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Abstract
We present a new wait-free memory reclamation scheme, Crystalline, that simultaneously addresses
the challenges of high performance, high memory efficiency, and wait-freedom. Crystalline guarantees
complete wait-freedom even when threads are dynamically recycled, asynchronously reclaims memory
in the sense that any thread can reclaim memory retired by any other thread, and ensures (an almost)
balanced reclamation workload across all threads. The latter two properties result in Crystalline’s
high performance and high memory efficiency, a difficult trade-off for most existing schemes. Our
evaluations show that Crystalline exhibits outstanding scalability and memory efficiency, and achieves
superior throughput than state-of-the-art reclamation schemes as the number of threads grows.
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1 Introduction

Non-blocking data structures do not use simple mutual exclusion: a concurrent thread
may hold an obsolete pointer to an object which is about to be freed by another thread.
Responding to this challenge, safe memory reclamation (SMR) schemes for unmanaged
C/C++ code have been proposed in the literature (e.g., [1, 2, 3, 4, 5, 6, 9, 11, 12, 13, 14, 16]).
However, they typically involve major trade-offs, e.g., memory efficiency vs. throughput.

The significance of balancing the reclamation workload – the task of reclaiming deleted
memory objects – across all threads have not received adequate attention in the literature.
Consider the common scenario when read operations dominate, but data is still modified. If
the reclamation workload is unbalanced, as in most existing reclamation schemes [4, 6, 12, 16],
then most threads are not actively reclaiming memory, which can cause memory waste.

Vast majority of SMR schemes (e.g., [6, 12, 16]) are inherently synchronous, i.e., they need
to periodically examine which objects marked for deletion can be safely freed. In contrast,
reference counting [7, 15] is asynchronous: an arbitrary thread with the last reference frees
an object. Unfortunately, reference counting is often impractical due to very high overheads
when accessing objects. Hyaline [8, 11], an approach where reference counters are only used
when objects are retired, is still asynchronous and exhibits high performance. However,
Hyaline can be blocking since its memory usage is unbounded when threads starve.
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Figure 1 Crystalline-W: list tainting.
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Figure 2 Crystalline-W: reservations and state.

We propose Crystalline-W, which has the following properties: wait-freedom, asynchronous
reclamation, and balanced reclamation workload. Crystalline-W extends a lock-free algorithm,
Crystalline-L, which we also present in the paper (Section 2). Crystalline-L, in turn, is based
on Hyaline-1S [8, 11], a prior scheme. Making Crystalline wait-free involves overcoming a set
of unique challenges, caused in part due to asynchronous memory reclamation (Section 3).

2 Lock-Free Reclamation with Crystalline-L

In Hyaline [8, 11], threads explicitly annotate each operation. When objects are detached
from a data structure, they are first retired and then freed when it is safe to do so. Hyaline-1S
is a variant that bounds memory usage for stalled threads by explicitly tracking local pointers
via a special protect method using the global era clock [12, 16]. However, Hyaline-1S is still
not lock-free unless operations are periodically restarted for starving threads. The problem
arises when a thread reserves an increasing number of local pointers in an unbounded loop
(e.g., one “unlucky” thread is stuck traversing a list because it keeps growing).

The culprit is a simplistic API [16] which enables retrieving an unbounded number of
local pointers. To avoid this issue, alternative APIs [6, 12] explicitly differentiate each local
pointer reservation in protect. Crystalline-L modifies Hyaline-1S so that each thread has
several (rather than just one) reservations. Each reservation has its own list of retired objects.

Hyaline-1S retires an entire batch of objects, and each batch is attached to every active
reservation. Each object reserves space for a list of retired objects. Whereas Hyaline-1S
only needs MAX_THREADS+1 objects to successfully retire a batch, Crystalline-L handles
MAX_IDX local pointers and consequently needs MAX_THREADS×MAX_IDX+1 objects.

One problem with Hyaline-1S is that a batch must aggregate all objects before retirement
can even start, which is further aggravated in Crystalline-L. In practice, the required number
of objects is much lower as each object is appended to the respective list only if the list’s era
overlaps with the batch’s minimum birth era. Crystalline-L uses dynamic batches to avoid
their excessive growth. The retire method first checks how many lists are to be changed for
the batch to be fully retired and records the location of the corresponding reservations. If the
number of objects in the batch suffices, retire completes by appending the objects to their
corresponding lists. Otherwise, retire is repeated later when more objects are available.

3 Wait-Free Reclamation with Crystalline-W

The Crystalline-L scheme is still only lock-free because of two fundamental challenges:
retire has an unbounded loop: protect or another retire contends on the same list.
protect has an unbounded loop which must converge on the era value; however, the era
clock unconditionally increments when a new object is allocated.

To solve the first problem, we use unconditional SWAP in retire as shown in Figure 1.
We initialize the next field of a retired object with nullptr, and swap the current list head
with the pointer to the retired object. Putting corner cases aside, two major cases exist. If
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None no reclamation (leak memory)
Hyaline-1 basic variant [8, 11]
Hyaline-1S supports stalled threads [8, 11]
HP the hazard pointers scheme [6]
HE the hazard eras scheme [12]
IBR 2GEIBR (interval-based) [16]
WFE the wait-free eras scheme [9]
EBR epoch-based reclamation

Figure 3 Evaluated reclamation schemes.
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Figure 4 Lock-free hash map (read-dominated).

the retired object still has its next field intact, it simply attaches the previous list as its
tail (part I). It is also possible that a thread associated with the reservation already started
traversing and dereferencing retired objects. Crystalline-W additionally taints the retrieved
next pointer of all traversed objects by using SWAP. retire finds that the next field is now
tainted (part II). Thus, retire traverses the tail on behalf of the thread that tainted next.

The second problem was already considered by WFE [9] for hazard eras [12]. The
approach, which we also adopt in Crystalline-W, is based on a fast-path-slow-path idea to
coordinate global era clock increments. Each thread maintains its state for the slow path,
which is taken when protect fails to retrieve a pointer after a small number of steps. The
result field of state is used for both input and output. On input, a current slow path cycle
is advertised. Output contains a retrieved pointer with the corresponding era. In Figure 2,
we demonstrate how input and output values must be aligned. Reservations need to be
extended with extra tags which identify slow path cycles and prevent spurious updates.
Despite similarities, Crystalline-W substantially diverges from the original WFE’s idea due
to its unique retirement mechanism. Complete details can be found in [10].

4 Evaluation

Crystalline’s implementation extends the benchmark of [9, 11, 16]. We evaluated all schemes
(Figure 3) from 1 to 192 threads on a 96-core machine consisting of four Intel Xeon E7-8890 v4
2.20 GHz CPUs, 256GB of RAM. We present results for hash map [6] under (90% get, 10%
put) workload. Complete details of our experiments and additional results are in [10].

Crystalline-L/-W achieve superior throughput (Figure 4a), which is especially evident
under oversubscription, where the gap with other algorithms is as large as 2x. Hyaline-1/-1S’s
throughput is worse, which is due to a smaller granularity of reservations. WFE has the
worst throughput. Crystalline-L/-W achieve exceptional memory efficiency which is on par
with HP (Figure 4b). Even Hyaline-1/1S are visibly less memory efficient.

5 Conclusions

We presented a new wait-free SMR scheme, Crystalline-W, which guarantees complete
wait-freedom with bounded memory usage. Crystalline-W is based on a lock-free algorithm,
Crystalline-L, which is also presented in the paper. Crystalline-L is an improved version of
Hyaline-1S that additionally guarantees bounded memory usage even when threads starve.
Both Crystalline-L/-W show very high throughput and high memory efficiency, unparalleled
among existing schemes, which is especially evident in read-dominated workloads.

DISC 2021
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