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Abstract

Distributed transactional memory (TM) models based on globally-consistent contention man-
agement policies may abort many transactions that could potentially commit without violating
correctness. To reduce unnecessary aborts and increase concurrency, we propose the distributed
dependency-aware (or DDA) model for distributed TM, which manages dependencies between
conflicting and uncommitted transactions so that they can commit safely. We present a distributed
algorithm to decide whether to abort a transaction based on local precedence graphs that model
the established dependency relationships. We analyze the performance of our algorithm and
illustrate the inherent tradeoff of the DDA model between communication cost and concurrency.

1. Overview

A distributed TM model supports the TM API in a distributed system consisting of a network of
nodes that communicate by message-passing links. Supporting TM in distributed systems is motivated
by the similar difficulties of lock-based synchronization methods employed by distributed control-flow
programming models such as RPCs. The core design aspects of a distributed TM system include two
elements. The first element is the conflict resolution strategy. Two transactions conflict if they access
the same object and one access is a write. Most existing TM implementations adopt a conflict resolution
strategy that aborts one transaction whenever a conflict occurs—i.e., by a contention management module.
The second element is the distributed cache-coherence protocol. When a transaction attempts to access
an object in the network, a distributed cache-coherence protocol must locate the latest cached copy of the
object, and move a read-only or writable copy to the requesting transaction. The protocol must guarantee
that at any time, there exists only one writable copy of each object in the system.

Most of the past works on TM in distributed systems ( [1], [2]) focus on the design of cache-coherence
protocols, while assuming a contention management-based conflict resolution strategy. While easy to
implement, such a contention management approach may lead to significant number of unnecessary
aborts, especially for read-dominated workloads [3], thereby reducing concurrency. Thus, we consider
the problem of how to increase concurrency in distributed TM conflict management. We present a
new distributed TM model—the distributed dependency-aware (or DDA) model, which allows multiple
conflicting transactions to proceed as long as the correctness criterion is not violated. In contrast to Herlihy
and Sun’s globally-consistent, contention management model (or “GCCM”) [1], the DDA model relaxes
the restriction of allowing only one transaction to proceed in the event of a transactional conflict by



setting up precedence relations between the conflicting transactions. A transaction can commit as long as
its established precedence relations with other transactions are not violated.

To support TM API in distributed systems, we consider Herlihy and Sun’s data-flow model [1], where
transactions are immobile (running at nodes which invoke them), and objects move from node to node.
Each node has a TM proxy that provides interfaces to the TM application and to proxies of other nodes.
The TM proxy enables two basic operations: read and write. The read(o, v) operation returns the value
v of the object o. The write(o, v) operation sets the value of the object to v given as an argument.

2. Distributed Dependency-Aware Model

Object version list. The DDA model allows a distributed TM system to manage multiple versions of
shared objects. Each object has to maintain an object version list. We adopt the technique similar to [4], but
allow writers to add versions before their commits. Specifically, each object o is associated with a totally
ordered sequence of versions. At any given time, the versions of an object are numbered in increasing
order. The numbering of the object version may change since the versions are inserted into or removed
from the object list. The object version o.vn includes the data o.vn.data, the writer transaction o.vn.writer,
the writer status o.vn.writerstatus ∈ {committed, pending}, and a set of readers o.vn.readers. A read
operation of object o returns the value of one of o’s version. A write operation of object o adds a new
version to o’s version list and sets its corresponding writer status to pending. Note that the pending status
implies that the version o.vn is written by a live transaction. If this transaction aborts, the corresponding
version is removed from the object list. If this transaction commits, the corresponding writer status is set
to committed. Each transaction keeps a readList and a writeList. An entry in a readList points to
the version that has been read by the transaction. An entry in a writeList points to the version written
by the transaction.

Generally, the following principles are applied for read/write operations in the DDA model:
1 The read operation always returns a value of the object written by the latest committed transaction.

Formally, a read operation on object o returns the value o.vm, where o.vm′ .writerstatus = pending,
for all m′ > m.

2 The write operation always writes a value with the highest version number. Formally, a write operation
to object o adds the version o.vn+1 to object o if its latest version is o.vn.

3. Decision Making Algorithm

In the DDA model, the TM system allows multiple conflicting transactions to proceed simultaneously,
while ensuring transactional correctness. A transaction is aborted only if it violates the correctness
criterion, e.g. opacity [5]. The basic idea to guarantee correctness is to maintain a precedence graph
of transactions and keep it acyclic, which has been adopted by some recent TM efforts in multiprocessor
systems (e.g., [4], [5]). The vertices of the global precedence graph PG are transactions. The directed edges
of PG are formed by the real-time order and dependency relationships (write after read, write after write,
read after write). Applying this method for distributed TM systems introduces some unique challenges.
The key challenge is that, in distributed systems, each node has to make decisions based on its local
knowledge. A centralized algorithm—e.g., assign a coordinator node to maintain the precedence graph
and make decisions whenever a conflict occurs, involves frequent interactions between each individual
node and the coordinator node.

A centralized algorithm is impractical due to the underlying high communication cost. In practice,
each node can only maintain a local precedence graph, which contains partial knowledge of the global



precedence relations. Transaction Ti forms a directed labeled precedence graph, PGi, based on the
dependencies created during the transaction history.

Construction. Basically, PGi only records the direct precedence relations between Ti and other nodes.
Note that the cache-coherence protocol always carries a read/write request to the latest object writer. We
do not add edges to/from a committed transaction in this algorithm. A CYCLEDETECTION algorithm is
invoked to decide whether an edge can be added without generating cycles in PGi; if not, the transaction
is aborted. For a read operation, a SEARCHVERSION(Tj , o) may be invoked to search the latest committed
version of object o. The idea to search that version is to first find a “possibly” latest committed writer
o.vm.writer of o based on the object version list. Due to the possible delay of the update, o.vm.writer
may not be the latest committed writer of o. However, we can find the correct writer by following the
sequence of W → W edges starting from o.vm.writer. An R → W edge is added by Tj , and the
transaction writes the version after it. A write operation is more complex. Generally, if Tj writes to the
object o held by Ti, one W → W edge and a set of R → W edges are added to PG. Hence, Ti collects
the response from itself and all its readers to determine whether a cycle has been generated after the edges
are added. If the write operation is allowed, a set of corresponding edges are established. Note that our
algorithm is different from past distributed deadlock detection algorithms in substantial technique ways
to construct and update local precedence graphs.

Garbage Collection. In the DDA model, a terminated transaction can be removed from the global
precedence graph without violating correctness. We prove the following theorem in [6]:

Theorem 1: If a transaction commits or aborts, it will not participate in any cycle even if it is not
removed from PGi.

Run-time Complexity. The write complexity is O(#C + #L2), where #C is the number of nodes
visited by one invocation of the cache-coherence protocol and #L is the number of live transactions.
The read complexity is O(#C + #L). A commit or abort cost is O(#L) since a transaction only has
edges with live transactions. The complexity analysis of the operations of the DDA model illustrates
the inherent tradeoff between the communication overhead and the concurrency of transactions. Higher
concurrency introduces larger sizes of both global and local precedence graphs, which leads to higher
costs in detecting cycles (due to the larger size of possible cycles formed).
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