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ABSTRACT
We consider software transactional memory (STM) concurrency
control for multicore real-time software, and present a novel con-
tention manager (CM) for resolving transactional conflicts, called
length-based CM (or LCM). We upper bound transactional retries
and response times under LCM, when used with G-EDF and G-
RMA schedulers. We identify the conditions under which LCM
outperforms previous real-time STM CMs and lock-free synchro-
nization. Our implementation and experimental studies reveal that
G-EDF/LCM and G-RMA/LCM have shorter or comparable retry
costs and response times than other synchronization techniques.

Categories and Subject Descriptors
C.3 [Special-Purpose and Application-based Systems]: Real-time
and embedded systems

General Terms
Design, Experimentation, Measurement

Keywords
Software transactional memory (STM), real-time contention man-
ager

1. INTRODUCTION
Lock-based concurrency control suffers from programmability,

scalability, and composability challenges [12]. These challenges
are exacerbated in emerging multicore architectures, on which im-
proved software performance must be achieved by exposing greater
concurrency. Transactional memory (TM) is an alternative syn-
chronization model for shared memory objects that promises to al-
leviate these difficulties. With TM, programmers organize code
that read/write shared objects as transactions, which appear to ex-
ecute atomically. Two transactions conflict if they access the same
object and one access is a write. When that happens, a contention
manager (or CM) resolves the conflict by aborting one and allowing
the other to commit, yielding (the illusion of) atomicity. In addition
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to a simple programming model, TM provides performance com-
parable to highly concurrent fine-grained locking and lock-free ap-
proaches, and is composable. TM has been proposed in hardware,
called HTM, and in software, called STM, with the usual tradeoffs:
HTM has lesser overhead, but needs transactional support in hard-
ware; STM is available on any hardware. See [11] for an excellent
overview on TM.

Given STM’s programmability, scalability, and composability
advantages, we consider it for concurrency control in multicore
real-time software. Doing so requires bounding transactional re-
tries, as real-time threads, which subsume transactions, must sat-
isfy time constraints. Retry bounds in STM are dependent on the
CM policy at hand. Thus, real-time CM is logical.

Past research on real-time CM have proposed resolving trans-
actional contention using dynamic and fixed priorities of parent
threads, resulting in Earliest-Deadline-First-based CM (ECM) and
Rate Monotonic Assignment-based CM (RCM), respectively [7–9].
These works show that, ECM and RCM, when used with the Global
EDF (G-EDF) and Global RMA (G-RMA) multicore schedulers,
respectively, achieve higher schedulability than lock-free synchro-
nization techniques only under some ranges for the maximum atomic
section length. This raises a fundamental question: is it possible to
increase the atomic section length by an alternative CM design, so
that STM’s schedulability advantage has a larger coverage?

We answer this question by designing a novel CM that can be
used with both dynamic and fixed priority (global) multicore real-
time schedulers: length-based CM or LCM (Section 4.1). LCM
resolves conflicts based on the priority of conflicting jobs, besides
the length of the interfering atomic section, and the length of the
interfered atomic section. We establish LCM’s retry and response
time upper bounds, when used with G-EDF (Section 4.2) and with
G-RMA (Section 4.5) schedulers. We identify the conditions un-
der which G-EDF/LCM outperforms ECM (Section 4.3) and lock-
free synchronization (Section 4.4), and G-RMA/LCM outperforms
RCM (Section 4.6). We implement LCM and competitor CM tech-
niques in the Rochester STM framework [14] and conduct experi-
mental studies (Section 5). Our study reveals that G-EDF/LCM and
G-RMA/LCM have shorter or comparable retry costs and response
times than competitors.

Thus, the paper’s contribution is LCM with superior timeliness
properties. This result thus allows programmers to reap STM’s sig-
nificant programmability and composability benefits for a broader
range of multicore embedded real-time software than what was pre-
viously possible.

2. RELATED WORK
Transactional-like concurrency control without using locks, for

real-time systems, has been previously studied in the context of



non-blocking data structures (e.g., [1]). Despite their numerous ad-
vantages over locks (e.g., deadlock-freedom), their programmabil-
ity has remained a challenge. Past studies show that they are best
suited for simple data structures where their retry cost is competi-
tive to the cost of lock-based synchronization [3]. In contrast, STM
is semantically simpler [12], and is often the only viable lock-free
solution for complex data structures (e.g., red/black tree) [10] and
nested critical sections [15].

STM concurrency control for real-time systems has been previ-
ously studied in [2, 7, 9, 10, 13, 16, 17].

[13] proposes a restricted version of STM for uniprocessors.
Uniprocessors do not need contention management.

[9] bounds response times in distributed systems with STM syn-
chronization. They consider Pfair scheduling, limit to small atomic
regions with fixed size, and limit transaction execution to span at
most two quanta. In contrast, we allow transaction lengths with
arbitrary duration.

[16] presents real-time scheduling of transactions and serializes
transactions based on deadlines. However, the work does not bound
retries and response times. In contrast, we establish such bounds.

[17] proposes real-time HTM. The work does not describe how
transactional conflicts are resolved. Besides, the retry bound as-
sumes that the worst case conflict between atomic sections of dif-
ferent tasks occurs when the sections are released at the same time.
However, we show that this is not the worst case. We develop retry
and response time upper bounds based on much worse conditions.

[10] upper bounds retries and response times for ECM with G-
EDF, and identify the tradeoffs with locking and lock-free proto-
cols. Similar to [17], [10] also assumes that the worst case conflict
between atomic sections occurs when the sections are released si-
multaneously. The ideas in [10] are extended in [2], which presents
three real-time CM designs. But no retry bounds or schedulability
analysis techniques are presented for those CMs.

[7] presents the ECM and RCM contention managers, and upper
bounds transactional retries and response times under them. The
work also identifies the conditions under which ECM and RCM are
superior to lock-free synchronization. In particular, they show that,
STM’s superiority holds only under some ranges for the maximum
atomic section length. Our work builds upon this result.

3. PRELIMINARIES
We consider a multiprocessor system with m identical processors

and n sporadic tasks τ1,τ2, . . . ,τn. The kth instance (or job) of a
task τi is denoted τk

i . Each task τi is specified by its worst case
execution time (WCET) ci, its minimum period Ti between any two
consecutive instances, and its relative deadline Di, where Di = Ti.
Job τ j

i is released at time r j
i and must finish no later than its absolute

deadline d j
i = r j

i +Di. Under a fixed priority scheduler such as G-
RMA, pi determines τi’s (fixed) priority and it is constant for all
instances of τi. Under a dynamic priority scheduler such as G-
EDF, a job τ j

i ’s priority, p j
i , differs from one instance to another. A

task τ j may interfere with task τi for a number of times during an
interval L, and this number is denoted as Gi j(L).

Shared objects. A task may need to read/write shared, in-memory
data objects while it is executing any of its atomic sections, which
are synchronized using STM. The set of atomic sections of task τi
is denoted si. sk

i is the kth atomic section of τi. Each object, θ, can
be accessed by multiple tasks. The set of distinct objects accessed
by τi is θi without repeating objects. The set of atomic sections
used by τi to access θ is si(θ), and the sum of the lengths of those
atomic sections is len(si(θ)). sk

i (θ) is the kth atomic section of τi

that accesses θ. sk
i (θ) executes for a duration len(sk

i (θ)). The set of

tasks sharing θ with τi is denoted γi(θ).
Atomic sections are non-nested (supporting nested STM is future

work). Each section is assumed to access only one object; this
allows us to be consistent with the assumptions in [7], enabling
a comparison with retry-loop lock-free synchronization [5], which
is an important goal of this paper. The maximum-length atomic
section in τi that accesses θ is denoted simax(θ), while the maximum
one among all tasks is smax(θ), and the maximum one among tasks
with priorities lower than that of τi is si

max(θ).
STM retry cost. If two or more atomic sections conflict, the CM

will commit one section and abort and retry the others, increasing
the time to execute the aborted sections. The increased time that an
atomic section sp

i (θ) will take to execute due to a conflict with an-
other section sk

j(θ), is denoted W p
i (sk

j(θ)). If an atomic section, sp
i ,

is already executing, and another atomic section sk
j tries to access

a shared object with sp
i , then sk

j is said to “interfere" or “conflict"
with sp

i . The job sk
j is the “interfering job", and the job sp

i is the
“interfered job." The total time that a task τi’s atomic sections have
to retry over Ti is denoted RC(Ti). The additional amount of time
that a task τ j causes to response time of τi when interfering with
τi during L, without considering retries due to atomic sections, is
denoted Wi j(L).

4. LENGTH-BASED CM
LCM resolves conflicts based on the priority of conflicting jobs,

besides the length of the interfering atomic section, and the length
of the interfered atomic section. This is in contrast to ECM and
RCM [7], where conflicts are resolved using the priority of the con-
flicting jobs. This strategy allows lower priority jobs, under LCM,
to retry for lesser time than that under ECM and RCM, but higher
priority jobs, sometimes, wait for lower priority ones with bounded
priority-inversion.

4.1 Design and Rationale

Algorithm 1: LCM

Data: sk
i (θ)→ interfered atomic section.

sl
j(θ)→ interfering atomic section.

ψ → predefined threshold ∈ [0,1].
δk

i (θ)→ remaining execution length of sk
i (θ)

Result: which atomic section of sk
i (θ) or sl

j(θ) aborts
1 if pk

i > pl
j then

2 sl
j(θ) aborts;

3 else
4 ckl

i j = len(sl
j(θ))/len(sk

i (θ));
5 αkl

i j = ln(ψ)/(ln(ψ)− ckl
i j );

6 α =
(
len(sk

i (θ))−δk
i (θ)

)
/len(sk

i (θ));
7 if α ≤ αkl

i j then
8 sk

i (θ) aborts;
9 else

10 sl
j(θ) aborts;

11 end
12 end

For both ECM and RCM, sk
i (θ) can be totally repeated if sl

j(θ)
— which belongs to a higher priority job τb

j than τa
i — conflicts

with sk
i (θ) at the end of its execution, while sk

i (θ) is just about to
commit. Thus, LCM, shown in Algorithm 1, uses the remaining



length of sk
i (θ) when it is interfered, as well as len(sl

j(θ)), to decide
which transaction must be aborted. If pk

i was greater than pl
j, then

sk
i (θ) would be the one that commits, because it belongs to a higher

priority job, and it started before sl
j(θ) (step 2). Otherwise, ckl

i j is
calculated (step 4) to determine whether it is worth aborting sk

i (θ)
in favor of sl

j(θ), because len(sl
j(θ)) is relatively small compared

to the remaining execution length of sk
i (θ) (explained further).

We assume that:

ckl
i j = len(sl

j(θ))/len(sk
i (θ)) (1)

where ckl
i j ∈]0,∞[, to cover all possible lengths of sl

j(θ). Our idea
is to reduce the opportunity for the abort of sk

i (θ) if it is close to
committing when interfered and len(sl

j(θ)) is large. This abort op-
portunity is increasingly reduced as sk

i (θ) gets closer to the end of
its execution, or len(sl

j(θ)) gets larger.
On the other hand, as sk

i (θ) is interfered early, or len(sl
j(θ)) is

small compared to sk
i (θ)’s remaining length, the abort opportunity

is increased even if sk
i (θ) is close to the end of its execution. To

decide whether sk
i (θ) must be aborted or not, we use a threshold

value ψ ∈ [0,1] that determines αkl
i j (step 5), where αkl

i j is the max-
imum percentage of len(sk

i (θ)) below which sl
j(θ) is allowed to

abort sk
i (θ). Thus, if the already executed part of sk

i (θ) — when
sl

j(θ) interferes with sk
i (θ) — does not exceed αkl

i j len(sk
i (θ)), then

sk
i (θ) is aborted (step 8). Otherwise, sl

j(θ) is aborted (step 10).
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Figure 1: Interference of sk
i (θ) by various lengths of sl

j(θ)

The behavior of LCM is illustrated in Figure 1. In this figure, the
horizontal axis corresponds to different values of α ranging from 0
to 1, and the vertical axis corresponds to different values of abort
opportunities, f (ckl

i j ,α), ranging from 0 to 1 and calculated by (2):

f (ckl
i j ,α) = e

−ckl
i j α

1−α (2)

where ckl
i j is calculated by (1).

Figure 1 shows one atomic section sk
i (θ) (whose α changes along

the horizontal axis) interfered by five different lengths of sl
j(θ). For

a predefined value of f (ckl
i j ,α) (denoted as ψ in Algorithm 1), there

corresponds a specific value of α (which is αkl
i j in Algorithm 1)

for each curve. For example, when len(sl
j(θ)) = 0.1× len(sk

i (θ)),

sl
j(θ) aborts sk

i (θ) if the latter has not executed more than α3 per-
centage (shown in Figure 1) of its execution length. As len(sl

j(θ))
decreases, the corresponding αkl

i j increases (as shown in Figure 1,
α3 > α2 > α1).

Equation (2) achieves the desired requirement that the abort op-
portunity is reduced as sk

i (θ) gets closer to the end of its execution
(as α → 1, f (ckl

i j ,1)→ 0), or as the length of the conflicting trans-
action increases (as ckl

i j → ∞, f (∞,α)→ 0). Meanwhile, this abort
opportunity is increased as sk

i (θ) is interfered closer to its release
(as α → 0, f (ckl

i j ,0)→ 1), or as the length of the conflicting trans-
action decreases (as ckl

i j → 0, f (0,α)→ 1).
LCM is not a centralized CM, which means that, upon a conflict,

each transactions has to decide whether it must commit or abort.

CLAIM 1. Let sl
j(θ) interfere once with sk

i (θ) at αkl
i j . Then, the

maximum contribution of sl
j(θ) to sk

i (θ)’s retry cost is:

W k
i (s

l
j(θ))≤ αkl

i j len
(

sk
i (θ)

)
+ len

(
sl

j(θ)
)

(3)

(Proofs of all claims are provided in the Supplementary Material
section at the end of the paper.)

CLAIM 2. An atomic section of a higher priority job, τb
j , may

have to abort and retry due to a lower priority job, τa
i , if sl

j(θ)
interferes with sk

i (θ) after the αkl
i j percentage. τ j’s retry time, due

to sk
i (θ) and sl

j(θ), is upper bounded by:

W l
j (s

k
i (θ))≤

(
1−αkl

i j

)
len
(

sk
i (θ)

)
(4)

CLAIM 3. A higher priority job, τz
i , suffers from priority inver-

sion for at most number of atomic sections in τz
i .

CLAIM 4. The maximum delay suffered by sl
j(θ) due to priority

inversion is caused by the maximum length atomic section access-
ing object θ, which belongs to a lower priority job than τb

j that
owns sl

j(θ).

4.2 Response Time of G-EDF/LCM

CLAIM 5. RC(Ti) for a task τi under G-EDF/LCM is upper
bounded by:

RC(Ti) =

(
∑

∀τh∈γi

∑
∀θ∈θi∧θh

(⌈
Ti

Th

⌉
∑

∀sl
h(θ)

len
(

sl
h(θ)

)

+ αhl
maxlen

(
sh

max(θ)
)))

+ ∑
∀sy

i (θ)

(
1−αiy

max

)
len
(

si
max(θ)

)
(5)

where αhl
max is the α value that corresponds to ψ due to the inter-

ference of sh
max(θ) by sl

h(θ). αiy
max is the α value that corresponds

to ψ due to the interference of si
max(θ) by sy

i (θ).

Response time of τi is calculated by (11) in [7].
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4.3 Schedulability of G-EDF/LCM and ECM
We now compare the schedulability of G-EDF/LCM with ECM [7]

to understand when G-EDF/LCM will perform better. Toward this,
we compare the total utilization of ECM with that of G-EDF/LCM.
For each method, we inflate the ci of each task τi by adding the retry
cost suffered by τi. Thus, if method A adds retry cost RCA(Ti) to ci,
and method B adds retry cost RCB(Ti) to ci, then the schedulability
of A and B are compared as:

∑
∀τi

ci +RCA(Ti)

Ti
≤ ∑

∀τi

ci +RCB(Ti)

Ti

∑
∀τi

RCA(Ti)

Ti
≤ ∑

∀τi

RCB(Ti)

Ti
(6)

Thus, schedulability is compared by substituting the retry cost added
by the synchronization methods in (6).

CLAIM 6. Let smax be the maximum length atomic section ac-
cessing any object θ. Let αmax and αmin be the maximum and
minimum values of α for any two atomic sections sk

i (θ) and sl
j(θ).

Given a threshold ψ, schedulability of G-EDF/LCM is equal or bet-
ter than ECM if for any task τi:

1−αmin

1−αmax
≤ ∑

∀τh∈γi

⌈
Ti

Th

⌉
(7)

4.4 G-EDF/LCM versus Lock-free
We consider the retry-loop lock-free synchronization for G-EDF

given in [5]. This lock-free approach is the most relevant to our
work.

CLAIM 7. Let smax denote len(smax) and rmax denote the max-
imum execution cost of a single iteration of any retry loop of any
task in the retry-loop lock-free algorithm in [5]. Now, G-EDF/LCM
achieves higher schedulability than the retry-loop lock-free approach
if the upper bound on smax/rmax under G-EDF/LCM ranges be-
tween 0.5 and 2 (which is higher than that under ECM).

4.5 Response Time of G-RMA/LCM
CLAIM 8. Let

λ2( j,θ) = ∑
∀sl

j(θ)
len(sl

j(θ))+α jl
maxlen(s j

max(θ))

where α jl
max is the α value corresponding to ψ due to the inter-

ference of s j
max(θ) by sl

j(θ). The retry cost of any task τi under
G-RMA/LCM during Ti is given by:

RC (Ti) = ∑
∀τ∗j

 ∑
θ∈(θi∧θ j)

((⌈
Ti

Tj

⌉
+1
)

λ2( j,θ)
)

+ ∑
∀sy

i (θ)

(
1−αiy

max

)
len
(

si
max(θ)

)
(8)

where τ∗j = {τ j|(τ j ∈ γi)∧ (p j > pi)}.

The response time is calculated by (17) in [7] with replacing
RC(Rup

i ) with RC(Ti).

4.6 Schedulability of G-RMA/LCM and RCM
CLAIM 9. Under the same assumptions of Claims 6 and 8, G-

RMA/LCM’s schedulability is equal or better than RCM if:

1−αmin

1−αmax
≤ ∑

∀τ∗j

(⌈
Ti

Tj

⌉
+1
)

(9)

5. EXPERIMENTAL EVALUATION
Having established LCM’s retry and response time upper bounds,

and the conditions under which it outperforms ECM, RCM, and
lock-free synchronization, we now would like to understand how
LCM’s retry and response times in practice (i.e., on average) com-
pare with that of competitor methods. Since this can only be un-
derstood experimentally, we implement LCM and the competitor
methods and conduct experimental studies.

5.1 Experimental Setup
We used the ChronOS real-time Linux kernel [4] and the RSTM

library [14]. We modified RSTM to include implementations of
ECM, RCM, G-EDF/LCM, and G-RMA/LCM contention managers,
and modified ChronOS to include implementations of G-EDF and
G-RMA schedulers.

For the retry-loop lock-free implementation, we used a loop that
reads an object and attempts to write to the object using a compare-
and-swap (CAS) instruction. The task retries until the CAS suc-
ceeds.

We use an 8 core, 2GHz AMD Opteron platform. The aver-
age time taken for one write operation by RSTM on any core is
0.0129653375µs, and the average time taken by one CAS-loop op-
eration on any core is 0.0292546250 µs.

We used the periodic task set shown in Table 1. Each task runs
in its own thread and has an atomic section. Atomic section prop-
erties are probabilistically controlled (for experimental evaluation)
using three parameters: the maximum and minimum lengths of any
atomic section within the task, and the total length of atomic sec-
tions within any task. All task atomic sections access the same
object, and do write operations on the object (thus, contention is
the highest).

5.2 Results
Figure 3 shows the retry cost (RC) for each task in the three

task sets in Table 1, where each task’s atomic section length is
equal to half of the task length. Each data point in the figure has
a confidence level of 0.95. We observe that G-EDF/LCM and G-
RMA/LCM achieve shorter or comparable retry cost than ECM and
RCM. Since all tasks are initially released at the same time, and due
to the specific nature of task properties, tasks with lower IDs some-
how have higher priorities under the G-EDF scheduler. Note that
tasks with lower IDs have higher priorities under G-RMA, since
tasks are ordered in non-decreasing order of their periods.

Thus, we observe that G-EDF/LCM and G-RMA/LCM achieve
comparable retry costs to ECM and RCM for some tasks with lower
IDs. But when task ID increases, LCM — for both schedulers —
achieves much shorter retry costs than ECM and RCM. This is be-
cause, higher priority tasks in LCM suffers blocking by lower pri-
ority tasks, which is not the case for ECM and RCM. However, as
task priority decreases, LCM, by definition, prevents higher prior-
ity tasks from aborting lower priority ones if a higher priority task



Table 1: Task sets. (a) Task set 1: 5-task set; (b) Task set 2:
10-task set; (c) Task set 3: 12-task set

(a)
Ti(µs) ci(µs)

τ1 500000 150000
τ2 1000000 227000
τ3 1500000 410000
τ4 3000000 299000
τ5 5000000 500000

(b)
Ti(µs) ci(µs)

τ1 400000 75241
τ2 750000 69762
τ3 1200000 267122
τ4 1500000 69863
τ5 2400000 152014
τ6 4000000 286301
τ7 7500000 493150
τ8 10000000 794520
τ9 15000000 1212328
τ10 20000000 1775342

(c)
Ti(µs) ci(µs)

τ1 400000 58195
τ2 750000 53963
τ3 1000000 206330
τ4 1200000 53968
τ5 1500000 117449
τ6 2400000 221143
τ7 3000000 290428
τ8 4000000 83420
τ9 7500000 380917
τ10 10000000 613700
τ11 15000000 936422
τ12 20000000 1371302

interferes with a lower priority one after a specified threshold. In
contrast, under ECM and RCM, lower priority tasks abort in fa-
vor of higher priority ones. G-EDF/LCM and G-RMA/LCM also
achieve shorter retry costs than the retry-loop lock-free algorithm.

Figure 4 shows the response time of each task in the Table 1 task
sets with a confidence level of 0.95. (Again, each task’s atomic sec-
tion length is equal to half of the task length.) We observe that G-
EDF/LCM and G-RMA/LCM achieve shorter response time than
the retry-loop lock-free algorithm, and shorter or comparable re-
sponse time than ECM and RCM.

We repeated the experiments by varying three parameters: the
relative total length of all atomic sections to the length of the task,
the maximum relative length of any atomic section to the length
of the task, and the minimum relative length of any atomic section
to the length of the task. Full set of results are omitted here due
to space constraints; however additional results are included in the
Supplementary Material section. Full set of results are given in
Appendix B in [6].

6. CONCLUSIONS
In ECM and RCM, a task incurs at most 2smax retry cost for

each of its atomic section due to conflict with another task’s atomic
section. With LCM, this retry cost is reduced to (1+αmax)smax
for each aborted atomic section. In ECM and RCM, tasks do not
retry due to lower priority tasks, whereas in LCM, they do so. In
G-EDF/LCM, retry due to a lower priority job is encountered only
from a task τ j’s last job instance during τi’s period. This is not
the case with G-RMA/LCM, because, each higher priority task
can be aborted and retried by any job instance of lower priority
tasks. Schedulability of G-EDF/LCM and G-RMA/LCM is bet-
ter or equal to ECM and RCM, respectively, by proper choices for
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Figure 3: Task retry costs under LCM and competitor synchro-
nization methods



 0

 5e+08

 1e+09

 1.5e+09

 2e+09

 2.5e+09

 3e+09

 3.5e+09

 4e+09

 4.5e+09

 0.5  1  1.5  2  2.5  3  3.5  4  4.5  5  5.5

R
es

-T
im

e(
ns

ec
)

Task Id

ECM
RCM

LCM-EDF
LCM-RMA

LF-EDF

(a) Task set 1

 0

 2e+09

 4e+09

 6e+09

 8e+09

 1e+10

 1.2e+10

 1.4e+10

 0  1  2  3  4  5  6  7  8  9  10  11

R
es

-T
im

e(
ns

ec
)

Task Id

ECM
RCM

LCM-EDF
LCM-RMA

LF-EDF

(b) Task set 2

 0

 1e+09

 2e+09

 3e+09

 4e+09

 5e+09

 6e+09

 7e+09

 8e+09

 9e+09

 0  2  4  6  8  10  12  14

R
es

-T
im

e(
ns

ec
)

Task Id

ECM
RCM

LCM-EDF
LCM-RMA

LF-EDF

(c) Task set 3

Figure 4: Task response times under LCM and competitor syn-
chronization methods

αmin and αmax. Schedulability of G-EDF/LCM is better than retry-
loop lock-free synchronization for G-EDF if the upper bound on
smax/rmax is between 0.5 and 2, which is higher than that achieved
by ECM.
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Supplementary Material
This section includes proofs of all Claims.

S.1 Proof of Claim 1
PROOF. If sl

j(θ) interferes with sk
i (θ) at a ϒ percentage, where

ϒ < αkl
i j , then the retry cost of sk

i (θ) is ϒlen(sk
i (θ))+ len(sl

j(θ)),



which is lower than that calculated in (3). Besides, if sl
j(θ) inter-

feres with sk
i (θ) after αkl

i j percentage, then sk
i (θ) will not abort.

S.2 Proof of Claim 2
PROOF. It is derived directly from Claim 1, as sl

j(θ) will have
to retry for the remaining length of sk

i (θ).

S.3 Proof of Claim 3
PROOF. Assuming three atomic sections, sk

i (θ), sl
j(θ) and sb

a(θ),
where p j > pi and sl

j(θ) interferes with sk
i (θ) after αkl

i j . Then sl
j(θ)

will have to abort and retry. At this time, if sb
a(θ) interferes with the

other two atomic sections, and the LCM decides which transaction
to commit based on comparison between each two transactions. So,
we have the following cases:-

• pa < pi < p j, then sb
a(θ) will not abort any one because it is

still in its beginning and it is of the lowest priority. So. τ j is
not indirectly blocked by τa.

• pi < pa < p j and even if sb
a(θ) interferes with sk

i (θ) before
αkb

ia , so, sb
a(θ) is allowed abort sk

i (θ). Comparison between
sl

j(θ) and sb
a(θ) will result in LCM choosing sl

j(θ) to commit
and abort sb

a(θ) because the latter is still beginning, and τ j is
of higher priority. If sb

a(θ) is not allowed to abort sk
i (θ), the

situation is still the same, because sl
j(θ) was already retrying

until sk
i (θ) finishes.

• pa > p j > pi, then if sb
a(θ) is chosen to commit, this is not

priority inversion for τ j because τa is of higher priority.

• if τa preempts τi, then LCM will compare only between sl
j(θ)

and sb
a(θ). If pa < p j, then sl

j(θ) will commit because of its
task’s higher priority and sb

a(θ) is still at its beginning, oth-
erwise, sl

j(θ) will retry, but this will not be priority inversion
because τa is already of higher priority than τ j. If τa does
not access any object but it preempts τi, then CM will choose
sl

j(θ) to commit as only already running transactions are com-
peting together.

So, by generalizing these cases to any number of conflicting jobs, it
is seen that when an atomic section, sl

j(θ), of a higher priority job
is in conflict with a number of atomic sections belonging to lower
priority jobs, sl

j(θ) can suffer from priority inversion by only one
of them. So, each higher priority job can suffer priority inversion
at most its number of atomic section. Claim follows.

S.4 Proof of Claim 4
PROOF. Assume three atomic sections, sk

i (θ), sl
j(θ), and sz

h(θ),
where p j > pi, p j > ph, and len(sk

i (θ))> len(sz
h(θ)). Now, αkl

i j >

αzl
h j and ckl

i j < czl
h j . By applying (4) to obtain the contribution of

sk
i (θ) and sz

h(θ) to the priority inversion of sl
j(θ) and dividing them,

we get:

W l
j (s

k
i (θ))

W l
j (s

z
h(θ))

=

(
1−αkl

i j

)
len(sk

i (θ))(
1−αzl

h j

)
len(sz

h(θ))

By substitution for αs from (2):

=
(1− lnψ

lnψ−ckl
i j
)len(sk

i (θ))

(1− lnψ
lnψ−czl

h j
)len(sz

h(θ))
=

(
−ckl

i j

lnψ−ckl
i j
)len(sk

i (θ))

(
−czl

h j

lnψ−czl
h j
)len(sz

h(θ))

∵ lnψ ≤ 0 and ckl
i j ,c

kl
h j > 0,∴ by substitution from (1)

=
len(sl

j(θ))/(lnψ− ckl
i j )

len(sl
j(θ))/(lnψ− czl

h j)
=

lnψ− czl
h j

lnψ− ckl
i j

> 1

Thus, as the length of the interfered atomic section increases, the ef-
fect of priority inversion on the interfering atomic section increases.
Claim follows.

S.5 Proof of Claim 5

PROOF. The maximum number of higher priority instances of
τh that can interfere with τx

i is
⌈

Ti
Th

⌉
, as shown in Figure 2, where

one instance of τh and τp
h coincides with the absolute deadline of

τx
i .

By using Claims 1, 2, 3, and 4, and Claim 1 in [7] to determine
the effect of atomic sections belonging to higher and lower priority
instances of interfering tasks to τx

i , claim follows.

S.6 Proof of Claim 6

PROOF. Under ECM, RC(Ti) is upper bounded by:

RC(Ti)≤ ∑
∀τh∈γi

∑
∀θ∈ (θi∧θh)

⌈ Ti

Th

⌉
∑

∀sz
h(θ)

2len(smax)

 (10)

with the assumption that all lengths of atomic sections of (4) and
(8) in [7] and (5) are replaced by smax. Let αhl

max in (5) be replaced
with αmax, and αiy

max in (5) be replaced with αmin. As αmax, αmin,
and len(smax) are all constants, (5) is upper bounded by:

RC(Ti) ≤

(
∑

∀τh∈γi

∑
∀θ∈θi∧θh

(⌈
Ti

Th

⌉
∑

∀sl
h(θ)

(1+αmax)

len
(

smax

)))
+ ∑

∀sy
i (θ)

(
1−αmin

)
len
(

smax

)
(11)

If βih
1 is the total number of times any instance of τh accesses shared

objects with τi, then βih
1 = ∑∀θ∈(θi∧θh) ∑∀sz

h(θ). Furthermore, if βi
2

is the total number of times any instance of τi accesses shared ob-
jects with any other instance, βi

2 = ∑∀sy
i (θ), where θ is shared with

another task. Then, βi =max{max∀τh∈γi{βih
1 },β

i
2} is the maximum

number of accesses to all shared objects by any instance of τi or τh.
Thus, (10) becomes:

RC(Ti)≤ ∑
τh∈γi

2
⌈

Ti

Th

⌉
βilen(smax) (12)

and (11) becomes:

RC(Ti) ≤ βilen(smax)

(
(1−αmin)

+ ∑
∀τh∈γi

⌈
Ti

Th

⌉
(1+αmax)

)
(13)

We can now compare the total utilization of G-EDF/LCM with



that of ECM by comparing (11) and (13) for all τi:

∑
∀τi

(1−αmin)+∑∀τh∈γi

(⌈
Ti
Th

⌉
(1+αmax)

)
Ti

≤ ∑
∀τi

∑∀τh∈γi
2
⌈

Ti
Th

⌉
Ti

(14)

(14) is satisfied if for each τi, the following condition is satisfied:

(1−αmin)+ ∑
∀τh∈γi

(⌈
Ti

Th

⌉
(1+αmax)

)
≤ 2 ∑

∀τh∈γi

⌈
Ti

Th

⌉

∴ 1−αmin

1−αmax
≤ ∑

∀τh∈γi

⌈
Ti

Th

⌉
Claim follows.

S.7 Proof of Claim 7
PROOF. From [5], the retry-loop lock-free algorithm is upper

bounded by:

RL(Ti) = ∑
τh∈γi

(⌈
Ti

Th

⌉
+1
)

βirmax (15)

where βi is as defined in Claim 6. The retry cost of τi in G-
EDF/LCM is upper bounded by (13). By comparing G-EDF/LCM’s
total utilization with that of the retry-loop lock-free algorithm, we
get:

∑∀τi

(
(1−αmin)+∑∀τh∈γi

(⌈
Ti
Th

⌉
(1+αmax)

))
βismax

Ti

≤ ∑∀τi

∑∀τh∈γi

(⌈
Ti
Th

⌉
+1
)

βirmax

Ti

∴ smax

rmax
≤

∑∀τi

∑∀τh∈γi

(⌈
Ti
Th

⌉
+1
)

βi

Ti

∑∀τi

(
(1−αmin)+∑∀τh∈γi

(⌈
Ti
Th

⌉
(1+αmax)

))
βi

Ti

(16)

Let the number of tasks that have shared objects with τi be ω (i.e.,
∑τh∈γi

= ω ≥ 1 since at least one task has a shared object with τi;
otherwise, there is no conflict between tasks). Let the total number
of tasks be n, so 1 ≤ ω ≤ n− 1, and

⌈
Ti
Th

⌉
∈ [1,∞[. To find the

minimum and maximum values for the upper bound on smax/rmax,
we consider the following cases:

• αmin → 0,αmax → 0

∴ (16) will be:

smax

rmax
≤ 1+

∑∀τi
ω−1

Ti

∑∀τi

1+∑∀τh∈γi

⌈
Ti
Th

⌉
Ti

(17)

By substituting the edge values for ω and
⌈

Ti
Th

⌉
in (17), we derive

that the upper bound on smax/rmax lies between 1 and 2.

• αmin → 0,αmax → 1

(16) becomes

smax

rmax
≤ 0.5+

∑∀τi
ω−0.5

Ti

∑∀τi

1+2∑∀τh∈γi

⌈
Ti
Th

⌉
Ti

(18)

By applying the edge values for ω and
⌈

Ti
Th

⌉
in (18), we derive that

the upper bound on smax/rmax lies between 0.5 and 1.

• αmin → 1,αmax → 0

This case is rejected since αmin ≤ αmax.

• αmin → 1,αmax → 1

∴ (16) becomes:

smax

rmax
≤ 0.5+

∑τi
ω
Ti

2∑τi

∑∀τh∈γi

⌈
Ti
Th

⌉
Ti

(19)

By applying the edge values for ω and
⌈

Ti
Th

⌉
in (19), we derive

that the upper bound on smax/rmax lies between 0.5 and 1, which is
similar to that achieved by ECM.

Summarizing from the previous cases, the upper bound on smax/rmax
lies between 0.5 and 2, whereas for ECM [7], it lies between 0.5
and 1. Claim follows.

S.8 Proof of Claim 8
PROOF. Under G-RMA, all instances of a higher priority task,

τ j , can conflict with a lower priority task, τi, during Ti. (3) can
be used to determine the contribution of each conflicting atomic
section in τ j to τi. Meanwhile, all instances of any task with lower
priority than τi can conflict with τi during Ti. Claims 2 and 3 can be
used to determine the contribution of conflicting atomic sections in
lower priority tasks to τi. Using the previous notations and Claim
3 in [7], the claim follows.

S.9 Proof of Claim 9
PROOF. Under the same assumptions as that of Claims 6 and 8,

(8) can be upper bounded as:

RC(Ti) ≤ ∑
∀τ∗j

((⌈
Ti

Tj

⌉
+1
)
(1+αmax)len(smax)βi

)
+ (1−αmin)len(smax)βi (20)

For RCM, (16) in [7] for RC(Ti) is upper bounded by:

RC(Ti)≤ ∑
∀τ∗j

(⌈
Ti

Tj

⌉
+1
)

2βilen(smax)

By comparing the total utilization of G-RMA/LCM with that of
RCM, we get:

∑∀τi

len(smax)βi

(
(1−αmin)+∑∀τ∗j

((⌈
Ti
Tj

⌉
+1
)
(1+αmax)

))
Ti

≤ ∑∀τi

2len(smax)βi ∑∀τ∗j

(⌈
Ti
Tj

⌉
+1
)

Ti
(21)

(21) is satisfied if ∀τi (9) is satisfied. Claim follows.

S.10 EXTENDED RESULTS
The three parameters x,y,z for each figure specify respectively

the relative total length of all atomic sections to the length of the
task, the maximum relative length of any atomic section to the
length of the task, and the minimum relative length of any atomic
section to the length of the task.
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Figure 5: Task retry costs under LCM and competitor synchro-
nization methods (0.5,0.2,0.2)
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Figure 6: Task response times under LCM and competitor syn-
chronization methods (0.5,0.2,0.2)
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Figure 7: Task retry costs under LCM and competitor synchro-
nization methods (0.8,0.5,0.2)

 0

 1e+09

 2e+09

 3e+09

 4e+09

 5e+09

 6e+09

 7e+09

 8e+09

 9e+09

 1e+10

 0.5  1  1.5  2  2.5  3  3.5  4  4.5  5  5.5

R
es

-T
im

e(
ns

ec
)

Task Id

ECM
RCM

LCM-EDF
LCM-RMA

LF-EDF

(a) Task set 1

 0

 1e+10

 2e+10

 3e+10

 4e+10

 5e+10

 6e+10

 0  1  2  3  4  5  6  7  8  9  10  11

R
es

-T
im

e(
ns

ec
)

Task Id

ECM
RCM

LCM-EDF
LCM-RMA

LF-EDF

(b) Task set 2

 0

 5e+09

 1e+10

 1.5e+10

 2e+10

 2.5e+10

 3e+10

 3.5e+10

 4e+10

 0  2  4  6  8  10  12  14

R
es

-T
im

e(
ns

ec
)

Task Id

ECM
RCM

LCM-EDF
LCM-RMA

LF-EDF

(c) Task set 3

Figure 8: Task response times under LCM and competitor syn-
chronization methods (0.8,0.5,0.2)


