
Lock-Free Synchronization for Dynamic Embedded Real-Time Systems∗

Hyeonjoong Cho
ECE Dept., Virginia Tech

Blacksburg, VA 24061, USA
hjcho@vt.edu

Binoy Ravindran
ECE Dept., Virginia Tech

Blacksburg, VA 24061, USA
binoy@vt.edu

E. Douglas Jensen
The MITRE Corporation

Bedford, MA 01730, USA
jensen@mitre.org

Abstract

We consider lock-free synchronization for dynamic em-
bedded real-time systems that are subject to resource over-
loads and arbitrary activity arrivals. We model activity ar-
rival behaviors using the unimodal arbitrary arrival model
(or UAM). UAM embodies a stronger “adversary” than
most traditional arrival models. We derive the upper bound
on lock-free retries under the UAM with utility accrual
scheduling — the first such result. We establish the trade-
offs between lock-free and lock-based sharing under UAM.
These include conditions under which activities’ accrued
timeliness utility is greater under lock-free than lock-based,
and the consequent upper bound on the increase in accrued
utility that is possible with lock-free. We confirm our ana-
lytical results with a POSIX RTOS implementation.

1. Introduction

Embedded real-time systems that are emerging in many
domains such as robotic systems in the space domain (e.g.,
NASA/JPL’s Mars Rover [7]) and control systems in the de-
fense domain (e.g., airborne trackers [6]) are fundamentally
distinguished by the fact that they operate in environments
with dynamically uncertain properties. These uncertainties
include transient and sustained resource overloads due to
context-dependent activity execution times and arbitrary ac-
tivity arrival patterns. Nevertheless, such systems’ desire the
strongest possible assurances on activity timeliness behav-
ior. Another important distinguishing feature of these sys-
tems is their relatively long execution time magnitudes—
e.g., in the order of milliseconds to minutes.

When resource overloads occur, meeting deadlines of all
activities is impossible as the demand exceeds the supply.
The urgency of an activity is typically orthogonal to the rel-
ative importance of the activity—-e.g., the most urgent ac-
tivity can be the least important, and vice versa; the most
urgent can be the most important, and vice versa. Hence
when overloads occur, completing the most important activ-
ities irrespective of activity urgency is often desirable. Thus,

∗ This work was supported by the Office of Naval Research under Grant
N00014-05-1-0179 and The MITRE Corporation under Grant 52917.

a clear distinction has to be made between urgency and im-
portance, during overloads. (During under-loads, such a dis-
tinction need not be made, because deadline-based schedul-
ing algorithms such as EDF are optimal.)

Deadlines by themselves cannot express both ur-
gency and importance. Thus, we consider the abstraction of
time/utility functions (or TUFs) [10] that express the util-
ity of completing an activity as a function of that activity’s
completion time. We specify deadline as a binary-valued,
downward “step” shaped TUF; Figure 1(a) shows ex-
amples. Note that a TUF decouples importance and
urgency—i.e., urgency is measured on the X-axis, and im-
portance is denoted (by utility) on the Y-axis.

-
Time

6
Utility

0
(a)

-
Time

6
Utility

0

bbb

(b)

-
Time

6
Utility

S
SS0

HH

(c)

Figure 1. Example TUF Time Constraints

Many embedded real-time systems also have activi-
ties that are subject to non-deadline time constraints, such
as those where the utility attained for activity comple-
tion varies (e.g., decreases, increases) with completion
time. This is in contrast to deadlines, where a positive util-
ity is accrued for completing the activity anytime before
the deadline, after which zero, or infinitively negative util-
ity is accrued. Figures 1 show example such time con-
straints from two real applications [6]. When activity time
constraints are specified using TUFs, the scheduling cri-
teria are based on accrued utility, such as maximizing the
total activity attained utility. We call such criteria, util-
ity accrual (or UA) criteria, and scheduling algorithms that
optimize them, as UA scheduling algorithms.

UA algorithms that maximize total utility under step
TUFs (see algorithms in [15]) default to EDF during under-
loads, since EDF satisfies all deadlines during under-loads.
Consequently, they obtain the maximum total utility during
under-loads. During overloads, they favor more important
activities (since more utility can be attained from them), ir-
respective of urgency. Thus, deadline scheduling’s optimal
timeliness behavior is a special-case of UA scheduling.

 

3-9810801-0-6/DATE06 © 2006 EDAA 

 

438



1.1. Shared Data and Synchronization

Most embedded real-time systems involve mutually ex-
clusive, concurrent access to shared data objects, resulting
in contention for those objects. Resolution of the contention
directly affects the system’s timeliness behavior. Mecha-
nisms that resolve such contention can be broadly classified
into: (1) lock-based schemes—e.g., [16], see algorithms
in [15]; and (2) non-blocking schemes including wait-free
protocols (e.g., [11, 4, 9]) and lock-free protocols (e.g., [3]).

Lock-based protocols have several disadvantages such
as serialized access to shared objects, resulting in reduced
concurrency [3]. Further, many lock-based protocols typi-
cally incur additional run-time overhead due to scheduler
activations that occur when activities request locked ob-
jects [16, 15]. Also, deadlocks can occur when lock holders
crash, causing indefinite starvation to blockers. Many (real-
time) lock-based protocols also require a-priori knowledge
of the ceilings of locks [16], which may be difficult to ob-
tain for dynamic applications, resulting in reduced flexibil-
ity [3]. These drawbacks have motivated research on non-
blocking objects in embedded real-time systems.

Especially, lock-free objects guarantee that some object
operations will complete in a finite number of steps. It im-
plies other operation may have to retry a potentially infi-
nite number of time. Instead of acquiring locks, lock-free
operation continuously accesses the object, checks, and re-
tries until it becomes successful. Inevitably, lock-free proto-
cols incur additional time costs due to their retries, which is
antagonistic to timeliness optimization. Prior research has
shown how to mitigate these time or space costs. On the
other hand, wait-free objects guarantee any operation on the
objects will complete in a bounded number of steps, regard-
less of interferences. Wait-free protocols may incur addi-
tional time or space costs for their intrinsic mechanisms.

An excellent survey of the prior research can be found
in [9]. We summarize some important efforts in the con-
text of our work here: In [3], Anderson et al. show how to
bound the retry loops of lock-free protocols through judi-
cious scheduling. Lock-free objects on single- and multi-
processors under quantum-based scheduling is presented
in [1]. This work assumes that each task can be preempted
at most once during a single quantum; thus each object ac-
cess needs to be retried at most once. In [2], Anderson et al.
present wait-free schemes for single- and multi-processors,
where a task which announces its intention to share objects
also helps other tasks to complete their access.

Efficient lock-free objects, such as queues and stacks,
have been presented in [14, 13]. In [18], Valois presents
lock-free linked lists. Treiber presents lock-free stack al-
gorithms in [17]. In [11], Kopetz et al. present an analysis
on non-blocking synchronization in real-time systems. This
work was later improved by Chen et al. in [4], and subse-
quently by Huang et al. in [9] and by Cho et al. in [5].

1.2. Contributions

In this paper, we focus on dynamic embedded real-time
systems on a single processor. By dynamic systems, we

mean those subject to resource overloads due to context-
dependent activity execution times and arbitrary activity ar-
rivals. To account for the variability in activity arrivals, we
describe arrival behaviors using the unimodal arbitrary ar-
rival model (UAM) [8]. UAM specifies the maximum num-
ber of activity arrivals that can occur during any time inter-
val. Consequently, the model subsumes most traditional ar-
rival models (e.g., periodic, sporadic) as special cases.

We consider lock-free sharing under the UAM. The past
work on lock-free sharing upper bounds the retries under re-
strictive arrival models like periodic [3] — retry bounds un-
der the UAM are not known. Moreover, we consider the UA
criteria of maximizing the total utility, while allowing most
TUF shapes including step and non-step shapes, and mutu-
ally exclusive concurrent object sharing. We focus on the
Resource-constrained Utility Accrual (RUA) scheduling al-
gorithm [19], as it is the only algorithm for that model. RUA
allows arbitrarily-shaped TUFs and concurrent object shar-
ing using locks. For the special case of step TUFs, no object
sharing, and under-loads, RUA defaults to EDF.

We derive the upper bound on lock-free RUA’s retries
under the UAM — the first ever retry bound under a non-
periodic arrival model. Since lock-free sharing incurs ad-
ditional time overhead due to the retries (as compared to
lock-based), we establish the conditions under which ac-
tivity sojourn times are shorter under lock-free RUA than
under lock-based, for the UAM. From this result, we estab-
lish the maximum increase in activity utility under lock-free
RUA over lock-based. Further, we implement lock-free and
lock-based RUA on a POSIX RTOS. Our implementation
measurements strongly validate our analytical results.

The rest of the paper is organized as follows: In Sec-
tion 2, we derive the upper bound on retries under lock-free
RUA. We compare lock-free and lock-based RUA, and es-
tablish the tradeoffs between the two in Section 3. Section 4
discusses our implementation experience. We conclude the
paper in Section 5. In describing our work, we skip some
proofs for brevity; they can be found in [20].

2. Bounding Retries Under UAM

Figure 2 shows the three dimensions of the task model
that we consider in the paper. The first dimension is the ar-
rival model. We consider the UAM, which is more relaxed
than the periodic model, but more regular than the aperiodic
model. Hence it falls in between these two ends of the (reg-
ularity) spectrum of the arrival dimension. For a task Ti, its
arrival using UAM is defined as a tuple 〈li, ai,Wi〉, mean-
ing that the maximal number of job arrivals of the task dur-
ing any sliding time window Wi is ai and the minimal num-
ber is li [8]. Jobs may arrive simultaneously. The periodic
model is a special case of UAM with 〈1, 1,Wi〉.

We refer to the jth job (or invocation) of task Ti as Ji,j .
The basic scheduling entity that we consider is the job ab-
straction. Thus, we use J to denote a job without being task
specific, as seen by the scheduler at any scheduling event. A
job’s time constraint, which forms the second dimension, is
specified using a TUF. A TUF subsumes deadline as a spe-
cial case (i.e., binary-valued, downward step TUF). Jobs of

439



Figure 2. Three Dimensions of Task Model

a task have the same TUF. Ui (·) denotes task Ti’s TUF;
thus, completion of Ti at time t will yield Ui(t) utility.

TUFs can take arbitrary shapes, but must have a (single)
“critical time.” Critical time is the time at which the TUF
has zero utility. For the special case of deadlines, critical
time corresponds to the deadline time. We denote the criti-
cal time of task i’s Ui (·) as Ci, and assume that Ci ≤ Wi.

The third dimension is feasibility. Feasibility includes
under-load situations, during which all tasks can be com-
pleted before their critical times, and overloads, where only
a subset of the tasks (including possibly none) can be done
so. Our model includes overloads, the UAM, and TUFs.

Finally, the resource model we consider here does not al-
low the nested critical section which may cause deadlock in
the lock-based synchronization.

2.1. Overview of Lock-Based RUA

RUA [19] targets dynamic applications, where activi-
ties are subject to arbitrary arrivals and resource overloads.
Further, activities may access (logical and physical) re-
sources arbitrarily—e.g., the resources that will be needed,
the length of time for which they will be needed, and the
order of accessing them are all statically unknown. Thus,
the set of activities to be scheduled and their resource de-
pendencies may change over time. Consequently, RUA per-
forms scheduling entirely online. RUA considers activities
subject to arbitrarily shaped TUF time constraints, concur-
rent object sharing under mutual exclusion constraints, and
the scheduling objective of maximizing the total utility.

With n jobs, RUA’s asymptotic cost is O(n2logn). This
is higher than that of many traditional real-time scheduling
algorithms. However, this high cost is justified for applica-
tion with longer execution time magnitudes such as those
that we focus here. (Of course, this high cost cannot be jus-
tified for every application.) Nevertheless, it is desirable to
reduce the cost so that the resources utilized by the schedul-
ing algorithm can yield greater benefit in terms of improved
scheduling from the application’s point of view.

2.2. Preemptions Under UA Schedulers

Under fixed priority schedulers such as rate-monotonic
(RM), a lower priority job can be preempted at most once
by each higher priority job if no resource dependency (that

arises due to concurrent object sharing) exists. This is be-
cause a job does not change its execution eligibility until
its completion time. However, under UA schedulers such as
RUA, execution eligibility of a job dynamically changes.

Figure 3. Mutual Preemption Under RUA

In Figure 3, assume that two jobs J1,1 and J2,1 arrive at
time t0, and scheduling events occur at t1, t2, and t3. J2,1

occupies CPU at t0 and is preempted by J1,1 at t1. Subse-
quently, J1,1 is preempted by J2,1 at t2, which does not hap-
pen under RM scheduling. Under RUA, a simple condition
causing this mutual preemption, where a job which has pre-
empted another job can be subsequently preempted by the
other job, is when TUFs of the two jobs are increasing.

This potential mutual preemption distinguishes RUA
from traditional schedulers such as RM, where a job can
be preempted by another job at most once. Hence, the max-
imum number of preemptions under RM that a job may suf-
fer can be bounded by the number of releases of other jobs
during a given time interval (see [2]). However, this is not
true with RUA, as one job can be preempted by another job
more than once. Thus, the maximum number of preemp-
tions that a job may experience under RUA is bounded by
the number of events that invoke the scheduler.

Lemma 1 (Preemptions Under UA scheduler). During a
given time interval, a job scheduled by a UA scheduler can
experience preemptions by other jobs at most the number of
the scheduling events that invoke the scheduler.

Lemma 1 helps compute the upper bound on the number
of retries on lock-free objects for our model. This is also
true with other UA schedulers [15], because it is impossi-
ble for more preemptions to occur than scheduling events.

2.3. Bounded Retry Under UAM

Under our model, jobs with TUF constraints arrive under
the UAM, and there may not always be enough CPU time
available to complete all jobs before their critical times. We
now bound lock-free RUA’s retries under this model.

Theorem 2 (Lock-Free Retry Bound Under UAM). Let
jobs arrive under the UAM < 1, ai,Wi > and are sched-
uled by RUA. When a job Ji accesses more than one lock-
free object, Ji’s total number of retries, fi, is bounded as:

fi ≤ 3ai +
N∑

j=1,j 6=i

2aj

(⌈
Ci

Wj

⌉
+ 1

)

where N is the number of tasks.

440



Proof. In Figure 4, Ji is released at time t0 and has the ab-
solute critical time (t0 + Ci). After the critical time, Ji will
not exist in the ready queue, because it will be either com-
pleted by that time or aborted by RUA. Thus, by Lemma 1,
the number of retries of Ji is bounded by the maximum
number of all scheduling events that occur within the time
interval [t0, t0 + Ci]. The scheduling events that Ji suffers
can be categorized into those occurring from other tasks,
Tj , j 6= i and those occurring from Ti. We consider these
two cases:

Figure 4. Interferences Under UAM

Case 1 (Scheduling events from other tasks): To account
for the worst-case event occurrence, we assume that all in-
stances of Tj in the window W 1

j are released right after time
t0, and all instances of Tj in the window W 3

j are released
before time (t0 + Ci). Thus, the maximum number of re-
leases of Tj within [t0, t0 + Ci] is dCi/Wje + 1. It also
holds when Wj > Ci as dCi/Wje + 1 = 2. All jobs of Tj

before the first window Wj must depart either by comple-
tion or by abortion before t0. All released jobs must be com-
pleted or aborted, so that the number of scheduling events
that a job can create is at most 2. Hence, aj (dCi/Wje+ 1)
is multiplied by 2.

Case 2 (Scheduling events from the same task): In the
worst-case, all jobs of Ti are released and completed within
[t0, t0 + Ci], which results in at most 2ai events. Ti’s jobs,
which are released during [t0 − Ci, t0] also cause events
within [t0, t0 + Ci] by completion. Thus, the total number
of events that are possible is 3ai.

The sum of case 1 and case 2 is the upper bound on the
number of events. It is also the maximum number of total
retries of Ji’s objects.

Note that f has nothing to do with the number of lock-
free objects in Ji in Theorem 2, even when Ji accesses more
than one lock-free object. This is because no matter how
many objects Ji accesses, f cannot exceed the number of
events. Further, even if Ji accesses a single object, the retry
can occur only as many times as the number of events.

Theorem 2 also implies that the sojourn time of Ji is
bounded. The sojourn time of Ji is computed as the sum of
Ji’s execution time, the interference time by other jobs, the
lock-free object accessing time, and f retry time.

3. Lock-Based versus Lock-Free

We now formally compare lock-based and lock-free
sharing by comparing job sojourn times. We do so, as so-
journ times directly determine critical time-misses and ac-
crued utility. The comparison will establish the tradeoffs

between lock-based and lock-free sharing: Lock-free is free
from blocking times on shared object accesses and sched-
uler activations for resolving those blockings, while
lock-based suffers from these. However, lock-free suf-
fers from retries, while lock-based does not.

We introduce some notations, which are the same as
those in [2]. We assume that all accesses to lock-based ob-
jects require r time units, and to lock-free objects require
s time units. The computation time ci of a job Ji can be
written as ci = ui + mi × tacc, where ui is the compu-
tation time not involving accesses to shared objects; mi is
the number of shared object accesses by Ji; and tacc is the
maximum computation time for any object access—i.e., r
for lock-based objects and s for lock-free objects.

The worst-case sojourn time of a job with lock-based is
ui + I + r · mi + B, where B is the worst-case blocking
time and I is the worst-case interference time. In [19], it is
shown that a job Ji under RUA can be blocked for at most
min(m,n) times, where n is the number of jobs that could
block Ji and m is the number of objects that can be used to
block Ji. Thus, B can be computed as r · min(m,n). On
the other hand, the worst-case sojourn time of a job with
lock-free is ui + I + s ·mi + R, where R is the worst-case
retry time. R can be computed as s · f by Theorem 2. Thus,
the difference between r ·mi + B and s ·mi + R is the so-
journ time difference between lock-based and lock-free.

Theorem 3 (Lock-Based versus Lock-Free Sojourn). Let
jobs arrive under the UAM and be scheduled by RUA. If
{ (

s
r < 2

3

) ∧
(

1
2r
s −1

(3ai + 2x) < mi < 2ai + x
)

,mi ≤ n(
s
r < 1

) ∧ (
s
r (3ai + 2x) <

(
1− s

r

)
mi + n

)
,mi > n,

then Ji’s sojourn time with lock-free is shorter than that
with lock-based, where x =

∑N
j=1,j 6=i aj

(⌈
Ci

Wj

⌉
+ 1

)
.

Theorem 3 shows that at least s
r < 2

3 for jobs to obtain
a shorter sojourn time under lock-free. In [2], Anderson et
al. show that s is often much smaller than r in comparison
with the vast majority of lock-free objects in most systems,
such as buffers, queues, and stacks.

Corollary 4 (Special Case Sojourn). Let jobs arrive under
the UAM and be scheduled by RUA. Let r be much larger
than s enough for s

r to converge to zero. Now, if:

((0 < mi < 2ai + x) ∧ (mi ≤ n)) ∨ (mi > n),

then Ji’s sojourn time with lock-free is shorter than that
with lock-based, where x =

∑N
j=1,j 6=i aj

(⌈
Ci

Wj

⌉
+ 1

)
.

Shorter sojourn times always yields higher utility with
non-increasing TUFs, but not always with increasing TUFs.
However, it is likely to improve performance at system level
because each job can save more CPU time for other jobs.

When r is larger than s, lock-free sharing is more likely
to perform better than lock-based sharing, according to
Corollary 4. Further, when mi is larger than n, the sojourn
time of a job with lock-free object always outperforms its

441



lock-based counterpart. Thus, lock-free sharing is very at-
tractive for UA scheduling as most UA schedulers’ object
sharing mechanisms have higher time complexity.

Shorter sojourn times for a job under lock-free shar-
ing will only increase the job’s accrued utility under non-
increasing TUFs. However, this does not directly imply
that lock-free sharing will yield higher total accrued utility
than lock-based sharing. This is because, Theorem 3 does
not reveal anything regarding aggregate system-level per-
formance, but only job-level performance. Since RUA’s ob-
jective is to maximize total utility, we now compare lock-
based and lock-free sharing in terms of accrued utility ratio
(or AUR). AUR is the ratio of the actual accrued total util-
ity to the maximum possible total utility.

Lemma 5 (Lock-Based versus Lock-Free AUR). Let jobs
arrive under the UAM and be scheduled by RUA. If all jobs
are feasible and their TUFs are non-increasing, then the dif-
ference in AUR between lock-free and lock-based sharing,
∆AUR = AURlf −AURlb is:

N∑

i=1

Ui (s0,lf + R)− Ui (s0,lb)
Ui (0)

≤ ∆AUR

≤
N∑

i=1

Ui (s0,lf )− Ui (s0,lb + B)
Ui (0)

where Ui(t) is task i’s utility at time t, s0,lf = ui + I + s ·
mi, s0,lb = ui + I + r ·mi, and N is the number of tasks.

4. Implementation Experience

We implemented lock-based and lock-free objects with
RUA in the meta-scheduler scheduling framework [12],
which allows middleware-level real-time scheduling atop
POSIX RTOSes. Our motivation for implementation is to
verify our analytical results. We used QNX Neutrino 6.3
RTOS running on a 500MHz, Pentium-III processor in
our implementation, which provides an atomic memory-
modification operation, the CAS (Compare-And-Swap) in-
struction. In our study, we used queues, one of the com-
mon shared objects, to validate our theorems. We used the
lock-free queues introduced in [14] in our implementation.

4.1. Object Access Times, Critical Load

As Theorem 3 shows, the tradeoff between lock-based
and lock-free sharing under RUA depends upon the time
needed for object access—i.e., lock-based object access
time r, and lock-free object access time s. We measure r
and s with a 10 task set. Each measurement is an average of
approximately 2000 samples.

Figure 5(a) shows r and s under increasing number of
shared objects accessed by jobs, not allowing any nested
critical section. From the figure, we observe that r is signif-
icantly larger than s. As the number of shared objects ac-
cessed by each job, r is increasing. Note that r includes the
time for lock-based RUA’s resource sharing mechanism.

0 2 4 6 8 10
0

20

40

60

80

100

120

140

Sh
ar

ed
 O

bj
ec

t A
cc

es
s 

Ti
m

e 
(u

se
c)

Number of Shared Objects Accessed by Each Job

 r: Lock-based RUA Object Access Time
 s: Lock-free RUA Object Access Time

(a) Object Access Time

0.1 1 10 100 1000

0.0

0.2

0.4

0.6

0.8

1.0

A
pp

ro
xi

m
at

e 
Lo

ad
 (A

L)

Average Execution Time (usec)

 RUA+Ideal Queues
 RUA+Lock-Free Queues
 RUA+Lock-Based Queues

(b) Critical Time Miss Load

Figure 5. Object Access Times and Critical
Time Miss Load

When r >> s, Theorem 3 implies that lock-free is likely
to perform better than lock-based. Furthermore, when the
number of objects mi increases, it increases the likelihood
of satisfying Corollary 4 and lock-free becomes increas-
ingly advantageous over lock-based.

The impact of r and s on lock-based RUA’s and lock-
free RUA’s performance, respectively, can be measured by
evaluating the load at which the schedulers miss task crit-
ical times. We measure it using a metric called Critical
time-Miss Load (CML). The CML of a scheduler is defined
as the approximate load after which the scheduler begins
to miss task critical times. We define approximate load as
AL =

∑n
i=1 ui/Ci, where ui is the task computation time

excluding object access time, and Ci is the task critical time.
We exclude object access time in CML, because an ideal

implementation of objects for synchronization must have
negligibly small – almost zero — object access time. If so,
the implementation is ideal in the sense that the scheduler’s
performance with the (ideal) implementation is the same as
that under no object sharing. We call it, the ideal RUA.

We consider a task set of 10 tasks, accessing 10 shared
queues, and measure the CML of lock-free, lock-based, and
ideal RUA under increasing average job execution times.
Figure 5(b) shows the results. We observe that lock-free
RUA yields almost the same CML as that of ideal RUA,
as it exploits the eliminated blocking times and achieves al-
most the same performance of RUA without object shar-
ing. Note that the ideal queue and RUA achieve the CML of
1, only at ≈10usec of average execution time. This is be-
cause of the algorithm’s overhead for scheduling. (RUA’s
CML of 1 is valid at zero job execution times when assum-
ing no system overheads, which is not true in practice.)

On the other hand, lock-based RUA’s CML converges to
1, only at≈1 millisecond. This is precisely because of lock-
based RUA’s complex operations for resolving jobs’ con-
tention for object locks and consequent higher overhead, as
manifested by its higher asymptotic complexity and higher
object access times in Figure 5(a).

4.2. Accrued Utility, Critical Time-Meets

We now measure the AUR and the CMR of lock-free
RUA and lock-based RUA for average job execution times
in the range of 30usec – 1000usec. CMR is the ratio of

442



the number of tasks that meet their critical times to the to-
tal number of task releases. We consider a task set of 10
tasks, accessing 10 shared queues. Each experiment is re-
peated to obtain AUR and CMR averages from more than
5000 task arrivals. We consider a heterogenous class includ-
ing step, parabolic, and linearly-decreasing shapes.

0 2 4 6 8 10
0

10

20

30

40

50

60

70

80

90

100

110

A
U

R
(%

)

Number of Objects

 RUA+Lock-Based Objects
 RUA+Lock-Free Objects

0 2 4 6 8 10
0

10

20

30

40

50

60

70

80

90

100

110

C
M

R
(%

)

Number of Objects

 RUA+Lock-Based Objects
 RUA+Lock-Free Objects

Figure 6. AUR/CMR During Overload, Hetero-
geneous TUFs

0 2 4 6 8 10
0

20

40

60

80

100

A
U

R
(%

)

Number of Tasks

 RUA+Lock-Based Objects
 RUA+Lock-Free Objects

0 2 4 6 8 10
0

20

40

60

80

100

C
M

R
(%

)

Number of Tasks

 RUA+Lock-Based Objects
 RUA+Lock-Free Objects

Figure 7. AUR/CMR During Increasing Read-
ers, Heterogeneous TUFs

Figures 6 and 7 show lock-based and lock-free RUA’s
performance, respectively, under heterogenous TUFs, AL
= ≈1.1, and increasing number of shared objects. As ex-
pected, the figures show that lock-based RUA’s AUR and
CMR sharply decreases, eventually reaching 0% during
overloads, as the number of objects increases. This is be-
cause, as the number of objects increases, greater number
of task blockings’ occurs, due to the large r, resulting in in-
creased sojourn times, critical time-misses, and consequent
abortions. The performance of lock-free RUA, on the con-
trary, does not degrade as the number of objects increases.
This is directly due to the short s of lock-free objects, which
results in few retries and thus reduced interferences.

We repeated similar experiments for increasing number
of reader tasks (instead of increasing shared objects) and
observed exact similar trends and consistent results in Fig-
ure 7 (Heterogeneous TUFs, AL=0.1-1.1), further illustrat-
ing lock-free RUA’s superiority over lock-based. We omit
more results as they show the same trend and consistency.

5. Conclusions

In this paper, we consider non-blocking synchronization
for embedded real-time systems that are subject to resource

overloads and arbitrary activity arrivals. We consider lock-
free synchronization for the multi-writer/multi-reader prob-
lem that occurs in such systems. We establish the tradeoffs
between lock-free and lock-based object sharing under the
UAM, including the conditions under which activity timeli-
ness utility is greater under lock-free than under lock-based,
and the upper bound on this utility increase — the first such
result. Our implementation experience on a POSIX RTOS
strongly validates our analytical results.

Future work includes extending the results to algorithms
that provide activity-level timing assurances, the snapshot
abstraction, and multiprocessor and distributed systems.

References
[1] J. Anderson, R. Jain, and K. Jeffay. Efficient object sharing in

quantum-based real-time systems. In RTSS, 1998.
[2] J. H. Anderson, R. Jain, and S. Ramamurthy. Wait-free object-

sharing schemes for real-time uniprocessors and multiprocessors. In
IEEE RTSS, pages 111 – 122, Dec. 1997.

[3] J. H. Anderson, S. Ramamurthy, and K. Jeffay. Real-time computing
with lock-free shared objects. ACM TOCS, 15(2):134–165, 1997.

[4] J. Chen and A. Burns. Asynchronous data sharing in multiproces-
sor real-time systems using process consensus. In 10th Euromicro
Workshop on Real-Time System, 1998.

[5] H. Cho et al. A space-optimal, wait-free real-time synchronization
protocol. In IEEE ECRTS, 2005.

[6] R. Clark, E. D. Jensen, et al. An adaptive, distributed airborne track-
ing system. In IEEE WPDRTS, April 1999.

[7] R. K. Clark, E. D. Jensen, and N. F. Rouquette. Software organiza-
tion to facilitate dynamic processor scheduling. In IEEE WPDRTS,
April 2004.

[8] J.-F. Hermant and G. L. Lann. A protocol and correctness proofs for
real-time high-performance broadcast networks. In IEEE ICDCS,
pages 360–369, 1998.

[9] H. Huang, P. Pillai, and K. G. Shin. Improving wait-free algorithms
for interprocess communication in embedded real-time systems. In
USENIX Annual, pages 303–316, 2002.

[10] E. D. Jensen, C. D. Locke, and H. Tokuda. A time-driven schedul-
ing model for real-time systems. In IEEE RTSS, pages 112–122, De-
cember 1985.

[11] H. Kopetz and J. Reisinger. The non-blocking write protocol nbw:
A solution to a real-time synchronisation problem. In IEEE RTSS,
pages 131–137, 1993.

[12] P. Li, B. Ravindran, et al. A formally verified application-level
framework for real-time scheduling on posix real-time operating
systems. IEEE TSE, 30(9):613 – 629, Sept. 2004.

[13] M.Herlihy. A methodology for implementing highly concurrent data
objects. ACM TOPLAS, 15(5):745–770, 1993.

[14] M. M. Michael and M. L. Scott. Non-blocking algorithms and
preemption-safe locking on multiprogrammed shared memory mul-
tiprocessors. JPDC, 51(1):1–26, May 1998.

[15] B. Ravindran, E. D. Jensen, and P. Li. On recent advances in
time/utility function real-time scheduling and resource management.
In IEEE ISORC, pages 55 – 60, May 2005.

[16] L. Sha, R. Rajkumar, and J. P. Lehoczky. Priority inheritance proto-
cols: An approach to real-time synchronization. IEEE Trans. Com-
puters, 39(9):1175–1185, 1990.

[17] R. K. Treiber. System programming: Copying with parallelism.
Technical report, IBM Almaden Research Center, April 1986. RJ
5118.

[18] J. Valois. Lock-free linked list using compare-and-swap. In ACM
PODC, pages 214–222, 1995.

[19] H. Wu, B. Ravindran, et al. Utility accrual scheduling under ar-
bitrary time/utility functions and multiunit resource constraints. In
IEEE RTCSA, August 2004.

[20] H. Cho. Utility Accrual Scheduling with Non-Blocking
Synchronization on Uniprocessors and Multiprocessors. In
PhD Dissertation Proposal, ECE Dept., Virginia Tech, 2005,
http://www.ee.vt.edu/˜realtime/cho proposal05.pdf.

443




