
Brief Announcement: Queuing or Priority Queuing? On the Design of
Cache-Coherence Protocols for Distributed Transactional Memory

Bo Zhang
ECE Dept., Virginia Tech

Blacksburg, VA 24061, USA
alexzbzb@vt.edu

Binoy Ravindran
ECE Dept., Virginia Tech

Blacksburg, VA 24061, USA
binoy@vt.edu

Abstract

In distributed transactional memory (TM) systems, both the management and consistency of
a distributed transactional object are ensured by a cache-coherence protocol. We formalize two
classes of cache-coherence protocols: distributed queuing cache-coherence (DQC) protocols and
distributed priority queuing cache-coherence (DPQC) protocols, both of which can be imple-
mented based on a given distributed queuing protocol. We analyze the two classes of protocols
for a set of dynamically generated transactions and compare their time complexities against
that of an optimal offline clairvoyant algorithm. We show that a DQC protocol is O(N log Dδ)-
competitive and a DPQC protocol is O(log Dδ)-competitive for a set of N transactions, where
Dδ is the normalized maximum communication latency provided by the underlying distributed
queuing protocol.

1. Distributed TM

Distributed TM is motivated by the difficulties of lock-based synchronization in distributed (control-
flow) programming models such as RPCs. For example, RPC calls, while holding locks, can become
remotely blocked on other (RPC) calls for locks, causing distributed deadlocks. Distributed livelocks and
lock convoying similarly occur. In addition, in the RPC model, an object can become a “hot spot,” and
thus a performance bottleneck. These difficulties have motivated research on the design of distributed TM
as a possible solution.

We consider Herlihy and Sun’s data-flow distributed TM model [1]. In this model, transactions are
immobile (running at nodes which invoke them), but objects move from node to node. Transactional
synchronization is optimistic: a transaction commits only if no other transaction has executed a conflicting
access. In the data-flow model, each node has a TM proxy that provides interfaces to the TM application
and to proxies of other nodes. When a transaction at node A requests a read/write access to an object
Ri, its TM proxy first checks whether Ri is in its local cache; if not, the TM proxy invokes a distributed
cache-coherence protocol to fetch Ri in the network. The node B, which holds Ri, checks whether it is
in use by an active local transaction when it receives the request for Ri from node A. If not, the TM
proxy of node B sends Ri to node A and invalidates its own copy. If so, the proxy invokes the contention
manager module to mediate conflicting access requests for Ri.

Distributed transactional contention on an object, which is now distributed in the data-flow TM model,
can be managed by ordering transactional requests on the object using a distributed queue. Thus, dis-
tributed cache coherence protocols can be designed based on distributed queuing. Since a transaction
accesses a set of (distributed) objects, transactional contention on the corresponding set of distributed



queues must be managed to ensure transactional atomicity. We consider the design of two classes of
cache-coherence protocols: distributed queuing cache-coherence (DQC) protocols and distributed priority
queuing cache-coherence (DPQC) protocols. We assume a fixed contention manager, which satisfies the
work conserving [2] and pending commit [3] properties.

2. DQC and DPQC Protocols

A DQC protocol uses a distributed queue to manage transactional contention on a distributed object. For
example, the Ballistic protocol [1] and the class of LAC protocols [4] are DQC protocols. We formalize the
behavior of DQC protocols as follows. Each transaction is considered as a sequence of ordering requests.
Therefore, for a set of s objects, there are s distributed queues established. However, for a distributed
cache-coherence protocol, a distributed queue is no longer fixed — an aborted transaction may join the
queue again and therefore the length of the queue is dynamically increased. DQC protocols work in the
following way:
1 For each object, a distributed queue is formed by transactions which request read/write accesses to that

object. Formally, for each object Ri, a distributed queue Qi is established. A transaction Tj requests
to join Qi if and only if it require read/write accesses to Ri.

2 Enqueue operation: a transaction joins a queue by sending a request to the current tail of the queue,
and becomes the new tail of the queue. To implement this operation, for each object, the system has
to maintain and update a directory which always points to the latest tail of the queue.

3 Dequeue operation: a transaction can only leave a distributed queue after it becomes the head of that
queue. The object is always held by the head of the queue. If the head TH of a queue commits, it
leaves that queue after sending the object to its successor in the queue. If it is aborted (by its successor
in the queue), transaction TH is restarted immediately. In this case, the transaction may request to join
the queue again.

4 A transaction joins a sequence of distributed queues according to the same order of the sequence of
objects that it requests. For example, assume a transaction Tj with a sequence of operations {write(R1),
write(R2), read(R3)}. The transaction joins the queue Q1 first. After its write operation to object R1,
the transaction joins the queue Q2 to request object R2. In the same way, the transaction joins the queue
Q3 after its write operation to object R2. Hence, a transaction may participate in multiple queues at
the same time. If, at any time during the aforementioned steps, a transaction is aborted by its successor
in a queue, the transaction is dequeued from all participating distributed queues and passes each object
to its successor (if any) of the corresponding queues.
DPQC protocols use distributed priority queuing for managing transactional contention. DPQC protocols

work in the following way:
1 Similar to DQC protocols, for each object, a distributed priority queue is formed by transactions which

request read/write accesses to that object.
2 Enqueue operation: for DPQC protocols, each transaction is only enqueued once in each distributed

queue it requests. A transaction is inserted into a queue such that the priority order of the queue is
not violated, i.e., each element’s priority is always higher than its successor’s. Unlike the enqueue
operation of a DQC protocol, it is not required to append a transaction at the tail of a queue. Instead,
a transaction is inserted in a queue after the queue learns of its priority.

3 Dequeue operation: a transaction can only leave a distributed queue after it commits. If the head
transaction TH of a queue commits, it leaves that queue after sending the object to its successor in
the queue. If it is aborted by a higher priority transaction T ′H , TH is restarted immediately and T ′H
becomes the new head of the queue. In this case, TH becomes the successor of T ′H .



3. Comparison

We evaluate a cache-coherence protocol C by measuring its competitive ratio ρ, which is the ratio of the
time complexity to commit a set of N dynamically generated transactions under C to the time complexity
to commit the same set of transactions under an optimal clairvoyant algorithm OPT. Motivated by the
techniques in [5], which conducts the dynamic analysis of the Arrow distributed protocol, we prove the
following theorem in [6]:

Theorem 1:

ρP = O
(

max[N ·
⌈
log2(

2Dδ + maxN
i=1 τi

minvj ,vk∈V d(vj , vk)
)
⌉

, N · maxN
j=1 σjτj

H
]
)

(1)

ρP ′ = O
(

max[
⌈
log2(

3Dδ + maxN
i=1 τi

minvj ,vk∈V d(vj , vk)
)
⌉

,
maxN

j=1 µjτj

H
]
)

(2)

where H is the total cost of the traveling salesman path with respect to the network cost metric d(vj , vk),
τj is the local execution duration of Tj , σj and µj are the number of aborts of Tj under DQC and
DPQC protocols, respectively, and Dδ is the maximum communication latency provided by the underlying
distributed queuing protocol. We have the following corollary for a range of the value of maxN

j=1 τj .
Corollary 2:

ρP = O(N log Dδ), ρP ′ = O(log Dδ)

where Dδ is the normalized maximum communication latency Dδ

minvj,vk∈V d(vj ,vk) , if maxN
j=1 τj = O(log Dδ).

This result can be explained in the following way. For a system in which the network latency is the
significant part of the communication cost, the selection of a cache-coherence protocol determines the
overall performance, since it determines the total cost for the object to travel in the network. On the
other hand, for a system in which the local execution time is relatively large, the total execution cost of
transactions will be the dominating part of the total time complexity. In this case, a distributed TM system
is more similar to a multiprocessor TM system, where the underlying contention manager determines the
maximum abort times of each transaction.

References

[1] Maurice Herlihy and Ye Sun, “Distributed transactional memory for metric-space networks,” Distributed
Computing, vol. 20, no. 3, pp. 195–208, 2007.

[2] Hagit Attiya, Leah Epstein, Hadas Shachnai, and Tami Tamir, “Transactional contention management as a
non-clairvoyant scheduling problem,” in PODC ’06: Proceedings of the twenty-fifth annual ACM symposium
on Principles of distributed computing, New York, NY, USA, 2006, pp. 308–315, ACM.

[3] Rachid Guerraoui, Maurice Herlihy, and Bastian Pochon, “Toward a theory of transactional contention managers,”
in PODC ’05: Proceedings of the twenty-fourth annual ACM symposium on Principles of distributed computing,
New York, NY, USA, 2005, pp. 258–264, ACM.

[4] Bo Zhang and Binoy Ravindran, “Location-aware cache-coherence protocols for distributed transactional
contention management in metric-space networks,” in SRDS ’09: Proceedings of the 2009 28th IEEE
International Symposium on Reliable Distributed Systems, Washington, DC, USA, 2009, pp. 268–277, IEEE
Computer Society.

[5] Fabian Kuhn and Roger Wattenhofer, “Dynamic analysis of the arrow distributed protocol,” in SPAA ’04:
Proceedings of the sixteenth annual ACM symposium on Parallelism in algorithms and architectures, New
York, NY, USA, 2004, pp. 294–301, ACM.

[6] Bo Zhang and Binoy Ravindran., “Queuing or priority queuing? On the design of cache-coherence protocols
for distributed transactional memory,” Tech. Rep., Virginia Tech, 2010, http://www.real-time.ece.vt.edu/dpqtm
TR.pdf.


