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Abstract—Distributed software transactional memory
(DTM) is an emerging, alternative concurrency control model
for distributed systems that promises to alleviate the difficulties
of lock-based distributed synchronization. Object replication
can improve concurrency and achieve fault-tolerance in DTM,
but may incur high communication overhead (in metric-space
networks) to ensure one-copy serializability. We consider
metric-space networks and develop a cluster-based object
replication model for DTM. In this model, object replicas are
distributed to clusters of nodes, where clusters are determined
based on distance between nodes, to maximize locality and
fault-tolerance and to minimize communication overhead. We
develop a transactional scheduler for this model, called CTS.
CTS enqueues live transactions and identifies some of the
transactions that must be aborted in advance to enhance the
concurrency of the other transactions over clusters, reducing
a significant number of future conflicts. Our implementation
and experimental evaluation reveals that CTS improves
transactional throughput over state-of-the-art replicated DTM
solutions by as much as (average) 1.55× and 1.73× under low
and high contention, respectively.
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I. INTRODUCTION

Lock-based concurrency control suffers from programma-
bility, scalability, and composability challenges [20]. Trans-
actional memory (TM) promises to alleviate these difficul-
ties. With TM, code that read/write shared objects is or-
ganized as transactions, which optimistically execute, while
logging changes made to objects. Two transactions conflict if
they access the same object and one access is a write. When
that happens, a contention manager resolves the conflict by
aborting one and allowing the other to proceed to commit,
yielding (the illusion of) atomicity. Aborted transactions
are re-started, after rolling-back the changes. Sometimes, a
transactional scheduler is also used, which determines an
ordering of concurrent transactions so that conflicts are either
avoided altogether or minimized. In addition to a simple
programming model, TM provides performance comparable
to fine-grained locking [29] and is composable. Multiproces-
sor TM has been proposed in hardware (HTM), in software
(STM), and in hardware/software combination [26].

Distributed STM (or DTM) has been similarly motivated
as an alternative to distributed lock-based concurrency con-
trol. DTM can be classified based on the system architecture:
cache-coherent DTM (cc DTM) [21], [28], in which a set
of nodes communicate with each other by message-passing

links over a communication network, and a cluster model
(cluster DTM) [10], in which a group of linked computers
works closely together to form a single computer. The most
important difference between the two is communication
cost. cc DTM assumes a metric-space network (i.e., the
communication cost between nodes form a metric), whereas
cluster DTM differentiates between local cluster memory
and remote memory at other clusters. cc DTM uses a
cache-coherence protocol to locate and move objects in the
network, satisfying object consistency properties. Similar
to multiprocessor TM, DTM provides a simple distributed
programming model (e.g., locks are entirely precluded in
the interface), and performance comparable or superior to
distributed lock-based concurrency control [10], [23], [28].

With a single object copy, node/link failures cannot be
tolerated. If a node fails, the objects held by the failed node
will be simply lost and all following transactions requesting
such objects would never commit. Additionally, read con-
currency cannot be effectively exploited. Thus, an array of
DTM works – all of which are cluster DTM – consider
object replication. These works provide fault-tolerance prop-
erties by inheriting fault-tolerance protocols from database
replication schemes, which rely on broadcast primitives
(e.g., atomic broadcast, uniform reliable broadcast) [10],
[9], [8], [4]. Broadcasting transactional read/write sets or
memory differences in metric-space networks is inherently
non-scalable, as messages transmitted grow quadratically
with the number of nodes. (See Section V for discussion.)
Thus, directly applying cluster DTM replication solutions to
cc DTM may not yield similar performance.

We consider a cluster-based partial object replication
model for cc DTM. In this model, nodes are grouped into
clusters based on node-to-node distances: nodes which are
closer to each other are grouped into the same cluster; nodes
which are farther apart are grouped into different clusters.1

Objects are replicated such that each cluster contains at least
one replica of each object, and the memory of multiple
nodes is used to reduce the possibility of object loss, thereby
avoiding expensive brute-force replication of all objects on
all nodes (i.e., a full replication model).

This paper focuses on how to schedule memory transac-
tions in the cluster-based partial replication model for high

1Note our usage of the word cluster in the context of cc DTM to indicate
grouping of nodes. This is not to be confused with cluster DTM.



performance, called cluster-based transactional scheduler
(CTS). Each cluster has an object owner for scheduling
transactions. In each object owner, CTS enqueues live trans-
actions and identifies some of the transactions that must be
aborted to avoid future conflicts, resulting in the concurrency
of the other transactions.

We implemented CTS in a Java DTM framework, called
HyFlow [28], and conducted experimental studies. Our stud-
ies reveal that transactional throughput is improved by up to
1.73× (on average) over two replicated DTMs, GenRSTM
[8] and DecentSTM [4]. To the best of our knowledge, CTS
is the first ever transactional scheduler for partially replicated
cc DTM, and constitutes the paper’s contribution.

The rest of the paper is organized as follows. We outline
the preliminaries and the system model in Section II. We
describe CTS and analyze its properties in Section III. Ex-
perimental studies are reported in Section IV. We overview
past and related efforts in Section V and conclude in
Section VI.

II. PRELIMINARIES AND SYSTEM MODEL

We consider a distributed system which consists of a set of
nodes N = {n1, n2, · · ·} that communicate with each other
by message-passing links over a communication network.
Similar to [21], we assume that the nodes are scattered in a
metric space. The metric d(ni, nj) is the distance between
nodes ni and nj , which determines the communication cost
of sending a message from ni to nj . We assume that the
nodes are fail-stop [31]. Additionally, communication links
may also fail to deliver messages.

A. Distributed Transactions

A set of distributed transactions T = {T1, T2, · · ·} is
assumed. The transactions share a set of objects O =
{o1, o2, . . .}, which are assumed to be distributed in the
network. A transaction contains a sequence of requests, each
of which is a read or write operation request to an individual
object. An execution of a transaction is a sequence of timed
operations. An execution ends by either a commit (success)
or an abort (failure). A transaction is in one of three possible
states: live, aborted, or committed. Each transaction has a
unique identifier (id), and is invoked by a node in the system.

We consider Herlihy and Sun’s data flow DTM
model [21]. In this model, transactions are immobile and
objects move from node to node to invoking transactions.
Each node has a TM proxy that provides interfaces to the
local application and to proxies at other nodes. When a
transaction Ti at node ni requests object oj , the TM proxy
of ni first checks whether oj is in its local cache. If the
object is not present, the proxy invokes a distributed cache
coherence protocol (CC) to fetch oj from the network. Node
nk holding oj checks whether the object is in use by a local
transaction Tk when it receives the request for oj from ni. If
so, the proxy invokes a contention manager to mediate the

conflict between Ti and Tk for oj . When there are multiple
copies (or replicas) of an object in the network, the CC
protocol is responsible for locating the nearest copy of the
object in terms of the distance from the requesting node.
Thus, Ti may incur requesting and object retrieving times
to fetch oj from the network in data flow DTM model [23],
[24]. The requesting time of Ti is a communication delay
for Ti’s request invoked by ni to travel in the network to
nk. The object retrieving time of Ti is a communication
delay of oj held by nk to travel in the network to ni.
Our proposed transactional scheduler, CTS, ensures replica
consistency in the sense that multiple copies of an object
appear as a single logical object to the transactions i.e., the
one-copy serializability property [3].

B. Atomicity, Consistency, and Isolation

We use the Transactional Forwarding Algorithm
(TFA) [28] to provide early validation of remote objects,
guarantee a consistent view of shared objects between
distributed transactions, and ensure atomicity for object
operations in the presence of asynchronous clocks. As
an extension of the Transactional Locking 2 (TL2)
algorithm [12], TFA replaces the central clock of TL2 with
independent clocks for each node and provides a means to
reliably establish the “happens-before” relationship between
significant events. TFA is responsible for caching local
copies of remote objects and changing object ownership.
Without loss of generality, objects export only read and
write methods (or operations).

Figure 1. An Example of TFA

For completeness, we illustrate TFA with an example. In
Figure 1, a transaction updates object o1 at t1 (i.e., local
clock (LC) is 14) and four transactions (i.e., T1, T2, T3,
and T4) request o1 from the object holder. Assume that T2
validates o1 at t2 and updates o1 with LC=30 at t3. Any
read or write transaction (e.g., T4), which has requested o1
between t2 and t3 aborts. When write transactions T1 and
T3 validate at times t4 and t5, respectively, T1 and T3 that
have acquired o1 with LC=14 before t2 will abort, because
LC is updated to 30.

III. CLUSTER-BASED SCHEDULING

A. Motivation

Directory-based CC protocols (e.g., Arrow and Ballis-
tic) [11], [21] in the single-copy model often keep track
of the single writable copy. In practice, not all transac-
tional requests are routed efficiently; possible locality is
often overlooked, resulting in high communication delays.



A distributed transaction consumes more execution time,
which include the communication delays that are incurred
in requesting and retrieving objects than a transaction on
multiprocessors [24]. Thus, the probability for conflicts
and aborts is higher. Even though a transaction in a full
replication model does not request and retrieve objects,
maintaining replicas of all objects at each node is costly.
Increasing locality (and availability) by brute-force repli-
cation while ensuring one-copy serializability can lead to
communication overhead. Motivated by this, we consider a
k-cluster-based replication model for cc DTM. In this model,
multiple copies of each object are distributed to k selected
nodes to maximize locality and availability and to minimize
communication overhead.

(a) TFA (b) CTS with TFA

Figure 2. Executing T1, T2, and T3 Concurrently

Moreover, a transaction may execute multiple operations
with multiple objects, increasing the possibility of conflicts.
Figure 2 shows a scenario two conflicts occurring with three
concurrent transactions, T1, T2, and T3 using two objects.
Under TFA, a conflict over o2 between T1 and T2 occurs
and another conflict over o3 between T2 and T3 occurs. If T2
commits first, T1 and T3 will abort because T2 will update
o3 and o2 even though T1 and T3 do not contend. If T2
aborts as shown in Figure 2(b), T1 and T3 will commit.
Motivated by this, CTS aborts T2 in advance and allows
T1 and T2 to commit concurrently. A contention manager
resolves a conflict between two transactions, but CTS avoids
two conflicts among three transactions and guarantees the
concurrency of two transactions of them.

B. Scheduler Design

In the case of an off-line scheduling algorithm (all concur-
rent transactions are known), a simple approach to minimize
conflicts is to check the conflict graph of transactions
and determine a maximum independent set of the graph,
which is NP-complete. However, as an on-line scheduling
algorithm, CTS checks for conflicts between a transaction
and other ongoing transactions accessing an object whenever
the transaction requests the object.

Let node nx belong to cluster z. When transaction Tx
at node nx needs object oy for an operation, it sends a
request to the object owner of cluster z. When another

transaction may have requested oy but no transaction has
validated oy , there are two possible cases. The first case is
when the operation is read. In this case, oy is sent to nx
without enqueuing, because the read transaction does not
modify oy . In the second case, when the operation is write,
CTS determines whether oy is sent to the requester (i.e., nx)
or not by considering previously enqueued transactions and
objects. Once CTS allows Tx to access oy , CTS moves x
and y representing Tx and oy respectively to two scheduling
queues. The object owners for each cluster maintain the
following two queues, O and T. Let O denote the set
of enqueued objects and T denote the set of transactions
enqueued by the object owners. If the object owner of cluster
z enqueues x and y, it updates its scheduling queues to the
other object owners’.

If x ∈ T and y /∈ O, x and y are enqueued and oy
is sent to nx. This case indicates that Tx has requested
another object from the object owner and oy has not been
requested yet. However, if x /∈ T and y ∈ O, CTS has to
check for whether T | β includes more than two transactions
or not, where β = O | α and α = T | y. O | α
indicates objects requested by Tα and T | y represents
transactions requesting oy . This case shows when oy is
being used by other transactions and the transactions share
an object with another transaction. CTS does not consider
a conflict between two transactions because a contention
manager aborts one of them when they validate. Thus, the
transactions involved in T | y ∩ T | β abort, x and y are
enqueued, and oy is sent to nx. The aborted transactions are
dequeued.

If x ∈ T and y ∈ O, CTS has to check for whether
T | γ is distinct from T | y or not, where γ = O | x.
This case means that Tx has requested an object requested
by another transaction and also oy has been requested by
another transaction. If two different transactions are using
different objects that Tx has requested and is requesting,
respectively, CTS aborts Tx to protect two transactions from
aborting. Thus, if T | γ is distinct from T | y, x and y also
are enqueued and oy is sent to nx. Otherwise, oy will not be
sent to nx, aborting Tx. In this case, the object owner knows
that Tx aborts. Thus, the objects that Tx has requested will
be sent to nx after the objects are updated.

Figure 3. An Example of CTS

Figure 3 illustrates an example of CTS after applying the
3-clustering algorithm on a six-node network. The black cir-
cles represent object owners. The scheduling queue includes



live transactions T1 and T2, and each transaction indicates
its objects in use. If T3 requests o3, CTS checks for conflicts
between T3 and the enqueued transactions (i.e., T1 and T2).
CTS aborts T2 because of two conflicts among T1, T2 and
T3. T2 restarts after T1 and T3 commit. The committed
transactions are dequeued, and T2 is enqueued.

We consider two effects of CTS on clusters. First, when
a transaction requests an object, CTS checks for conflicts
between the transaction and the previous requesting trans-
actions and aborts some transactions in advance to prevent
other transactions from aborting. This results in a reduced
number of aborts. Second, in TFA, if a transaction aborts,
the transaction will restart and request an object again,
incurring communication delays. However, in CTS, object
owners hold aborted transactions. When validation of an
object completes, the object is sent to the nodes invoking the
aborted transactions. Thus, CTS lets the aborted transactions
use newly updated objects without requesting the object
again, reducing communication delays.

C. Analysis

We now show that CTS outperforms another scheduler in
speed. Recall that CTS uses TFA to guarantee a consistent
view of shared objects between distributed transactions, and
ensure atomicity for object operations. In [28], TFA is shown
to exhibit opacity (i.e., its correctness property) and strong
progressiveness (i.e., its progress property) [16]. Each cluster
maintains the same copy of objects and guarantees TFA’s
properties. Thus, CTS for each cluster ensures opacity and
strong progressiveness. For the purpose of analysis, we
consider a symmetric network of N nodes scattered in a
metric space. The local execution time of Ti is defined as
γi,

∑N
i=1 γi = ΓN for N transactions. We consider three

different models: no replication (NR), partial replication
(PR), and full replication (FR) in cc DTM to show the
effectiveness of CTS in PR.

Definition 1: Given a scheduler A and N transactions in
DTM, makespanNA (Model) is the time that A needs to
complete N transactions on Model.

If only a transaction Ti exists and Ti requests an ob-
ject from nj on NR, it will commit without any con-
tention. Thus, makespan1

A(NR) is 2×d(ni, nj)+γi under
any scheduler A.

Definition 2: The relative competitive ratio (RCR) of
schedulers A and B for N transactions on Model in DTM
is makespanN

A (Model)

makespanN
B (Model)

. Also, the relative competitive ratio
(RCR) of model 1 and 2 for N transactions on scheduler
A in DTM is makespanN

A (Model1)

makespanN
A (Model2)

.
Given schedulers A and B for N transactions, if RCR

(i.e., makespanN
A (Model)

makespanN
B (Model)

) < 1, A outperforms B. Thus,
RCR of A and B indicates a relative improvement be-
tween schedulers A and B if makespanNA (Model) <
makespanNB (Model). In the worst case, N transactions are

simultaneously invoked to update an object. Whenever a
conflict occurs between two transactions, let scheduler B
abort one of these and enqueue the aborted transaction (to
avoid repeated aborts) in a distributed queue. The aborted
transaction is dequeued and restarts after a backoff time. Let
the number of aborts of Ti be denoted as λi. We have the
following lemmas.

Lemma 1: Given scheduler B and N transactions,∑N
i=1 λi ≤ N − 1.

Proof: Given a set of transactions T =
{T1, T2, · · ·TN}, let Ti abort. When Ti is enqueued,
there are ηi transactions in the queue. Ti can only commit
after ηi transactions commit if ηi transactions have been
scheduled. Hence, if a transaction is enqueued, it does not
abort. Thus, one of N transactions does not abort. The
lemma follows.

Lemma 2: Given scheduler B and N transactions,
makespanNB (NR) ≤ 2(N − 1)

∑N−1
i=1 d(ni, nj) + ΓN .

Proof: Lemma 1 gives the total number of aborts on N
transactions under scheduler B. If a transaction Ti requests
an object, the communication delay will be 2×d(ni, nj) for
both requesting and object retrieving times. Once Ti aborts,
this delay is incurred again. To complete N transactions
using scheduler B, the total communication delay will be
2(N − 1)

∑N−1
i=1 d(ni, nj). The theorem follows.

Lemma 3: Given scheduler B, N transactions, k replica-
tions, makespanNB (PR) ≤ (N−k)

∑N−k
i=1 d(ni, nj)+(N−

k + 1)
∑N−1
i=1

∑k−1
j=1 d(ni, nj) + ΓN .

Proof: In PR, k transactions do not need to remotely
request an object, because k nodes hold replicated objects.
Thus,

∑N−k
i=1 d(ni, nj) is the requesting time of N transac-

tions and
∑N−1
i=1

∑k−1
j=1 d(ni, nj) is the validation time based

on atomic multicasting for only k nodes of each cluster. The
theorem follows.

Lemma 4: Given scheduler B and N transactions,
makespanNB (FR) ≤

∑N−1
i=1

∑N−1
j=1 d(ni, nj) + ΓN .

Proof: Transactions request objects from their own
nodes, so their requesting times do not occur in FR, even
when the transactions abort. The basic idea of transactional
schedulers is to minimize conflicts through enqueueing
transactions when the transactions request objects. Thus,
the transactional schedulers (i.e, B and CTS) do not af-
fect makespanNx∈{B,CTS}(FR). Thus, when a transaction
commits, FR takes

∑N−1
i=1

∑N−1
j=1 d(ni, nj) for only atomic

broadcasting to support one-copy serializability.
Theorem 5: Given scheduler B and N transactions,

makespanNB (FR) ≤ makespanNB (PR) ≤ makespanNB
(NR).

Proof: Given k PR, limk→1makespan
N
B (PR) ≤

2(N − 1)
∑N−1
i=1 d(ni, nj) + ΓN , and

limk→N makespan
N
B (PR) ≤

∑N−1
i=1

∑N−1
j=1 d(ni, nj) +

ΓN . The theorem follows.
Theorem 6: Given N transactions and M objects, the



RCR of schedulers CTS on PR and scheduler B on FR
is less than 1, where N > 3.

Proof: Let
∑N−1
i=1 d(ni, nj) denote δN−1. To show that

the RCR of CTS on PR and B on FR is less than 1,
makespanNCTS(PR) < makespanNB (FR). CTS detects
potential conflicts and aborts a transaction incurring the
conflicts. The aborted transaction does not request objects
again. Thus we derive makespanNCTS(PR) ≤ 2MδN−k +

M
∑N−1
i=1 δk−1 + MΓN . 2δN−k + (N − 1)δk−1 ≤ (N −

1)δN−1, so that 2δN−k ≤ (N − 1)δN−k. Only when
N ≥3, PR is feasible. Hence, makespanNCTS(PR) <
makespanNB (FR), where N > 3. The theorem follows.

Theorem 6 shows that CTS in PR performs better than
FR. Even though PR incurs requesting and object retrieving
times for transactions, CTS minimizes these times, resulting
in less overall time than the broadcasting time of FR.

IV. IMPLEMENTATION AND EXPERIMENTAL
EVALUATION

A. Experimental Setup

We implemented CTS in the HyFlow DTM frame-
work [28], and developed six benchmarks for experimental
studies. The benchmarks include two monetary applications
(Bank and Loan) [28], distributed versions of the Vacation
of the STAMP benchmark suite [7], and three distributed
data structures including Counter, Red/Black Tree (RB-
Tree) [17], and Distributed Hash Table (DHT).

To select k nodes for distributing replicas of each object,
we group nodes into clusters, such that nodes in a cluster
are closer to each other, while those between clusters are
far apart. Recall that the distance between a pair of nodes in
a metric-space network determines the communication cost
of sending a message between them. We use a k clustering
algorithm based on METIS [22], to generate k clusters with
small intra-cluster distances i.e., k nodes may hold the same
objects. Our partial replication relies on the usage of a total
order multicast (TOM) primitive to ensure agreement on
correctness in a genuine multicast protocol [30]. The object
owners for each cluster update objects through a TOM-based
protocol.

We use low and high contention, which are defined as 90%
and 10% read transactions of one million active concurrent
transactions per node, respectively [17]. A read transac-
tion includes only read operations, and a write transaction
consists of only write operations [17]. Our experiments
were conducted on 24-node testbed. Each node is an AMD
Opteron processor clocked at 1.9GHz. We use Ubuntu Linux
10.04 server OS and a network with a private gigabit
ethernet. Each experiment is the average of ten repetitions.
The number of objects for a transaction is selected randomly
from 2 to 20. We considered CTS(30) and CTS(60), meaning
CTS over 30% and 60% object owners of the total nodes,
respectively. For instance, CTS(30) under 10 nodes means

CTS over 3-clustering algorithm. We measured the trans-
actional throughput (number of committed transactions per
second) under increasing number of requesting nodes and
failed nodes.

B. Evaluation
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Figure 4. Throughput of Bank Benchmark with No Node Failures.

Figure 4 intends to show two effects of scheduling by CTS
and the improvement of object availability by increasing
object locality. To show the effectiveness of CTS, TFA
is compared with CTS(0) – the combination of CTS and
TFA with no replication. CTS(0) improves throughput over
TFA as much as 1.5× under high contention because the
number of conflicts decreases. CTS(0) outperforms CTS(90)
in throughput, but it is non-fault-tolerant. The throughput
produced by CTS(90) is degraded due to the large number
of broadcasting messages needed to update all replicas. Due
to high object availability on CTS(90), the requesting times
of aborted transactions are less reduced. Meanwhile, due
to low object availability on CTS(0), the requesting times
are more reduced but object retrieving times increase. Thus,
CTS(30) and CTS(60) achieve decreased object requesting
and retrieving times, resulting in a better throughput than
CTS(0) and CTS(90).

We considered two competitor DTM implementations:
GenRSTM [8] and DecentSTM [4]. GenRSTM is a generic
framework for replicated STMs and uses broadcasting to
achieve transactional properties. DecentSTM implements a
fully decentralized snapshot algorithm, minimizing aborts.
We compared CTS with GenRSTM and DecentSTM.

Figure 5 shows the throughput of three benchmarks for
CTS(30), CTS(60), GenRSTM, and DecentSTM with 20%
node failure under low and high contention, respectively. In
these experiments, 20% of nodes randomly fail. GenRSTM
broadcasts updates to all other replicas, which incurs a over-
head. DecentSTM is based on a snapshot isolation algorithm,
which requires searching the history of objects to find a valid
snapshot. This algorithm also incurs a significant overhead.
Due to those overheads, their performance degrades for
more than 24 requesting nodes. Thus we observe that CTS
yields higher throughput than GenRSTM and DecentSTM.
In particular, 60% of nodes are entitled to the ownership
of an object based on CTS(60). CTS(60) maintains smaller
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Figure 5. Throughput of 3 Benchmarks with 20% Node Failure under
Low and High Contention (5 to 24 nodes).

clusters than CTS(30), so the communication delays to
request and retrieve objects decrease, but the number of
messages increases. Under high contention, CTS avoids
the large number of conflicts, so CTS yields much higher
throughput than GenRSTM and DecentSTM.

Figure 6 shows the throughput of three benchmarks for
CTS(60), GenRSTM, and DecentSTM with 50% node fail-
ure under low and high contention, respectively. GenRSTM’s
and DecentSTM’s throughput do not degrade as the number
of failed nodes increases, because every node holds repli-
cated objects. However, in CTS, this causes communication
delays to increase, degrading throughput, because object
owners may fail or scheduling lists may be lost. Over
less than ten nodes with 50% failed nodes, GenRSTM
yields higher throughput than CTS, because the number of
messages decreases. As the number of nodes increases, CTS
outperforms GenRSTM and DecentSTM in throughput.

We computed the throughput speedup of CTS(60) over
GenR STM and DecentSTM i.e., the ratio of CTS’s through-
put to the throughput of the respective competitor. Figure 7
summarizes the throughput speedup under 20% and 50%
node failure. Our evaluations reveal that CTS(60) improves
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Figure 6. Throughput of 3 Benchmarks with 50% Node Failure under
Low and High Contention (5 to 24 nodes).

Bank Loan Counter RBTreeVacation DHT
0

0.5

1

1.5

2

2.5

Benchmarks

T
hr

ou
gh

pu
t S

pe
ed

up

Speedup with 20% Node Failure

 

 

GenRSTM(Low)
DecentSTM(Low)
GenRSTM(High)
DecentSTM(High)

(a) 20% Node Failure

Bank Loan Counter RBTreeVacation DHT
0

0.5

1

1.5

2

2.5
Speedup with 50% Node Failure

T
hr

ou
gh

pu
t S

pe
ed

up

Benchmarks

(b) 50% Node Failure

Figure 7. Summary of Throughput Speedup

throughput over GenRSTM by as much as 1.9533 (95%)
∼ 2.0968 (109%) × speedup in low and high contention,
respectively, and over DecentSTM by as much as 1.9622
(96%) ∼ 2.1683 (116%) × speedup in low and high con-
tention, respectively. In other words, CTS improves through-
put over two existing replicated DTM solutions (GenRSTM
and DecentSTM) by as much as (average) 1.55× and 1.73×
under low and high contention, respectively.



V. RELATED WORK

Transactional scheduling has been explored in a number
of multiprocessor STM efforts [14], [1], [32], [13], [2].

In [14], Dragojević et. al. describe an approach that
dynamically schedules transactions based on their predicted
read/write access sets. In [1], Ansari et. al. discuss the Steal-
On-Abort transaction scheduler, which queues an aborted
transaction behind the non-aborted transaction, and thereby
prevents the two transactions from conflicting again.

Yoo and Lee present the Adaptive Transaction Scheduler
(ATS) [32] that adaptively controls the number of concur-
rent transactions based on the contention intensity: when
the intensity is below a threshold, the transaction begins
normally; otherwise, the transaction stalls and does not begin
until dispatched by the scheduler. Dolev et. al. present the
CAR-STM scheduling approach [13], which uses per-core
transaction queues and serializes conflicting transactions by
aborting one and queueing it on the other’s queue, preventing
future conflicts. CAR-STM pre-assigns transactions with
high collision probability (application-described) to the same
core, and thereby minimizes conflicts.

Blake, Dreslinski, and Mudge propose the Proactive
Transactional Scheduler (PTS) [5]. PTS detects “hot spots”
of contention that can degrade performance, and proac-
tively schedules affected transactions around those hot spots.
Evaluation on the STAMP benchmark suite [7] shows PTS
outperforming a backoff-based policy by an average of 85%.

Attiya and Milani present the BIMODAL scheduler [2],
which targets read-dominated and bimodal (i.e., those with
only early-write and read-only) workloads. BIMODAL al-
ternates between “writing epochs” and “reading epochs”
during which writing and reading transactions are given
priority, respectively, ensuring greater concurrency for read
transactions. Kim and Ravindran extend the BIMODAL
scheduler for DTM in [23]. Their scheduler, called Bi-
interval, groups concurrent requests into read and write inter-
vals, and exploits the tradeoff between object moving times
(incurred in dataflow DTM) and concurrency of reading
transactions, yielding high throughput.

All past transactional schedulers have been studied for the
single-copy STM/DTM model. Replicated object models for
DTM have been studied in [33], [10], [9], [27], [25], [6],
but these efforts do not consider or support transactional
scheduling. While [33] consider cc DTM, all other efforts
focus on cluster DTM.

Zhang and Ravindran [33] propose a quorum-based repli-
cation (QR) framework for DTM to enhance availability of
objects without incurring high communication overhead. All
nodes based on QR have to hold all objects, and one-copy
serializability is ensured using a flooding algorithm.

D2STM [10] relies on a commit-time atomic broadcast-
based distributed validation to ensure global consistency.
Motivated by database replication schemes, distributed cer-
tification based on atomic broadcast [18] avoids the costs

of replica coordination during the execution phase and runs
transactions locally in an optimistic fashion.

Carvalho et. al. present Asynchronous Lease Certification
(ALC) DTM replication scheme in [9], which overcomes
some drawbacks of atomic broadcast-based replication [10].
ALC reduces the replica coordination overhead and avoids
unnecessary aborts due to conflicts at remote nodes using
asynchronous leases. ALC relies on uniform reliable broad-
cast [18] to exclusively disseminate the writesets, which
reduces inter-replica synchronization overhead. Manassiev et
al. present a page-level distributed multiversioning algorithm
for cluster DTM [27].

Kotselidis et al. present the DiSTM cluster DTM frame-
work in [25]. Under the TCC protocol [19], DiSTM induces
large traffic overhead at commit time, as a transaction
broadcasts its read/write sets to all other transactions, which
compare their read/write sets with those of the committing
transaction. Using lease protocols [15], this overheard is
eliminated. However, they also show that an extra validation
step is added to the master node as well as bottlenecks
are created under high contention because of acquiring and
releasing the leases.

None of the replication models for cc and cluster DTM
consider transactional scheduling. Also, as mentioned be-
fore, broadcasting transactional read/write sets or memory
differences as done for cluster DTM is inherently non-
scalable for cc DTM (which is our focus), as messages
transmitted grow quadratically with the number of nodes.

VI. CONCLUSIONS

We presented a transactional scheduler for a replicated
object model in cc DTM, called CTS. CTS uses multiple
clusters to support partial replication for fault-tolerance. The
clusters are built such that inter-node communication within
each cluster is small. To reduce object requesting times,
CTS partitions object replicas into each cluster (one per
cluster), enqueues live transactions, and identifies transac-
tions that must be aborted for enhancing concurrency of
other transactions. CTS’s design shows how cluster-based
transactional scheduling impacts throughput in DTM. Our
implementation and experimental evaluation shows that CTS
enhances transactional throughput over two state-of-the-art
replicated DTM solutions, GenRSTM and DecentSTM, by
as much as (average) 1.55× and 1.73× under low and high
contention, respectively.
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