successful invocation. Any fully successful invocation can execute a return. If the upstream node becomes unreachable
when the downstream node executes a return, the downstream section has completed its execution (hence it is returning)
and is therefore not an orphan.

Figure 9. W-TPR Unhealthy Return

Cleanup. A section becomes an orphan when it receives the OR-

PHAN message in response to one of its POLL messages. When the
ORPHAN message is received, the section propagates that message
downstream and waits for a return from its downstream section to
be designated an orphan-head before starting cleanup, as in D-TPR.
Cleanup begins when the furthest orphaned section is notified that it
is an orphan.

Theorem 12. Under W-TPR, if a section Si makes an unsuccessful
invocation to its (potential) successor section Sj (i.e., Sj will be Si’s
successor had if the invocation was successful), then all orphans that
can potentially be created from Sj till the thread’s furthest orphaned
section Sj+k, k ≥ 1, will be aborted in the LIFO-order and will com-
plete within a bounded time under HUA, as long as no further failures
occur between Sj and Sj+k.

Proof. By Lemma 10, after tn, Si retains the head status since the
invocation was unsuccessful, and an ORPHAN message is propagated
to all downstream sections till Sj+k. The rest of the proof follows that of Theorem 9.

Note that Theorem 12 holds only if no further failures occur between Sj and Sj+k. If such a failure were to occur,
then the ORPHAN message may not be propagated or an orphan-head may not be able to return to a non-head orphan.
D-TPR can detect such failures due to its continuous pairwise polling operation, whereas W-TPR is unable to do so
precisely due its “on-demand” polling approach.

Theorem 13. , Under W-TPR/HUA, if orphans are created for a thread as in Theorem 12, then all the orphans will
complete within a bounded time, as long as no further failures occur between Sj and Sj+k.

Proof. Follows from Theorem 12.

6. Implementation Experience

We implemented HUA, D-TPR, and W-TPR in DRTSJ’s RI [1]. The RI includes a threads API, user-space scheduling
framework for pluggable thread scheduling, and mechanisms for implementing thread integrity protocols (e.g., TIM).
The RI infrastructure runs atop Apogee’s Real-Time Specification for Java (RTSJ)-compliant Aphelion Java Virtual
Machine. The RTSJ platform runs atop the Debian Linux OS (kernel version 2.6.16-2-686) on a 800MHz, Pentium-III
machine. Our experimental testbed consisted of a network with five such DRTSJ nodes.

Our metrics of interest included Total Thread Cleanup Time and protocol overhead as measured by Thread Completion
Time. We measured these during 100 experimental runs of our test application (application details are omitted for
brevity). Each experimental run spawned a single distributable thread, which propagated to five other nodes and then
returned back through the same five nodes.

The Total Thread Cleanup Time is the time between the failure of a thread’s node or communication link and the
completion of the handlers of all the orphan sections of the thread. Figures 10(a) and 10(b) show the measured cleanup
times for HUA/D-TPR and HUA/W-TPR, respectively. The cleanup times are plotted against the protocols’ cleanup
upper bound times for the thread set used in our experiments. From the figures, we observe that both HUA/D-TPR
and HUA/W-TPR satisfy their cleanup upper bound, thereby validating Theorems 9 and 13.

Thread Completion Time is the difference between when a root section starts execution and when it completes.
Thread cleanup time is not taken into consideration here. Figures 11(a) and 11 show the thread completion times of
experiments 1) with failures and D-TPR/W-TPR, 2) without failures but with D-TPR/W-TPR, 3) without failures and
without D-TPR/W-TPR, and 4) with failures but without D-TPR/W-TPR. By measuring the thread completion times
under these scenarios, we measure the overhead each protocol incurs in terms of the increase in thread completion times.

Figure 11(a) shows the completion times for experiments with and without D-TPR. We observe that the completion
times of successful threads without D-TPR is smaller than that with D-TPR. This is to be expected as D-TPR incurs a

12

 7500

 8000

 8500

 9000

 9500

 10000

 10500

 11000

 0 10 20 30 40 50 60 70 80 90 100

T
im

e
(m

s)

Experiment Number

Total Thread Cleanup Times

HUA/D-TPR
Upper Bound

(a) D-TPR Thread Cleanup Times

 6500

 7000

 7500

 8000

 8500

 9000

 9500

 10000

 10500

 11000

 0 10 20 30 40 50 60 70 80 90 100

T
im

e
(m

s)

Experiment Number

Total Thread Cleanup Times

HUA/W-TPR
Upper Bound

(b) W-TPR Thread Cleanup Times

Figure 10. Thread Cleanup Times for D-TPR and W-TPR

non-zero overhead. However, we also observe that the completion times of failed threads with D-TPR are shorter than
even the completion times of successful threads without D-TPR. This is because, orphan cleanup can occur in parallel
with the continuation of a repaired thread, allowing the repaired thread to finish without waiting for all orphans to
run to completion. A successful thread, on the other hand, must wait for all sections to finish before it can complete,
increasing its completion time. Figure 11(a) also shows that failed threads with D-TPR complete much more quickly
than failed threads with no D-TPR support.

 20000

 25000

 30000

 35000

 40000

 45000

 50000

 55000

T
im

e
(m

s)

D-TPR Thread Completion Times

Failures No Failures No Failures Failures

D-TPR

(a) D-TPR Thread Completion Times

 16000

 18000

 20000

 22000

 24000

 26000

 28000

 30000

T
im

e
(m

s)

W-TPR Thread Completion Times

Failures No Failures No Failures Failures

W-TPR

(b) W-TPR Thread Completion Times

Figure 11. W-TPR Thread Completion Times

Figure 11 shows completion times for experiments run with and without W-TPR. As the figure shows, the measure-
ments taken in the absence of W-TPR are only slightly lower than the measurements taken in the presence of W-TPR.
We observe that W-TPR incurs relatively little overhead while providing the properties discussed in Section 5.

7. Conclusions and Future Work

We present a real-time scheduling algorithm called HUA and two protocols called D-TPR and W-TPR. The algo-
rithm/protocols’ consider distributable threads and their exception handlers with TUF time constraints. We show that
HUA and D-TPR/W-TPR bound the orphan cleanup and recovery time with bounded loss of the best-effort property
— the first such algorithm/protocols for systems with (permanent/transient) network failures and unreliable transport.
Our implementation using the emerging DRTSJ/RI demonstrates the algorithm/protocols’ effectiveness.

13

Directions for future work include allowing threads to share non-CPU resources, establishing assurances on thread
time constraint satisfactions’, and extending results to arbitrary graph-shaped, multi-node, causal control/data flows.

References

[1] J. Anderson and E. D. Jensen. The distributed real-time specification for java: Status report. In JTRES, 2006.

[2] F. Baker. An outsider’s view of manet. Internet-Draft, Work In Progress draft-baker-manet-review-01.txt, IETF Network
Working Group, March 2002.

[3] CCRP. Network centric warfare. http://www.dodccrp.org/ncwPages/ncwPage.html.

[4] R. Clark et al. An adaptive, distributed airborne tracking system. In IEEE WPDRTS, pages 353–362, April 1999.

[5] R. K. Clark. Scheduling Dependent Real-Time Activities. PhD thesis, CMU, 1990. CMU-CS-90-155.

[6] E. Curley et al. Recovering from distributable thread failures with assured timeliness in real-time distributed systems. In
IEEE SRDS, pages 267–276, 2006.

[7] J. Goldberg et al. Adaptive fault-resistant systems (chapter 5: Adpative distributed thread integrity). Technical Report
csl-95-02, SRI International, 1995.

[8] W. Horn. Some simple scheduling algorithms. Naval Research Logistics Quaterly, 21:177–185, 1974.

[9] E. D. Jensen et al. A time-driven scheduling model for real-time systems. In IEEE RTSS, pages 112–122, Dec. 1985.

[10] B. Kao et al. Deadline assignment in a distributed soft real-time system. IEEE TPDS, 8(12):1268–1274, 1997.

[11] C. D. Locke. Best-Effort Decision Making for Real-Time Scheduling. PhD thesis, CMU, 1986. CMU-CS-86-134.

[12] S. Nagy and A. Bestavros. Admission control for soft-transactions in accord. In IEEE RTAS, page 160, 1997.

[13] J. D. Northcutt. Mechanisms for Reliable Distributed Real-Time Operating Systems — The Alpha Kernel. Academic Press,
1987.

[14] OMG. Real-time corba 2.0: Dynamic scheduling specification. Technical report, Object Management Group, 2001.

[15] K. Romer. Time synchronization in ad hoc networks. In ACM MobiHoc, pages 173–182, 2001.

[16] H. Streich. Taskpair-scheduling: An approach for dynamic real-time systems. Mini & Microcomputers, 17(2):77–83, 1995.

[17] The Open Group. MK7.3a Release Notes. The Open Group Research Institute, Cambridge, Massachusetts, 1998.

14

