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ABSTRACT

We consider software transactional memory (STM) concurrency
control for multicore real-time software, and present a novel con-
tention manager (CM) for resolving transactional conflicts, called
length-based CM (or LCM). We upper bound transactional retries
and response times under LCM, when used with G-EDF and G-
RMA schedulers. We identify the conditions under which LCM
outperforms previous real-time STM CMs and lock-free synchro-
nization. Our implementation and experimental studies reveal that
G-EDF/LCM and G-RMA/LCM have shorter or comparable retry
costs and response times than other synchronization techniques.

Categories and Subject Descriptors

C.3 [Special-Purpose and Application-based Systems]: Real-time
and embedded systems

General Terms

Design, Experimentation, Measurement

Keywords

Software transactional memory (STM), real-time contention man-
ager

1. INTRODUCTION

Lock-based concurrency control suffers from programmability,
scalability, and composability challenges [12]. These challenges
are exacerbated in emerging multicore architectures, on which im-
proved software performance must be achieved by exposing greater
concurrency. Transactional memory (TM) is an alternative syn-
chronization model for shared memory objects that promises to al-
leviate these difficulties. With TM, programmers organize code
that read/write shared objects as transactions, which appear to ex-
ecute atomically. Two transactions conflict if they access the same
object and one access is a write. When that happens, a contention
manager (or CM) resolves the conflict by aborting one and allowing
the other to commit, yielding (the illusion of) atomicity. In addition
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to a simple programming model, TM provides performance com-
parable to highly concurrent fine-grained locking and lock-free ap-
proaches, and is composable. TM has been proposed in hardware,
called HTM, and in software, called STM, with the usual tradeoffs:
HTM has lesser overhead, but needs transactional support in hard-
ware; STM is available on any hardware. See [11] for an excellent
overview on TM.

Given STM’s programmability, scalability, and composability
advantages, we consider it for concurrency control in multicore
real-time software. Doing so requires bounding transactional re-
tries, as real-time threads, which subsume transactions, must sat-
isfy time constraints. Retry bounds in STM are dependent on the
CM policy at hand. Thus, real-time CM is logical.

Past research on real-time CM have proposed resolving trans-
actional contention using dynamic and fixed priorities of parent
threads, resulting in Earliest-Deadline-First-based CM (ECM) and
Rate Monotonic Assignment-based CM (RCM), respectively [7-9].
These works show that, ECM and RCM, when used with the Global
EDF (G-EDF) and Global RMA (G-RMA) multicore schedulers,
respectively, achieve higher schedulability than lock-free synchro-
nization techniques only under some ranges for the maximum atomic
section length. This raises a fundamental question: is it possible to
increase the atomic section length by an alternative CM design, so
that STM’s schedulability advantage has a larger coverage?

We answer this question by designing a novel CM that can be
used with both dynamic and fixed priority (global) multicore real-
time schedulers: length-based CM or LCM (Section 4.1). LCM
resolves conflicts based on the priority of conflicting jobs, besides
the length of the interfering atomic section, and the length of the
interfered atomic section. We establish LCM’s retry and response
time upper bounds, when used with G-EDF (Section 4.2) and with
G-RMA (Section 4.5) schedulers. We identify the conditions un-
der which G-EDF/LCM outperforms ECM (Section 4.3) and lock-
free synchronization (Section 4.4), and G-RMA/LCM outperforms
RCM (Section 4.6). We implement LCM and competitor CM tech-
niques in the Rochester STM framework [14] and conduct experi-
mental studies (Section 5). Our study reveals that G-EDF/LCM and
G-RMA/LCM have shorter or comparable retry costs and response
times than competitors.

Thus, the paper’s contribution is LCM with superior timeliness
properties. This result thus allows programmers to reap STM’s sig-
nificant programmability and composability benefits for a broader
range of multicore embedded real-time software than what was pre-
viously possible.

2. RELATED WORK

Transactional-like concurrency control without using locks, for
real-time systems, has been previously studied in the context of



non-blocking data structures (e.g., [1]). Despite their numerous ad-
vantages over locks (e.g., deadlock-freedom), their programmabil-
ity has remained a challenge. Past studies show that they are best
suited for simple data structures where their retry cost is competi-
tive to the cost of lock-based synchronization [3]. In contrast, STM
is semantically simpler [12], and is often the only viable lock-free
solution for complex data structures (e.g., red/black tree) [10] and
nested critical sections [15].

STM concurrency control for real-time systems has been previ-
ously studied in [2,7,9, 10, 13,16,17].

[13] proposes a restricted version of STM for uniprocessors.
Uniprocessors do not need contention management.

[9] bounds response times in distributed systems with STM syn-
chronization. They consider Pfair scheduling, limit to small atomic
regions with fixed size, and limit transaction execution to span at
most two quanta. In contrast, we allow transaction lengths with
arbitrary duration.

[16] presents real-time scheduling of transactions and serializes
transactions based on deadlines. However, the work does not bound
retries and response times. In contrast, we establish such bounds.

[17] proposes real-time HTM. The work does not describe how
transactional conflicts are resolved. Besides, the retry bound as-
sumes that the worst case conflict between atomic sections of dif-
ferent tasks occurs when the sections are released at the same time.
However, we show that this is not the worst case. We develop retry
and response time upper bounds based on much worse conditions.

[10] upper bounds retries and response times for ECM with G-
EDF, and identify the tradeoffs with locking and lock-free proto-
cols. Similar to [17], [10] also assumes that the worst case conflict
between atomic sections occurs when the sections are released si-
multaneously. The ideas in [10] are extended in [2], which presents
three real-time CM designs. But no retry bounds or schedulability
analysis techniques are presented for those CMs.

[7] presents the ECM and RCM contention managers, and upper
bounds transactional retries and response times under them. The
work also identifies the conditions under which ECM and RCM are
superior to lock-free synchronization. In particular, they show that,
STM’s superiority holds only under some ranges for the maximum
atomic section length. Our work builds upon this result.

3. PRELIMINARIES

We consider a multiprocessor system with m identical processors
and n sporadic tasks T;,72,...,T,. The k™ instance (or job) of a
task T; is denoted rfﬁ Each task 7; is specified by its worst case
execution time (WCET) ¢;, its minimum period 7; between any two
consecutwe instances, and its relative deadline D;, where D; = T;.
Job 1: is released at time r and must finish no later than its absolute

deadline dl-] = rl- + D;. Under a fixed priority scheduler such as G-
RMA, p; determines T;’s (fixed) priority and it is constant for all
instances of 7;. Under a dynamlc priority scheduler such as G-
EDF, a job r] ’s priority, p differs from one instance to another. A
task T; may 1nterfere with task 1; for a number of times during an
interval L, and this number is denoted as G;;(L).

Shared objects. A task may need to read/write shared, in-memory
data objects while it is executing any of its atomic sections, which
are synchronized using STM. The set of atomic sections of task 7;
is denoted s;. sf-‘ is the k™ atomic section of t;. Each object, 6, can
be accessed by multiple tasks. The set of distinct objects accessed
by 1; is 0; without repeating objects. The set of atomic sections
used by T; to access 0 is 5;(0), and the sum of the lengths of those
atomic sections is len(s;(8)). s¥(8) is the k' atomic section of t;
that accesses 0. s¥(8) executes for a duration len(s(8)). The set of

tasks sharing 6 with t; is denoted 7;(6).

Atomic sections are non-nested (supporting nested STM is future
work). Each section is assumed to access only one object; this
allows us to be consistent with the assumptions in [7], enabling
a comparison with retry-loop lock-free synchronization [5], which
is an important goal of this paper. The maximum-length atomic
section in 7; that accesses 6 is denoted s;,,, (6), while the maximum
one among all tasks is $y,4:(0), and the maximum one among tasks
with priorities lower than that of T; is s,,.(8).

STM retry cost. If two or more atomic sections conflict, the CM
will commit one section and abort and retry the others, increasing
the time to execute the aborted sections. The increased time that an

atomic section s (0) will take to execute due to a conflict with an-

other section s% (), is denoted W/ (s%(8)). If an atomic section, s,

is already executing, and another atomic section s]]‘. tries to access
a shared object with sf’ , then slj‘- is said to “interfere" or “conflict"
with /. The job s’]? is the “interfering job", and the job s is the
“interfered job." The total time that a task t;’s atomic sections have
to retry over 7; is denoted RC(T;). The additional amount of time
that a task T; causes to response time of T; when interfering with

T; during L, without considering retries due to atomic sections, is
denoted W;;(L).

4. LENGTH-BASED CM

LCM resolves conflicts based on the priority of conflicting jobs,
besides the length of the interfering atomic section, and the length
of the interfered atomic section. This is in contrast to ECM and
RCM [7], where conflicts are resolved using the priority of the con-
flicting jobs. This strategy allows lower priority jobs, under LCM,
to retry for lesser time than that under ECM and RCM, but higher
priority jobs, sometimes, wait for lower priority ones with bounded
priority-inversion.

4.1 Design and Rationale

Algorithm 1: LCM

Data: s¥(6) — interfered atomic section.

sl]-(e) — interfering atomic section.

Wy — predefined threshold € [0,1].

84(6) — remaining execution length of s¥(6)

Result: which atomic section of s(6) or s ;(6) aborts

1 if p{f > pg then
i .
2 ‘ sj(e) aborts;
3 else
4 = len(s'(8)) /len(s} (8));
s 0‘?‘} = 1n(\v)/(ln(\v) cf‘,l)
6 = (len(s;(8)) — 8 (8)) /len(s}(8));
7 ifo< ocffjl- then
8 | sk(8) aborts;
9 else
10 ‘ sé(e) aborts;
11 end
12 end

For both ECM and RCM, s¥(8) can be totally repeated if si-(e)
— which belongs to a higher priority job ‘cl; than ¢ — conflicts

with s¥(8) at the end of its execution, while s¥(8) is just about to
commit. Thus, LCM, shown in Algorithm 1, uses the remaining



length of s¥(8) when it is interfered, as well as len (slj(e)), to decide

which transaction must be aborted. If pff was greater than plj, then

k
Si

priority job, and it started before slj(e) (step 2). Otherwise, ¢

() would be the one that commits, because it belongs to a higher
Kl
ij s
calculated (step 4) to determine whether it is worth aborting sé‘(e)
in favor of 53(6), because len(si-(ﬁ)) is relatively small compared
to the remaining execution length of sﬁ‘(G) (explained further).

We assume that:
cft = len(s',(8)) /len(sf (8)) (1

where cf‘]l €]0, 0], to cover all possible lengths of sﬁ(e). Our idea
is to reduce the opportunity for the abort of sf(e) if it is close to
committing when interfered and len(slll- (0)) is large. This abort op-
portunity is increasingly reduced as sf-‘(e) gets closer to the end of
its execution, or len(si(e)) gets larger.

On the other hand, as s¥() is interfered early, or len(sﬂ-(e)) is
small compared to sf‘(@)’s remaining length, the abort opportunity
is increased even if sff (0) is close to the end of its execution. To
decide whether s{?(e) must be aborted or not, we use a threshold
value ¥ € [0, 1] that determines (xf-‘; (step 5), where (xf»‘; is the max-
imum percentage of len(s¥(8)) below which s_l]- (0) is allowed to
abort s¥(8). Thus, if the already executed part of s¥(8) — when
si.(G) interferes with s¥(8) — does not exceed (xff]l.len(sf (0)), then
s¥(8) is aborted (step 8). Otherwise, sé(e) is aborted (step 10).
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Figure 1: Interference of s¥(6) by various lengths of slj(e)

The behavior of LCM is illustrated in Figure 1. In this figure, the
horizontal axis corresponds to different values of o ranging from 0O
to 1, and the vertical axis corresponds to different values of abort
opportunities, f (cfjl ,a), ranging from 0 to 1 and calculated by (2):

g
f( o) =eTw 2
where cf][ is calculated by (1).

Figure 1 shows one atomic section si-‘ (6) (whose o changes along
the horizontal axis) interfered by five different lengths of sé (0). For
a predefined value of f (cf‘jl ,a) (denoted as Y in Algorithm 1), there
corresponds a specific value of o (which is ocff; in Algorithm 1)

/ k
for each curve. For example, when len(s;(8)) = 0.1 x len(s; (6)),

sg(e) aborts s¥(8) if the latter has not executed more than o3 per-
centage (shown in Figure 1) of its execution length. As len(slj (0))
decreases, the corresponding océ‘j’- increases (as shown in Figure 1,
a3 > o2 > al).

Equation (2) achieves the desired requirement that the abort op-
portunity is reduced as sf(e) gets closer to the end of its execution
(aso— 1, f(cf.‘]l., 1) — 0), or as the length of the conflicting trans-
action increases (as cf‘jl — oo, f(e0,0) — 0). Meanwhile, this abort
opportunity is increased as s{F(G) is interfered closer to its release
(as o — 0, f(cf?jl-,O) — 1), or as the length of the conflicting trans-

action decreases (as c{‘jl — 0, f(0,a) — 1).
LCM is not a centralized CM, which means that, upon a conflict,
each transactions has to decide whether it must commit or abort.

CLAIM 1. Let 55(9) interfere once with s*(8) at ch‘;. Then, the

maximum contribution of s5(6) 10 s¥(8)’s retry cost is:

Wik(sé(Q)) < otfjl-len (sf‘(Q)) +len (si(G)) 3)

(Proofs of all claims are provided in the Supplementary Material
section at the end of the paper.)

CLAIM 2. An atomic section of a higher priority job, ’c?, may
Lo ]
have to abort and retry due to a lower priority job, T, zfsj(e)
interferes with s{-‘(e) after the ch]l- percentage. T;’s retry time, due
10 s%(8) and s[j (8), is upper bounded by:

W (sk(0)) < (1o ) 1en(s(9)) @

. CLAIM 3. A higher pnorttyj.ob, Tl-., suffersfrom priority inver-
sion for at most number of atomic sections in T;.

CLAIM 4. The maximum delay suffered by 53(9) due to priority
inversion is caused by the maximum length atomic section access-
ing object ©, which belongs to a lower priority job than ‘CIJ’- that

owns sé(e),

4.2 Response Time of G-EDF/LCM

CLAIM 5. RC(T;) for a task t; under G-EDF/LCM is upper
bounded by:

T
RC(T}) = (vrhzé%vee%wh([n—‘vs%e)len@ﬁ,(e))
+ oaiz’axzen(sizaxe))))
+ ¥ (1—azﬂ)len(sfm(e)> 5)

Vs) (6)
where oL is the o, value that corresponds to \f due to the inter-
ference of sl,.(8) by sﬁl(e). Oc;,y?ux is the o value that corresponds
10\ due to the interference of si,,.(8) by s (6).

Response time of 7; is calculated by (11) in [7].
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4.3 Schedulability of G-EDF/LCM and ECM

We now compare the schedulability of G-EDF/LCM with ECM [7]
to understand when G-EDF/LCM will perform better. Toward this,
we compare the total utilization of ECM with that of G-EDF/LCM.
For each method, we inflate the ¢; of each task t; by adding the retry
cost suffered by ;. Thus, if method A adds retry cost RC4(T;) to ¢;,
and method B adds retry cost RCp(T;) to ¢;, then the schedulability
of A and B are compared as:

Zci—i-RCA(T,-) < Zci-i-RCB(Ti)

V1 Ti a V1 Ii
RCA(T; RCg(T;
L < gl ©
V1, ! V1, !

Thus, schedulability is compared by substituting the retry cost added
by the synchronization methods in (6).

CLAIM 6. Let spqx be the maximum length atomic section ac-
cessing any object ©. Let Quuqx and Oy, be the maximum and

.. . . k ]
minimum values of o. for any two atomic sections s;(0) and s;(8).

Given a threshold \y, schedulability of G-EDF/LCM is equal or bet-
ter than ECM if for any task t;:

T;

41 )

1- QUnin ’V
11— Onax VT EY; Th

4.4 G-EDF/LCM versus Lock-free

We consider the retry-loop lock-free synchronization for G-EDF
given in [5]. This lock-free approach is the most relevant to our
work.

CLAIM 7. Let syax denote len(spayx) and ryqyx denote the max-
imum execution cost of a single iteration of any retry loop of any
task in the retry-loop lock-free algorithmin [5]. Now, G-EDF/LCM
achieves higher schedulability than the retry-loop lock-free approach
if the upper bound on Smax/rmax under G-EDF/LCM ranges be-
tween 0.5 and 2 (which is higher than that under ECM).

4.5 Response Time of G-RMA/LCM
CLAIM 8. Let

2(j.8)= Y len(s)(8)) + cthaxlen(shax(8))
Vsh(8)

where Ocﬁglwr is the o value corresponding 1o ¥ due to the inter-
ference of spax(8) by sli(G). The retry cost of any task T; under
G-RMA/LCM during T; is given by:

RC(T) = vZ ee%e,)((m%l)h(j’e))

+ v§e) (l — (xf}mx> len (sinax(6)> ®)

where Ty = {t)[(t; € vi) A(pj > pi) }-

The response time is calculated by (17) in [7] with replacing
RC(R;") with RC(T;).

4.6 Schedulability of G-RMA/LCM and RCM

CLAIM 9. Under the same assumptions of Claims 6 and 8, G-
RMA/LCM'’s schedulability is equal or better than RCM if:

<x(lz]+) <9>

S. EXPERIMENTAL EVALUATION

Having established LCM’s retry and response time upper bounds,
and the conditions under which it outperforms ECM, RCM, and
lock-free synchronization, we now would like to understand how
LCM’s retry and response times in practice (i.e., on average) com-
pare with that of competitor methods. Since this can only be un-
derstood experimentally, we implement LCM and the competitor
methods and conduct experimental studies.

1— Obnin
1 — Obpax

5.1 Experimental Setup

We used the ChronOS real-time Linux kernel [4] and the RSTM
library [14]. We modified RSTM to include implementations of
ECM, RCM, G-EDF/LCM, and G-RMA/LCM contention managers,
and modified ChronOS to include implementations of G-EDF and
G-RMA schedulers.

For the retry-loop lock-free implementation, we used a loop that
reads an object and attempts to write to the object using a compare-
and-swap (CAS) instruction. The task retries until the CAS suc-
ceeds.

We use an 8 core, 2GHz AMD Opteron platform. The aver-
age time taken for one write operation by RSTM on any core is
0.0129653375us, and the average time taken by one CAS-loop op-
eration on any core is 0.0292546250 us.

We used the periodic task set shown in Table 1. Each task runs
in its own thread and has an atomic section. Atomic section prop-
erties are probabilistically controlled (for experimental evaluation)
using three parameters: the maximum and minimum lengths of any
atomic section within the task, and the total length of atomic sec-
tions within any task. All task atomic sections access the same
object, and do write operations on the object (thus, contention is
the highest).

5.2 Results

Figure 3 shows the retry cost (RC) for each task in the three
task sets in Table 1, where each task’s atomic section length is
equal to half of the task length. Each data point in the figure has
a confidence level of 0.95. We observe that G-EDF/LCM and G-
RMA/LCM achieve shorter or comparable retry cost than ECM and
RCM. Since all tasks are initially released at the same time, and due
to the specific nature of task properties, tasks with lower IDs some-
how have higher priorities under the G-EDF scheduler. Note that
tasks with lower IDs have higher priorities under G-RMA, since
tasks are ordered in non-decreasing order of their periods.

Thus, we observe that G-EDF/LCM and G-RMA/LCM achieve
comparable retry costs to ECM and RCM for some tasks with lower
IDs. But when task ID increases, LCM — for both schedulers —
achieves much shorter retry costs than ECM and RCM. This is be-
cause, higher priority tasks in LCM suffers blocking by lower pri-
ority tasks, which is not the case for ECM and RCM. However, as
task priority decreases, LCM, by definition, prevents higher prior-
ity tasks from aborting lower priority ones if a higher priority task



Table 1: Task sets. (a) Task set 1: 5-task set; (b) Task set 2:
10-task set; (c) Task set 3: 12-task set

(b)
Ti(us) ci(us)
T, | 400000 | 75241
T i?) || 130000 | 69762
I\ il T3 | 1200000 | 267122
71 | 500000 | 150000
T4 | 1500000 | 69863
T, | 1000000 | 227000
Ts | 2400000 | 152014
T3 | 1500000 | 410000
Te | 4000000 | 286301
T4 | 3000000 | 299000
000 T 550000 | __|_7500000_| 493150
> Tg | 10000000 | 794520
To | 15000000 | 1212328
T10 | 20000000 | 1775342

()

Ti(us) ci(us)
T, | 400000 | 58195
T, | 750000 | 53963
T3 | 1000000 | 206330
T4 | 1200000 | 53968
T5s | 1500000 | 117449
Te | 2400000 | 221143
7; | 3000000 | 290428
Tg | 4000000 | 83420
T | 7500000 | 380917
Ti0 | 10000000 | 613700
711 | 15000000 | 936422
T12 | 20000000 | 1371302

interferes with a lower priority one after a specified threshold. In
contrast, under ECM and RCM, lower priority tasks abort in fa-
vor of higher priority ones. G-EDF/LCM and G-RMA/LCM also
achieve shorter retry costs than the retry-loop lock-free algorithm.

Figure 4 shows the response time of each task in the Table 1 task
sets with a confidence level of 0.95. (Again, each task’s atomic sec-
tion length is equal to half of the task length.) We observe that G-
EDF/LCM and G-RMA/LCM achieve shorter response time than
the retry-loop lock-free algorithm, and shorter or comparable re-
sponse time than ECM and RCM.

We repeated the experiments by varying three parameters: the
relative total length of all atomic sections to the length of the task,
the maximum relative length of any atomic section to the length
of the task, and the minimum relative length of any atomic section
to the length of the task. Full set of results are omitted here due
to space constraints; however additional results are included in the
Supplementary Material section. Full set of results are given in
Appendix B in [6].

6. CONCLUSIONS

In ECM and RCM, a task incurs at most 2s,,,, retry cost for
each of its atomic section due to conflict with another task’s atomic
section. With LCM, this retry cost is reduced to (1 + Oypax)Smax
for each aborted atomic section. In ECM and RCM, tasks do not
retry due to lower priority tasks, whereas in LCM, they do so. In
G-EDF/LCM, retry due to a lower priority job is encountered only
from a task T;’s last job instance during T;’s period. This is not
the case with G-RMA/LCM, because, each higher priority task
can be aborted and retried by any job instance of lower priority
tasks. Schedulability of G-EDF/LCM and G-RMA/LCM is bet-
ter or equal to ECM and RCM, respectively, by proper choices for
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Figure 3: Task retry costs under LCM and competitor synchro-
nization methods
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Figure 4: Task response times under LCM and competitor syn-
chronization methods

Onin and O4yqx. Schedulability of G-EDF/LCM is better than retry-
loop lock-free synchronization for G-EDF if the upper bound on
Smax/Tmax 18 between 0.5 and 2, which is higher than that achieved
by ECM.
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Supplementary Material

This section includes proofs of all Claims.
S.1 Proof of Claim 1

PROOF. If sé(e) interferes with s¥(8) at a Y percentage, where

ki k Q k !
T < oyj, then the retry cost of s;(6) is Ylen(s; () + len(s;(8)),



which is lower than that calculated in (3). Besides, if sé(e) inter-
feres with s () after oci-‘Jl- percentage, then s¥(8) will not abort. [J

S.2  Proof of Claim 2

PROOF. It is derived directly from Claim 1, as 55(6) will have
to retry for the remaining length of s¥(6). [J

S.3  Proof of Claim 3

PROOF. Assuming three atomic sections, s&(8), si- () and 52(8),
where p; > p; and si- (6) interferes with s () after ocfjl-. Then 35-(6)
will have to abort and retry. At this time, if s2(8) interferes with the
other two atomic sections, and the LCM decides which transaction

to commit based on comparison between each two transactions. So,
we have the following cases:-

 pa < pi < pj, then 55(8) will not abort any one because it is
still in its beginning and it is of the lowest priority. So. T; is
not indirectly blocked by 1,.

e pi < pa < p; and even if s5(0) interferes with s¥(8) before
ol?, so, s5(8) is allowed abort s(). Comparison between

5(9) and s2(0) will result in LCM choosing si-(e) to commit

and abort 55(8) because the latter is still beginning, and 7; is
of higher priority. If s2(8) is not allowed to abort s¥(8), the
situation is still the same, because sli(G) was already retrying
until s¥(0) finishes.

® pa > pj > pi, then if s5(8) is chosen to commit, this is not
priority inversion for T; because 1T, is of higher priority.

e if T, preempts T;, then LCM will compare only between sg(e)
and s2(8). If p, < pj, then si-(@) will commit because of its
task’s higher priority and s2(8) is still at its beginning, oth-
erwise, sé(@) will retry, but this will not be priority inversion
because T, is already of higher priority than t;. If T, does
not access any object but it preempts T;, then CM will choose
sﬁ (0) to commit as only already running transactions are com-
peting together.

So, by generalizing these cases to any nurnber of conflicting jobs, it
is seen that when an atomic section, s*; | (9) of a higher priority job
is in conflict with a number of atomic sections belonging to lower
priority jobs, slj(e) can suffer from priority inversion by only one
of them. So, each higher priority job can suffer priority inversion
at most its number of atomic section. Claim follows. [

S.4 Proof of Claim 4

PROOF. Assume three atomic sections, s¥(8), s‘lj(e), and s;,(8),
where p; > Dis pj > pp, and len(s¥(8)) > len(s% (8)). Now, ch-‘jl- >
(xh] and c (3 chj By applying (4) to obtain the contribution of
s¥(0) and s 5 (6) to the priority inversion of si- (0) and dividing them,
we get:

W]Z(s{‘(e)) - (1—a?j)len(sf?(9))
wl(si0) (1 o) ten(si ()

By substitution for os from (2):

(1= Gt len(5h(6))  (

ki

g len(s£(9))

(1= oy en(5;(©)) (o g )ien(s5 (6))

. Iny <0 and c ch ;> 0,.". by substitution from (1)

ln\|1—c
_ hj > 1
ln\|l—cij

Thus, as the length of the interfered atomic section increases, the ef-
fect of priority inversion on the interfering atomic section increases.
Claim follows. [

S.5 Proof of Claim 5

PROOF. The maximum number of higher priority instances of
T;, that can interfere with T} is [%’1, as shown in Figure 2, where

one instance of T;, and TZ coincides with the absolute deadline of
l
By using Claims 1, 2, 3, and 4, and Claim 1 in [7] to determine
the effect of atomic sections belonging to higher and lower priority
instances of interfering tasks to T}, claim follows. []

S.6 Proof of Claim 6

PROOF. Under ECM, RC(T;) is upper bounded by:

51 Y, 2len(sma) (10)

RC(T) < [
VT,€Y: VOE (8;70,) h 1)

with the assumption that all lengths of atomic sections of (4) and
(8)in [7] and (5) are replaced by s,y Let (x «c in (5) be replaced

with Opar, and gy in (5) be replaced with Qyuin. AS Qunaxs Omins
and len(syqy) are all constants, (5) is upper bounded by:

T;
RC(T;) < <VZ Z < ’7?"“ Z (14 Onax)
TR EY; VOEO; N\O), vij(e)

len (Smax>> ) +VS;Z('9> (1 - Ocmin) len (Smax>
(11

If B' is the total number of times any instance of T, accesses shared

objects with 7;, then i = Yvoc(0,10,) Lvs; (6)- Furthermore, if By

is the total number of times any 1nstance of ‘c, accesses shared ob-

jects with any other instance, B, = Yy (0), Where 8 is shared with
t

another task. Then, B; = max{maxw,leyi {Bit}, [3’2} is the maximum
number of accesses to all shared objects by any instance of 7; or T,
Thus, (10) becomes:

)<y 2[ —‘B,len Smax) (12)
ThEYi

and (11) becomes:

RC(T;) < Bilen(smax) ((l_amm)

. [ﬂ (1 +amax)> (13)
V‘C;,E"{,‘ h

We can now compare the total utilization of G-EDF/LCM with



that of ECM by comparing (11) and (13) for all t;:
Z (1= Omin) + Ly, ey, ([ —‘ (1 +(Xmax)>

V‘C,’ T;
ZV‘E/lE’Y,’ 2 ’V%’—‘
< y——1 14
< VZ T 14)
Ti

(14) is satisfied if for each 1;, the following condition is satisfied:

T;

e 2 ([Erva) 2 g [
VTHEY; T voey | h

. 1 — Obnin < Z ’VE-‘

VThEYI T}‘l

"1 — Opax
Claim follows. []
S.7 Proof of Claim 7

PROOF. From [5], the retry-loop lock-free algorithm is upper
bounded by:

T
RL Tl = — + 1) iV'max (15)
( ) rhze"y,» (’7Th-‘ ﬁ g

where f; is as defined in Claim 6. The retry cost of 1; in G-
EDF/LCM is upper bounded by (13). By comparing G-EDF/LCM’s
total utilization with that of the retry-loop lock-free algorithm, we
get:

((1 amm)"'z\m,ey[ ([ —‘ (1+amm)))ﬁi‘vmm

ZVT, ,.
= ZVTI» MM
Smax ZVT/ va,, €y ( IVTKT’-‘ +l) B;
.. ) (16)
Tmax ((l Omin)+Lov, ey, ([TIW 1+l )) }

NT;

Let the number of tasks that have shared objects with T; be o (i.e.,
Y1,y = @ > 1 since at least one task has a shared object with t;;
otherwise, there is no conflict between tasks). Let the total number
of tasks be n, so 1 < ® <n-1, and [ W € [1,00. To find the

minimum and maximum values for the upper bound on syax/Fmax,
we consider the following cases:
® Onin — 0,0qx — 0
. (16) will be:
o—1
s Yoo, 1
mr < =
Ymax 1+):th€/: ’VTh -‘

):V‘rl

17
By substituting the edge values for ® and (%’11 in (17), we derive
that the upper bound on s,4x/Fmax lies between 1 and 2.
® Onin — 0, 0pax — 1
(16) becomes

S Y o3
maxs < 0.5+ '—TIT (18)
Fmax l+22vthgyi (ﬁ—|

NT; T;

By applying the edge values for ® and (%’l—‘ in (18), we derive that
the upper bound on Sy /Fmax lies between 0.5 and 1.

® Olyin — 1,0 — 0
This case is rejected since Ounin < Obpgx-

® Olnin — 1, 0pnax — 1

.. (16) becomes:
0]

Smar g5y Aud - (19)

T'max Yy, ey, [ 7 -‘

2y,

By applying the edge values for ® and [%-‘ in (19), we derive

that the upper bound on sy /7max lies between 0.5 and 1, which is
similar to that achieved by ECM.

Summarizing from the previous cases, the upper bound on s,y / Fmax

lies between 0.5 and 2, whereas for ECM [7], it lies between 0.5
and 1. Claim follows.

O
S.8 Proof of Claim 8

PROOF. Under G-RMA, all instances of a higher priority task,
T, can conflict with a lower priority task, T;, during 7;. (3) can
be used to determine the contribution of each conflicting atomic
section in T; to T;. Meanwhile, all instances of any task with lower
priority than T; can conflict with T; during 7;. Claims 2 and 3 can be
used to determine the contribution of conflicting atomic sections in
lower priority tasks to T;. Using the previous notations and Claim
3in [7], the claim follows. [

S.9 Proof of Claim 9

PROOF. Under the same assumptions as that of Claims 6 and 8,
(8) can be upper bounded as:

RC(T}) < Z(Gﬂ+1)(1+amax)len(smax)ﬁi)

vT; J
+ (1 - 0Lnu'n)le”l(smax)I3i (20)
For RCM, (16) in [7] for RC(T;) is upper bounded by:

RC(T;) < VZTI d%w + 1) 2Bilen(smax)

By comparing the total utilization of G-RMA/LCM with that of
RCM, we get:

ten(s0c)Bi ((1=in)+ Eoes (([ 7] +1) (10ta)) )
. Tve ZIen(s,,,,L,)B,v):T\?; ({—]}H) on

(21) is satisfied if Vt; (9) is satisfied. Claim follows. [
S.10 EXTENDED RESULTS

The three parameters x,y,z for each figure specify respectively
the relative total length of all atomic sections to the length of the
task, the maximum relative length of any atomic section to the
length of the task, and the minimum relative length of any atomic
section to the length of the task.
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Figure 5: Task retry costs under LCM and competitor synchro-
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Figure 8: Task response times under LCM and competitor syn-
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