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Abstract—Multicore architectures are becoming increasingly
prone to soft-errors – i.e., transient faults caused by external
physical phenomena such as electric noise and cosmic particle
strikes. With increasing core counts, the soft-error rate is
growing due to the accelerating transistor density on chips. The
impact of these errors on business-critical applications that are
being deployed on multicore hardware can be significant. We
present an active replication-based approach that fully masks
such errors for transactional applications. We partition com-
putational cores, fully replicate objects across partitions, and
concurrently execute transactional requests on all partitions,
thereby enabling completely local object accesses. Transactional
requests are globally ordered and delivered across partitions
using optimistic atomic broadcast. Hardware message passing
– an important emerging trend in multicore architectures
– is exploited to mitigate communication costs. We report
preliminary results obtained with an implementation of our
approach on a 36-core Tilera TILE-Gx hardware, with an on-
chip scalable mesh network.
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I. INTRODUCTION

Soft-errors [1] are transient faults that may happen any-
time during application execution. They are caused by
physical phenomena [2], e.g., cosmic particle strikes, electric
noise, which cannot be directly managed by application
designers or administrators. As a result, when a soft-error
occurs, the hardware is not affected by interruption, but
applications may crash or behave incorrectly.

The trend of building smaller devices with increasing
number of transistors on the same chip is allowing designers
to assemble powerful computing architectures – e.g., mul-
ticore processors. Although the soft-error rate of a single
transistor has been almost stable over the last years, the error
rate is growing in current and emerging multicore architec-
tures due to rapidly increasing core counts [2]. As increasing
number of enterprise-class applications, especially those that
are business-critical (e.g., transactional applications), are
being built for, or migrated onto such architectures, the
impact of transient failures can be significant.

A soft-error can cause a single bit in a CPU register to
flip (i.e., residual charge inverting the state of a transistor).
Most of the time, such an event is likely to be unnoticed by
applications because they do not use that value (e.g., unused
register). However, sometimes, the register can contain an

instruction pointer or a memory pointer. In those cases, the
application behavior can be unexpected. An easy solution
for recovering from transient faults is a simple application-
restart, but such solutions are unacceptable for transactional
applications due to availability/reliability constraints, and
also due to performance and business reasons.

Replication is a widely considered approach for ensuring
fault-tolerance. However, replicating centralized systems for
tolerating faults results in significantly degraded perfor-
mance (e.g., 100–1000×) [3]. This is primarily due to
costs for remote synchronization and communication that
are incurred for ensuring replica consistency. Also, faults
addressed by replication techniques are not transient; they
often target hardware deficiency or node crashes. Further, a
distributed architecture comprising of multicore nodes may
not often be cost-effective.

Besides the multicore trend in computer architecture,
another interesting trend is emerging on the interconnect
fabric (of multicore chips). With growing core counts, bus-
based interconnects, and hardware cache-coherence proto-
cols that use such interconnects to provide the illusion
of shared memory are increasingly becoming a scalability
bottleneck [4]. Network-based communication using on-chip
message passing architectures are beginning to appear in
many multicore chips – e.g., Intel SCC [5], Intel Xeon
Phi [6], Tilera [7]. This hardware trend opens up new pos-
sibilities at the algorithmic-level: communication-intensive
distributed algorithms (e.g., consensus), which are expensive
in a distributed setting, are likely to become cost-effective
in multicore.

Motivated by these observations, we propose a
replication-based methodology for tolerating transient
failures of transactional applications running on massively
multicore architectures. Our key idea is to partition the
available resources, and run the application’s transactions
on all the partitions in parallel, according to the active
replication paradigm [8] (Section II). As in active
replication, transaction requests are wrapped into network
messages that the application submits to an ordering layer.
This layer implements a version of Optimistic Atomic
Broadcast [9] (OAB), and ensures a global serialization
order (GSO) of messages among partitions (Sections III–
IV).



Each partition is thus notified with the same sequence
of transactions and is able to process those transactions
independently from the other partitions. Objects accessed
by transactions are fully replicated so that each partition
can access its local copy, avoiding further communica-
tions. Transactions are processed according to the GSO.
Additionally, we use a voter for collecting the outcome
of transactions and delivering the common response (i.e.,
majority of the replies) to the application. If one or more
replies differ, actions are triggered to restore the consistent
status of data in those faulty partitions.

We implemented this framework in C++. It consists of five
pluggable components: application support, ordering layer,
dispatcher, concurrency control, and voter. All components
share a synchronized clock, which is available in hardware
in all modern (multicore) architectures.

We use in-memory transactional applications (e.g., [10])
as an initial candidate for evaluating the proposed approach.
Such applications are good candidates as they typically
use multicore architectures and do not use stable storage
to log their actions, both for achieving high performance.
Moreover, they are susceptible to soft-errors due to their
in-memory nature. We used a 36-core manycore proces-
sor of the Tilera TILE-Gx family [7], which is equipped
with an on-chip message passing hardware, for an early
experimental evaluation (Section V). Our preliminary results
reveal that the proposed approach ensures fault-tolerance
with competitive performance of centralized (i.e., non fault-
tolerant) systems, but without paying the cost (both in terms
of performance degradation and financial cost) of deploying
a distributed infrastructure.

II. THE PROTOCOL

Our basic idea for tolerating soft-errors is to logically
partition computational resources into groups. Each group is
composed of a subset of available cores, and is responsible
for processing transactional requests issued by application
threads. We use the active replication paradigm [8] for
processing transactions. A transaction request is sent to
all the groups (or replicas hereafter), relying on a group
communication system (GCS). (Applications do not execute
transactions in the same requesting thread.) GCS, imple-
menting a total order service (e.g., Atomic Broadcast [11]),
is responsible for delivering the same set of transaction
requests to all the replicas, in the same order. Processing the
same sequence of transactions allows the replicas to reach
the same state. The approach thus masks failures, and is
generally used in distributed computing for preventing loss
of data due to crash or service interruption.

Unfortunately, total order protocols involve the exchange
of several network messages by the replicas for each trans-
actional request to agree on a common delivery order [3],
which is often a performance bottleneck. To alleviate this,
we rely on an optimistic version of total order protocol

presented in [9]. This new protocol includes an additional
delivery, called optimistic delivery, which is notified by the
total order layer to the replicas before the (final) notification
of the message, along with its order. This early delivery has
a twofold benefit. First, early delivery notifies that a new
message has been previously broadcast, and that message
is currently in the coordination phase for defining its final
order. Second, early delivery defines an implicit optimistic
order. Although this order can be used for executing trans-
actions speculatively, overlapping their processing with their
coordination, it is not reliable and cannot be considered
for the transaction commit phase. As a result, when the
optimistic order and the final order coincide, the transaction
can be validated and committed (if completely executed)
without paying the cost of its re-execution from scratch.

An ordering-based concurrency control (ObCC) protocol,
running locally on every replica, is responsible for commit-
ting transactions following the order defined by the sequence
of final deliveries issued by the GCS. A subset of cores in
each replica is dedicated for the execution of ObCC. In order
to maximize the overlapping, transactions are processed in
parallel as soon as they are optimistically delivered. When
a conflict arises, ObCC resolves it for meeting the order
defined by the sequence of optimistic deliveries. Whenever
the optimistic order is the same as the final order, or the
transaction does not conflict with others, the transaction is
likely completely executed and committed after validation.

The entire shared data-set is replicated on each replica.
This enables ObCC to process transactions locally, making
each replica independent from the others. When a soft-
error occurs on a replica, the others are able to serve the
transaction request without additional coordination i.e., the
failure is fully masked. A voter is in charge of collecting
outcomes from the transactions processed on all the repli-
cas, and returns the majority outcome to the application.
Even though this approach potentially increases the end-
to-end transaction latency, all the replicas are part of the
same architecture, running at the same clock speed, and
are exposed to the same workload. As a consequence, the
transactions’ results are received almost simultaneously by
the voter, without affecting the overall performance. The
voter also identifies the replicas affected by soft-errors (i.e.,
presenting an outcome that differs from the one delivered
to the application), and restores a consistent state from a
correct replica.

Figure 1 schematizes the architecture. Figure 1(a) shows
how the computational resources are partitioned: a group
of cores is reserved for running application threads, and
the remaining cores are grouped for running replicas. Fig-
ure 1(b) focuses on each replica: a small number of cores is
reserved for running the total order protocol, and the rest are
used for running ObCC. Figure 1(c) illustrates the software
architecture. Application threads invoke transactions through
the network layer. A dispatcher is responsible for fetching
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Figure 1. System, replica and software architecture.

transaction requests from the network layer and processing
them under the control of ObCC. A voter collects the results
and replies to the original application’s invoking call.

Though this approach overcomes soft-errors in a transpar-
ent manner from the application’s point of view, it has two
main drawbacks. The first is the reduced number of cores
available for transaction processing. However, our approach
targets massively multicore architectures, where the number
of cores is sufficiently large for exploiting application con-
currency. Additionally, transactional applications typically
do not consume all the resources available because of logical
contentions (e.g., locks). In our approach, the number of
replicas can be tuned according to the fault resilience de-
sired, and also according to the expected resource utilization.
The second drawback is the increased memory consumption.
In order to support our architecture, each group replicates
all the shared objects, increasing the total memory utilized.
However, this is not a major restriction, because, memory
cost is rapidly decreasing and many medium-level servers
are now equipped with 16/32/64Gb.

III. NETWORK LAYER

According to the active replication paradigm, transactions
need to be totally ordered before they are delivered to each
replica. Our approach includes an optimized network layer
ordering transaction requests issued by application threads.
This layer is decentralized, each replica reserves one core
for executing its part of the work.

Our network algorithm is a variant of Optimistic Atomic
Broadcast [9]. We assume a monotonically increasing syn-
chronized clock (called timestamp), which is typically avail-
able in centralized architectures. The hardware that we use
for experimental evaluation (Section V), the Tilera TILE-Gx,
provides this service by the cycle-counter-register1.

Each application thread sends its requests to other replicas
and application threads. The request is composed of: appli-
cation ID, the transaction’s name with its parameters, and the
sender’s timestamp. Other application threads acknowledge
the request using the local timestamp as ACK message.

1cycle-counter-register is well documented in the Tilera’s handbook

Reading a timestamp from the cycle-counter-register ensures
that the next call retrieves a greater value.

When replicas receive the request, they immediately
deliver it optimistically. The optimistic order reflects the
request’s timestamp. After the early delivery, replicas wait
for messages tagged with higher timestamp (either ACK or
new requests). After one message is received from every
application thread, the final delivery is issued.

This protocol defines an order among requests issued by
application threads. We do not need to synchronize replicas
because timestamps are generated from the cycle-counter-
register, which ensures monotonicity.

IV. CONCURRENCY CONTROL

Each replica is equipped with local concurrency control.
Transactions are activated as soon as they are optimistically
delivered (opt-del hereafter). When a conflict with other opt-
del transactions occur, it is resolved using the optimistic or-
der of the conflicting transactions. Consider two transactions
T1 and T2. Let their opt-del order be T1 followed by T2.
When a conflict occurs, T2 is aborted and restarted in order
to allow T2 to access data written by T1. Following this
basic rule, the conflicting opt-del transactions are processed
according to their opt-del order.

Algorithms for processing uncommitted transactions in-
order has been proposed in [12]–[15]. In our approach, we
rely on the conflict detection technique of SwissTM [16],
and extend it to enforce ordering. Each shared object has
the committed and a list of completed versions (written by
opt-del transactions).

Similar to SwissTM, we use write-locks. Each writing
transaction must acquire the write-lock on the memory
location. If it is locked by an older transaction (according to
the opt-del order), then it aborts. Otherwise, the transaction
holding the lock is aborted. When reading a location, if it
is locked by an older transaction, then the reader waits until
that transaction finishes.

The commit is split into two phases. The first is called
the complete phase, where the transaction is not yet final-
delivered. The transaction is validated and the write-set
values are written into a complete version buffer. The
subsequent transactions can therefore read the forwarded



values without waiting for final commit. The second phase
is the commit phase, where values are written to shared
memory after validation, or a cascaded abort occurs if
validation fails (e.g., the opt-del order is not confirmed by
final delivery order). Additionally, we manage the priority
of threads for avoiding instrumentation overhead for the
threads processing the next final (and not optimistically)
delivered transaction. Such threads can directly operate in
memory without synchronizing with others since they are
processing the next committing transaction non-concurrently
on the committed versions.

V. PRELIMINARY EVALUATION

We developed a preliminary implementation of the pro-
posed approach and conducted an early experimental eval-
uation. We implemented all of the modules in C++ The
network layer, in particular, was designed and implemented
to be platform-independent: it can run transparently on
both message-passing and shared memory hardware. Our
ordering-based concurrency control approach (ObCC) was
implemented on top of RSTM library [17]. It uses platform-
specific assembly instructions, so we ported the original
implementation to our test-bed.

Our evaluation used a 36-core board of the Tilera TILE-
Gx family [7]. This hardware is commonly used as an
accelerator or intelligent network card. Each core is a full-
featured 64-bit processor (1.0 GHz clock speed, 8 GB
DDR3 memory), with two level of caches, and a non-
blocking mesh that connects the core to the Tilera 2D-
interconnection system. We installed the Tilera board as a
co-processing platform to a 64-core AMD Opteron machine,
interconnecting it via the PCIe bus.

Network Layer. To understand the performance of the net-
work layer without transactional workloads, we conducted
an experiment in which we reserved 2 cores, and ran each
replica on one core, exclusively for logging the messages
optimistically and finally delivered. (Our implementation
currently does not batch messages, which is a common
technique for increasing performance.)

We injected transactional requests, varied the number
of replicas, and calculated the throughput (i.e., number of
messages totally ordered per second) from the time needed
for delivering all the requests to the slowest replicas. Since
each replica executes with the same clock, the gap between
fastest and slowest replicas is negligible.

Figure 2 shows the results. They reveal reasonable per-
formance (considering that messages are not batched), espe-
cially with 4–8 replicas. After 8 replicas, the throughput is
affected by the saturation of the sending/ delivery queues.
However in centralized systems having more than 8 replicas
is not desirable because the available computing resources
are significantly limited.

The average latency between the optimistic and final
deliveries was found to be 8.5msec. This latency magnitude
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enables concurrency control to process transactions specu-
latively in the optimistic delivery order.

Concurrency Control. ObCC enforces a deterministic
commit order of transactions, which is mandatory for im-
plementing active replication-based protocols. However, this
impacts performance. For example, consider two indepen-
dent transactions T1, which is long running, and T2, which is
short, delivered in this order. Under ObCC, T2 cannot com-
mit before T1, even if the transactions are non-conflicting,
which degrades performance, but ensures a deterministic
commit order. To understand this overhead, we compared
ObCC with SwissTM [16]. We used two benchmarks in this
study: Hash-Set and ReadWriteNBench. The latter generates
threads that read and write at random locations in a shared
matrix.
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Our current implementation does allow transactions to
process speculatively when optimistically delivered, and
they are activated only upon final delivery. Overlapping
transaction processing with coordination is one of our future
tasks. For the purpose of these experiments, transactions
were generated locally without any ordering layer, and their
starting time defined the commit order.

Figure 3 shows the results for Hash-Set. We observe a



maximum performance degradation for ObCC to be ≈25%.
This degradation is much lower than the gap in performance
between the concurrency control and the ordering layer (i.e.,
the performance upper bound in actively replicated systems
for write-transactions [18]). As a result, ObCC will not
impact the overall performance when the network layer will
inject transactional requests.

 5

 10

 15

 20

4 8 12 16 20 24 28 32

M
illi

on
 tx

/s
ec

Threads

ObCC
SwissTM

Figure 4. Throughput of ObCC for ReadWriteNBench.

Figure 4 shows the results for ReadWriteNBench. Here
ObCC outperforms SwissTM. The reason is twofold. First,
this benchmark has low conflicts, and therefore transactions
can be committed in order without being aborted for process-
ing in the wrong order. Second, the cost of CAS operations
in SwissTM for managing the timestamps are replaced with
Tilera’s cycle-counter-register, which avoids invalidation and
cache misses.
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Figure 5. Throughput of integrated infrastructure.

Integrated Infrastructure. Figure 5 shows the performance
of the integrated infrastructure using Hash-Set benchmark.
In this preliminary implementation, ObCC processes trans-
actions after their final delivery, instead of starting their
speculative execution exploiting the optimistic delivery. The
maximum throughput of this system is bound by the perfor-
mance of the total order service (the second line in the plot).
The results show a limited gap between the performance of

the network layer and the overall system. This is promis-
ing, as overlapping coordination and processing will likely
reduce the gap.

Comparing Figure 4 with Figure 5 (i.e., pure transaction
processing without the total order service for issuing trans-
actions), we conclude that, even with a preliminary, non-
optimized implementation, the performance gap observed
is about 36x. In fact, with Hash-set, SwissTM’s average
throughput is ≈900K tx/sec, whereas our fault-tolerant ar-
chitecture with 4 replicas yields ≈25K tx/sec. This gap is
limited, compared to the performance degradation incurred
when moving from a centralized to a distributed setting,
and can likely be reduced by optimizing the components,
in particular the network layer.

VI. RELATED WORK

Transient faults due to radiation effects on semiconductor
devices have been widely studied in the last decade [19]–
[22]. An excellent survey on their causes, and impact on
modern architectures can be found in [2].

Solutions for overcoming soft-errors can be classified
into hardware- [23]–[25] and software-based [26], [27].
The former assumes controlling the underlying hardware,
and typically involves enhancing it (e.g., redundancy). The
latter provides execution frameworks, and often uses on-
line failure detectors that trigger recovery actions when a
soft-error occurs (e.g., restarting execution). Our approach
is software-based and is transparent from the hardware’s
specification.

Monitoring frameworks for detecting soft-errors are pro-
posed in [28], [29]. They provide feedback when such
errors occur, but do not integrate recovery mechanisms.
Our approach analyzes transaction outcomes (no monitoring)
and, when a corruption occurs, a restoration of the corrupted
partition’s state is issued.

Active replication is a well known paradigm in transaction
processing [9], [12]–[14]. These works exploit OAB pro-
tocols for processing transactions speculatively, overlapping
their execution with the coordination time for ordering. They
provide resilience to crash/stop failures; in case of soft-
errors, data consistency can be corrupted.

Transactional applications are increasingly using Software
Transactional Memory (STM) algorithms [30], [31] and
frameworks [16], [32] to overcome the programmability
and performance challenges of in-memory processing on
multicore architectures. The concurrency control algorithm
that we present is inspired by SwissTM [16].

VII. CONCLUSIONS

Our preliminary results reveal that the active replication
paradigm is a candidate for making transactional systems
resilient to application crashes due to soft-errors.

A number of future directions can be considered for
the proposed framework. For example, each component



can be independently optimized. The network layer can be
enhanced using batching for increasing the throughput of the
total order service. The ObCC can be extended to speculative
processing of optimistically delivered transactions, instead of
waiting for their final delivery. It would also be interesting
to port other active replication solutions into our overall
framework and compare with our proposal.
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