
Utility Accrual Channel Establishment in
Multihop Networks

Karthik Channakeshava, Student Member, IEEE, Binoy Ravindran, Senior Member, IEEE, and

E. Douglas Jensen, Member, IEEE

Abstract—We consider Real-Time CORBA 1.2 (Dynamic Scheduling) distributable threads operating in multihop networks. When

distributable threads are subject to time/utility function-time constraints, and timeliness optimality criteria such as maximizing accrued

system-wide utility is desired, utility accrual real-time channels must be established. Such channels transport messages that are

generated as distributable threads transcend nodes, in a way that maximizes system-wide, message-level utility. We present 1) a

localized utility accrual channel establishment algorithm called Localized Decision for Utility accrual Channel Establishment (or

LocDUCE) and 2) a distributed utility accrual channel establishment algorithm called Global Decision for Utility accrual Channel

Establishment (or GloDUCE). Since the channel establishment problem is NP-complete, LocDUCE and GloDUCE heuristically

compute channels, with LocDUCE making decisions based on local information pertaining to the node and GloDUCE making global

decisions. We simulate the performance of the algorithms and compare them with the Open Shortest Path First (OSPF) routing

algorithm and the optimal algorithm. We also implement these algorithms in a prototype testbed and experimentally compare their

performance with OSPF. Our simulation and experimental measurements reveal that GloDUCE and LocDUCE accrue significantly

higher utility than OSPF and also perform close to the optimal for some cases. Furthermore, GloDUCE outperforms LocDUCE under

high downstream traffic.

Index Terms—Real-time systems, multihop networks, real-time channels, time/utility functions.

�

1 INTRODUCTION

THE recent introduction of OMG’s Real-Time CORBA 1.2
standard [1] (abbreviated here as RTC2) and Sun’s

upcoming Distributed Real-Time Specification for Java [2]
specify distributable threads as the programming and
scheduling abstraction for system-wide, end-to-end sche-
duling in real-time distributed systems.1 A distributable
thread is a single thread of execution with a globally unique
identifier that transparently extends and retracts through
local and remote objects. Thus, a distributable thread is an
end-to-end control flow abstraction, with a logically distinct
locus of control flow movement within/among objects and
nodes. In the rest of the paper, we refer to distributable
threads as threads except as necessary for clarity.

A thread carries its execution context as it transits node
boundaries, including its scheduling parameters (e.g., time
constraints, execution time), identity, and security creden-
tials. Hence, threads require that Real-Time CORBA’s Client
Propagated model be used. The propagated thread context is
used by node schedulers for resolving all node-local
resource contention among threads, such as that for a
node’s physical (e.g., CPU, I/O) and logical (e.g., locks)

resources, and for scheduling threads to optimize system-
wide timeliness. Thus, threads constitute the abstraction for
concurrency and scheduling.

RTC2 describes several approaches for thread schedul-
ing, called Distributed Scheduling: Cases 1, 2, 3, and 4. We
consider the Case 2 approach, according to which, node
schedulers use the propagated thread scheduling para-
meters and independently schedule thread segments on
respective nodes to optimize the system-wide timeliness
optimality criterion. Thus, scheduling decisions made by a
node scheduler are independent of other node schedulers.
Though this results in approximate, global, system-wide
timeliness, RTC2 supports the approach due to its simpli-
city and capability for coherent end-to-end scheduling.

1.1 TUFs and UA Scheduling

In this paper, we focus on dynamic real-time systems at any
level(s) of an enterprise—e.g., in the defense domain, from
devices such as multimode phased array radars [5] to entire
battle management systems [6]. Such systems are funda-
mentally distinguished by the fact that they operate in
environments with dynamically uncertain properties. These
uncertainties include transient and sustained resource
overloads due to context-dependent activity execution time
demands and arbitrary activity arrival patterns. Never-
theless, such systems’ desire the strongest possible assur-
ances on activity timeliness behavior.

When resource overloads occur, some activities must be
scheduled to complete at suboptimal times or be rejected.
The criteria used for scheduling should include the
activities’ urgency and importance, which are orthogonal.
In some overload cases, the objective is to complete the most

428 IEEE TRANSACTIONS ON COMPUTERS, VOL. 55, NO. 4, APRIL 2006

. K. Channakeshava and B. Ravindran are with the Bradley Department of
Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA
24061. E-mail: {kchannak, binoy}@vt.edu.

. E.D. Jensen is with the Information Technologies Directorate, The MITRE
Corporation, Bedford, MA 01730. E-mail: jensen@mitre.org.

Manuscript received 17 Aug 2004; revised 3 Aug. 2005; accepted 24 Aug.
2005; published online 22 Feb. 2006.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number TC-0271-0804.

1. Distributable threads first appeared in the Alpha OS [3] and later in
Alpha’s descendant, the MK7.3 OS [4].

0018-9340/06/$20.00 � 2006 IEEE Published by the IEEE Computer Society

important of the most urgent activities and, in other cases, it
is to complete the most urgent of the most important
activities. Thus, a scheduling facility that accommodates
overloads must provide a way of spcifying trade-offs
between urgency and importance. When the resources are
underloaded, this distinction is not needed because, if
urgency alone is the optimality criterion, such as with the
EDF discipline, all deadlines are guaranteed to be met [7].

Deadlines by themselves cannot express both urgency
and importance. Thus, we consider the abstraction of time/
utility functions (or TUFs) [8] that express the utility of
completing an application activity as a function of that
activity’s completion time. We specify deadline as a binary-
valued, downward “step” shaped TUF; Fig. 1a shows
examples. Note that a TUF decouples importance and
urgency—i.e., urgency is measured on the X-axis, and
importance is denoted by utility on the Y-axis.

Besides overloads, many dynamic real-time systems are
also distinguished by activities that are subject to nondead-
line time constraints, such as those where the utility attained
for activity completion varies (e.g., decreases, increases)
with completion time. This is in contrast to deadlines where
a positive utility is obtained for completing the activity
anytime before the deadline, after which zero or arbitrarily
negative utility is obtained. Fig. 1b, Fig. 1c, and Fig. 1d show
example time constraints from two real applications in the
defense domain (see [9] and references therein for applica-
tion details).

When activity time constraints are specified using TUFs,
which subsume deadlines, the scheduling criteria are based
on accrued utility, such as maximizing the sum of the
activities’ attained utilities. Such criteria are called Utility
Accrual (or UA) criteria and scheduling algorithms using
such criteria are called UA scheduling algorithms. Several
UA scheduling algorithms are presented in the literature
[11], [12], [13], [14]. RTC2 has IDL interfaces for the UA
scheduling discipline, besides others such as fixed priority,
EDF, and LLF.

UA algorithms that seek maximal summed utility under
downward step TUFs (or deadlines) [12], [13], [15] default
to EDF during underloads since EDF can satisfy all
deadlines during those situations. Consequently, they
obtain the maximum total utility during underloads. When
overloads occur, they favor activities that are more
important (since more utility can be attained from them),
irrespective of their urgency. Thus, UA algorithms’ time-
liness behavior subsume the optimal timeliness behavior of
deadline scheduling.

1.2 UA Channel Establishment

When a multihop network—i.e., one where end-hosts are
interconnected by multiple switches and routers—is con-
sidered as the underlying platform for an RTC2 application,
distributable threads will compete for node-local resources
as well as network resources. Node-local resources are
those resources that are local to a system “node” such as an
end-host or a router. Such resources include physical
resources (e.g., processor, disk, I/O) and logical resources
(e.g., locks).

Network resources may include real-time channels.
Traditionally, a real-time channel is a unidirectional virtual
circuit that is established for application-level messages in a
multihop network with guaranteed timeliness properties
[16]. In the context of an RTC2 application, application-level
messages include those that are generated when threads
invoke operations on remote objects and thus transit nodes.
Thus, such messages contend for real-time channels in
multihop networks. Moreover, they are indirectly subject to
the timeliness properties of their “parent” threads, on
which time constraints and timeliness optimality criteria are
explicitly expressed.

While scheduling of threads on nodes and resolution of
node-local resource contention among threads is performed
by a scheduling algorithm, real-time channels are estab-
lished by a channel establishment algorithm. Thus, when
threads are subject to TUF time constraints and UA
optimality criteria, UA scheduling algorithms and UA
channel establishment algorithms must be used for coher-
ent system-wide resource management and for improved
timeliness optimization.

In this paper, we consider the problem of UA channel
establishment in multihop networks. We consider thread
time constraints that are specified using TUFs and the
optimality criterion of maximizing the sum of threads’
attained utilities. We focus on messages which underlie
threads, which are indirectly subject to the thread TUF time
constraints. For the purpose of maximizing the sum of
threads’ attained utilities, we consider the problem of
establishing channels for the messages such that the sum of
messages’ attained utilities are maximized.

Note that timeliness optimization at the message-level is
completely consistent with RTC2’s Case 2 approach as thread
messages, on behalf of threads, contend for real-time channel
resources. The contention among these messages is resolved
using the thread scheduling parameters (that messages carry)
and considering the thread-level optimality criterion at the

CHANNAKESHAVA ET AL.: UTILITY ACCRUAL CHANNEL ESTABLISHMENT IN MULTIHOP NETWORKS 429

Fig. 1. Example time constraints specified using time/utility functions: (a) Step TUFs, (b) MITRE/TOG AWACS track association TUF [9], and

(c), (d) GD/CMU Coastal Air Defense System TUFs [10].

message-level. Thus, message-level timeliness optimization

contributes to thread-level timeliness optimization.
The UA channel establishment problem can be shown to

be NP-complete.2 Thus, we present 1) a single node

algorithm called Local Decision for Utility accrual Channel

Establishment (or LocDUCE) and 2) a distributed algorithm

called Global Decision for Utility accrual Channel Establish-

ment (or GloDUCE). The algorithms heuristically compute

channels, seeking to maximize the sum of messages’

attained utilities, as much as possible. We evaluate the

algorithms by simulation studies and implementation

measurements, and by comparing them with the Internet

standard Open Shortest Path First (OSPF) routing algo-

rithm. Our simulation studies and implementation mea-

surements reveal that LocDUCE and GloDUCE accrue

significantly higher utility than OSPF. Furthermore, we

observe that GloDUCE performs better than LocDUCE

under high downstream link traffic conditions.
We also compare our algorithms with the optimal

algorithm for small problem sizes. Our comparisons with

the optimal algorithm reveal that both LocDUCE and

GloDUCE perform very close to the optimal for some

homogeneous TUF shapes (above 90 percent of the

optimal). The performance of LocDUCE and GloDUCE

degrades for heterogeneous TUFs (to about 88 percent). We

also evaluate the algorithms’ performance for varying

upstream and downstream traffic. In both cases, we observe

that the performance of LocDUCE degrades to some extent

(as expected), while GloDUCE yields close to the optimal

performance. Further, we observe that performance of

GloDUCE degrades to 85 percent of the optimal for

heterogeneous TUFs.
Thus, the contribution of the paper is the LocDUCE and

GloDUCE utility accrual channel establishment algorithms.

Most of the past efforts on real-time channel establishment

[16], [18], [19], [20] focus on the deadline time constraint. To

the best of our knowledge, we are not aware of any other

efforts that solve the problem of TUF/UA channel establish-

ment, which is solved by the LocDUCE and GloDUCE

algorithms.

1.3 Paper Outline

The rest of the paper is organized as follows: We describe

our message, timeliness, and system models in Section 2.

Section 3 presents a “bottom-up” description of the

LocDUCE and GloDUCE algorithms. We discuss the

simulation study in Section 4. Section 5 discusses the

implementation of the algorithms and the resulting perfor-

mance measurements. We overview past research on real-

time channel establishment and contrast them with our

work in Section 6. Finally, we conclude the paper and

identify future work in Section 7.

2 THE MESSAGE, TIMELINESS, AND SYSTEM

MODELS

We consider internode messages that are generated when
distributable threads invoke operations on remote objects
(and thus transcend node boundaries). Thus, all messages
are assumed to be created as a result of the threads’ remote
operation invocations. Table 1 shows the notations em-
ployed in the paper. We denote the set of messages as
mi 2M; i 2 ½1; n�. The arrival instant and termination time
(or deadline) of a message mi are denoted as AðmiÞ and
XðmiÞ, respectively. A message’s termination time is the
time after which its utility is zero (see further on message
TUFs). The bit length of a message mi at the data link-layer
is denoted as bðmiÞ. The physical framing overheads
increase this size into an actual bit length b

0 ðmiÞ > bðmiÞ
on the wire. Thus, the transmission latency of a message mi

is given by li ¼ b
0 ðmiÞ= , where denotes the nominal

throughput of the underlying network, e.g., 109 bits/s for
Gigabit Ethernet.

We consider the unimodal arbitrary arrival model for
messages, as this model dominates other arrival models,
including the aperiodic, sporadic, and periodic arrival
models, due to the “strength” of the “adversary” embodied
in the model [21]. For a message mi, the unimodal arrival
model defines the size of a sliding time window wðmiÞ and
the maximum number of arrivals aðmiÞ that can occur
during that window.

Each message mi 2M has a time constraint that is
expressed using a TUF. The TUF time constraint of a
message is derived from the time constraint of the thread to
which the message belongs. We denote message mi’s TUF
as Ui :ð Þ. Thus, mi’s arrival at its destination host application
layer (which triggers the invoked operation on an object on
the host) at a time t will yield a utility Ui tð Þ. Though TUFs
can take arbitrary shapes, we restrict our focus to mono-
tonically nonincreasing (unimodal) TUFs. An example can be
seen in Fig. 1b.

We assume that Ui tð Þ � 0; 8t 2 AðmiÞ; XðmiÞ½ �; i 2 ½1; n�.
We consider the system to be a multihop network with

an arbitrary topology that consists of several networks of
various types. A typical example is a local area network (or
LAN) that interconnects a set of hosts using one or more
switches. A collection of such LANs can further be
interconnected together by a set of routers, thus forming a
wide area network (or WAN). In such a network, a message
can travel from a source host to a destination host by
passing through a number of intermediate nodes (switches
and routers). The route from a source to a destination thus
includes a set of nodes where a message can be stored and
forwarded to the appropriate next hop. Fig. 2a shows an
example of such a network.

These types of distributed (real-time) systems that we
focus on in this work are purely intra-enterprise—i.e., they are
deployed within an enterprise with some level of system-
wide agreement on infrastructure technology, such as
agreement on timeliness semantics and sufficiently synchro-
nized clocks. We consider such a WAN as our target system,
which is consistent with the current deployment of distrib-
uted real-time systems (e.g., Real-Time CORBA systems). It
should be noted that it is extremely difficult to create the

430 IEEE TRANSACTIONS ON COMPUTERS, VOL. 55, NO. 4, APRIL 2006

2. To maximize the system-wide accrued utility (under nonincreasing
TUFs), it is necessary to find the lowest delay path from a source to its
destination. For this, each intermediate router must compute a minimum
cost tree with end-to-end delay constraints. It has been shown in [17] that
this problem is NP-complete.

technical agreement and coordination between multiple
enterprises which is required for an inter-enterprise deploy-
ment—we exclude such systems in our work.

Fig. 2b and Fig. 2c show the components used in the
system model. Fig. 2b shows the end-host and interface
structures and Fig. 2c shows the router structure. We
assume that each system node—end-hosts, switches, and
routers—is equipped with the UPA (utility accrual packet
scheduling algorithm) presented in [14]. The messages
arrive at the MAC layer and are placed on the output queue
for the outgoing network link. When the link becomes
physically free for transmission, the (UPA) message

scheduler selects a message from the queue for transmission

toward an intermediate node, such as a router or a gateway.
In the rest of the paper, we will refer to message and

packet interchangeably and a message is assumed to be

transported as a single packet.

3 THE LOCDUCE AND GLODUCE ALGORITHMS

We follow a “bottom-up” approach in describing LocDUCE

and GloDUCE. The key step in both the algorithms is to

estimate the delay incurred by a message for a single hop

under UPA. Thus, we first overview UPA, analyze the

CHANNAKESHAVA ET AL.: UTILITY ACCRUAL CHANNEL ESTABLISHMENT IN MULTIHOP NETWORKS 431

Fig. 2. The system model and its components. (a) A multihop network. (b) End-host and interface structure. (c) Router system structure.

TABLE 1
Notations

single hop delay under UPA, and, subsequently, present the
LocDUCE algorithm. Detailed experimental evaluation of
the LocDUCE algorithm is presented in [22]. Since
GloDUCE is a distributed algorithm, it estimates the path
delay from source to destination under UPA. Thus, we
analyze the path delay before presenting GloDUCE.

3.1 Overview of UPA

UPA is a message scheduling algorithm present at the MAC
layer of system nodes (e.g., hosts, switches) for selecting
outbound messages for transmission. The algorithm max-
imizes the sum of messages’ attained utilities. UPA first
constructs a tentative schedule by sorting messages in
decreasing order of their “return on investments.” The
return on investment for a message is the potential utility
that can be obtained by spending a unit of network
transmission time for the message. It is determined as the
ratio of the maximum possible message utility to the
message termination time. In [14], this ratio is called
“pseudoslope,” since it only approximates the slope.

Messages that are found to be infeasible are dropped
from the tentative schedule. The algorithm then maximizes
the local aggregate utility for a particular sequence of
messages. Consider two schedules, �a ¼ h�1;mi;mj; �2i and
�b ¼ h�1;mj;mi; �2i, of a message set A (see Table 1 for a
description of the notations). The only difference between
the schedules is the order in which messages mi and mj

appear in them. The scheduling decision at time t, where
t ¼

P
k2�1

lk, that will lead to maximum local aggregate
utility is determined by computing:

�i;j tð Þ ¼ Ui tþ lið Þ þ Uj tþ li þ lj
� �� �

� Uj tþ lj
� �

þ Ui tþ lj þ li
� �� �

:

Thus, if �i;j tð Þ � 0, �a will yield a higher aggregate utility
than �b.

UPA maximizes local aggregate utility by examining
adjacent pairs of messages in the schedule, computing �,
and swapping the messages, if the reverse order can lead to
higher local aggregate utility. The procedure is repeated
until no swaps are required. The message that appears first
in the resulting schedule is then selected for transmission.
Thus, given a schedule consisting of � messages, UPA’s
objective is to Maximize

P�
i¼1 UiðtiÞ, where ti is the absolute

time at which message mi arrives at its destination. This
scheduling problem is NP-hard [14]. It has been shown in
[14] that UPA is the best heuristic algorithm for this

problem, outperforming the previously known best algo-
rithm presented in [23]. UPA is an asynchronous algorithm
in the sense that it is invoked whenever the outgoing
network link becomes “free” for transmission. In the
implementation of UPA as presented in [14], this is
accomplished by having the network device driver inter-
rupt UPA when the outgoing link becomes free.

3.2 Single Hop Delay

Fig. 3a, Fig. 3b, and Fig. 3c show the typical set of input and
output queues through which messages flow from the
application layer at a source node, via an intermediate node
(switch and/or router), to the application layer at a
destination node. The delay incurred by the message in
all the queues has to be taken into account while calculating
the end-to-end delay. Note that, in our system model, all
packet queues are assumed to be scheduled by UPA.

3.2.1 Delay at First Output Queue

Consider an application packet p that arrives at the first
output queue of a source node i (denoted OutQ1 in Fig. 3a).
In [24], we show that the upper bound on the total delay
incurred by p in this queue is given by:

Oi
1 pð Þ ¼

X
q2Pi

X pð Þ þX qð Þ
w qð Þ

� �
a qð Þ� þ X pð Þ

�

� �
�: ð1Þ

For the definitions of terms used in (1), see Table 1.
This upper bound Oi

1ðpÞ derived in [24] is not tight. This
is because, Oi

1ðpÞ is established in [24] by observing that any
packet q will be scheduled by UPA before packet p, only if q
arrives no sooner than AðpÞ �XðqÞ and no later than
AðpÞ þXðpÞ, where AðpÞ and XðpÞ denote p’s arrival time at
the output queue and termination time, respectively. This
interference interval for p, IðpÞ ¼ AðpÞ �XðqÞ; AðpÞ þXðpÞ½ �
is only sufficient for a packet q to interfere with the
transmission of packet p. Packet q can interfere with packet p
only if q arrives during this interval.

Developing a necessary and sufficient interference
interval will require schedule construction. To avoid this
and still obtain a “tighter” interference interval, we consider
the notion of an interference interval during which a packet
q may interfere with packet p with a very high likelihood.

Observe that UPA sorts packets by decreasing order of
their pseudoslopes. Thus, if the pseudoslope of packet q is
larger than that of packet p, for all times during p’s
interference interval IðpÞ, then q has a very high likelihood

432 IEEE TRANSACTIONS ON COMPUTERS, VOL. 55, NO. 4, APRIL 2006

Fig. 3. System model and input/ouput queues at source, router, and destination nodes. (a) Source node. (b) Router. (c) Destination node.

for interfering with p’s transmission. Thus, if �ðp; tÞ denotes

the pseudoslope of packet p at time t, then our first tighter

interference condition becomes:

�ðq; tÞ > �ðp; tÞ; 8t 2 IðpÞ: ð2Þ

Another key step in UPA’s scheduling process is examin-

ing adjacent pairs of packets in the schedule, computing �,

and swapping the packets if the reverse order can lead to

higher local aggregate utility. Suppose up;qðtÞ is the utility

obtained by transmitting p before q, and uq;pðtÞ for transmit-

ting q before p, then �q;pðtÞ ¼ uq;pðtÞ � up;qðtÞ. Thus, if

�q;p tð Þ � 0 for all time instants t during the interval IðpÞ,
then, again, packet q has a very high likelihood for

interfering with p’s transmission. This becomes our second

tighter interference condition:

�q;p tð Þ � 0; 8t 2 IðpÞ: ð3Þ

We thus determine a tighter upper bound on p’s delay in

the first output queue at a source node i using (1) by

considering all packets q 2 Pi, only if q satisfies (2) and (3).

3.2.2 Delay at Second Output Queue

The delay incurred by a packet at the second output queue

(denoted OutQ0 in Fig. 3a) can be similarly derived, except

for two issues: 1) The input arrival rate of packets into the

second output queue will now change as it will depend

upon the rate at which packets will be output from the first

output queue, and 2) packet transmission times on the

outgoing network link (from the source node to the next

intermediate node).
For a packet p that can arrive at the first output queue of

a source node i for a maximum of aðpÞ times during an

interval wðpÞ, the rate at which the packet will be output

from the queue is given by:

Ri
1 pð Þ ¼

Oi
1 pð Þ
w pð Þ

� �
a pð Þ: ð4Þ

This will be the rate at which p will arrive at the second

output queue.
For a clock synchronization packet c, the arrival rate at

the second output queue is given by:

Ri
1 cð Þ ¼

Oi
1 cð Þ
�

� �
: ð5Þ

Thus, an upper bound on the delay incurred by a packet

p to arrive at the next intermediate node since its arrival at

the source node’s second output queue is given as:

Oi
0 pð Þ ¼

X
q2Pi

X pð Þ þX qð Þ � b
0 pð Þ

� 	
Ri

1 qð Þ
b0 qð Þ

þ �

� 	

þ X pð Þ � b
0 pð Þ

þ b

0
c

� 	
Ri

1 cð Þ
b0c

þ �

� 	
:

ð6Þ

3.2.3 Total Delay at a Node

Thus, an upper bound on the total delay incurred by a

packet p to arrive at the next intermediate node j, since its

arrival at a source node i’s first output queue, is given as:

Ni pð Þ ¼ Oi
1 pð Þ þOi

0 pð Þ: ð7Þ

Observe that the upper bound on the total delay incurred
by a packet p to arrive at the first input queue (denoted by
InQ0 in Fig. 3b) of any node j is also given by (6). Further,
node j can either be an intermediate or a destination node.
This is because the analysis for queues at the source node
(denoted OutQ1 and OutQ0 in Fig. 3a) also holds for the
queues at an intermediate node (denoted InQ0 and OutQ0

in Fig. 3b). Note that we have considered all interfering
packets as q 2 Pi. This includes packets generated by the
same thread as well as other threads.

3.3 LocDUCE Algorithm

The key heuristic employed by the algorithm is to allocate
channels for messages in decreasing order of their potential
return on investments. The return on investment for a
message is simply the timeliness utility that can be obtained
when the message is delivered to its destination.

To estimate the maximum possible return on investment
from a message, LocDUCE first allocates channels to each
message, assuming that the messages will not interfere with
each other (i.e., under zero contention between messages).
Thus, the algorithm considers the network as an un-
weighted graph, where each vertex represents a system
node and an edge represents a connection between a pair of
nodes. For each message, LocDUCE determines the shortest
path-distance from the source to destination (i.e., the one
with the smallest hop-count) by running the breadth-first-
search (BFS) algorithm. The path (or channel) with the
shortest path-distance for a message will yield the max-
imum possible utility for the message since all TUFs
considered are nonincreasing. Note that this utility is the
theoretical maximum possible utility; it may not be
achievable in practice due to message contention.

LocDUCE computes channels for messages in decreasing
order of the maximum possible message utility. Consider
the allocation of the channel for the kth message mk.
LocDUCE includes messages m1 to mk�1 in Pi, where Pi is a
set of messages that arrive at node i and are transmitted to
the next-hop node ðiþ 1Þ. For message mk (in decreasing
maximum possible utility order), the algorithm at any node i
first updates the network graph such that the edge
connecting i to the next-hop node ðiþ 1Þ is annotated with
the interference mk may suffer because of messages m1 to
mk�1. Once Pi has been updated with mk�1 messages, any
message that is included on the edge between nodes i and
ðiþ 1Þ may suffer interference from the mk�1 previously
allocated messages.

LocDUCE uses Dijkstra’s shortest-path algorithm to
determine the shortest path channel for message mk. Again,
the shortest path will yield the largest possible maximum
utility for the message. For determining the shortest path,
the weight of the outgoing edge from any node i to a next-
hop node ðiþ 1Þ in mk�1’s channel is determined using (7).
Note that (7) gives an upper bound on the total delay
incurred by the message to arrive at the next intermediate
node by traveling through the edge. The algorithm repeats
the process for each message mi 2M; i 2 ½1; n�.

While LocDUCE computes the channel for message mk,
it does not consider the interference that mk can cause on

CHANNAKESHAVA ET AL.: UTILITY ACCRUAL CHANNEL ESTABLISHMENT IN MULTIHOP NETWORKS 433

messages mi; i 2 ½1; k� 1� and accordingly update their
channels that were computed in earlier steps. This is
precisely due to the algorithm’s heuristic nature. LocDUCE
ignores such “backward” interference and reasons that it
will not be significant (as channels are allocated in the
decreasing order of maximum possible message utility).
Further, correcting such backward interference will be
computationally expensive. A high level description of
LocDUCE is given in Algorithm 1.

3.4 Determining End-to-End Delay

A channel from source node i to destination node j is a
sequence Cj

i ¼ hn0; n1; n2; � � � ; nmi of m hops, where n0

represents node i and nm represents node j. To determine
an upper bound on the end-to-end delay incurred by a packet
on a channel (from source application layer to destination
application layer), we need to aggregate the delay incurred by
the packet at each node in the channel. Thus, an (optimistic)
upper bound on the total delay incurred by a packet p on a
channel Cj

i of m hops is given by:

R p;Cj
i

 �
¼

Xm
i¼1

Ni pð Þ
" #

þ N̂jNj pð Þ; ð8Þ

where N̂jNjðpÞ denotes an upper bound on the total delay
incurred by packet p to arrive at the application layer of the
destination node j, since its arrival at InQ0 of j. N̂jNjðpÞ is
determined similar to (7), except that the packet transmis-
sion times on the outgoing network link considered in (6)
are excluded.

3.5 GloDUCE Algorithm

GloDUCE has the same heuristic (as LocDUCE) of allocat-
ing channels for messages in decreasing order of their
potential return on investments. Similar to LocDUCE,
GloDUCE first allocates channels for each message, assum-
ing that the messages will not interfere with each other. For
each message, GloDUCE determines the shortest path from
the source to destination (i.e., the one with the smallest hop-
count) by running BFS.

GloDUCE differs from LocDUCE in the following way:
While the channel for the kth message mk is determined, the

algorithm at any node first updates the network graph with
the channel of the ðk� 1Þth message, denoted mk�1,
computed in the previous step, i.e., for each node i, that
lie in message mk�1’s channel, GloDUCE includes mk�1 to
the set Pi. Here, Pi is the set of messages that have outgoing
channels from node i and can potentially interfere with
message mk. This is achieved through broadcasting the
channel information after establishment. Once Pi has been
updated with mk�1’s channel, any channel that includes the
outgoing edge from node i in mk�1’s channel may suffer
interference from mk�1. Such channels are updated and
reestablished.

GloDUCE uses Dijkstra’s algorithm to determine the
shortest path for message mk. Again, the shortest path will
yield the maximum possible utility for the message. For
determining the shortest path, the weight of the outgoing
edge from any node to a next-hop node in mk�1’s channel is
determined using (7). Note that (7) gives an upper bound on
the total delay incurred by the message to arrive at the next
intermediate node by traveling through the edge. The
interference along the entire channel is determined using (8).

When the GloDUCE algorithm on any node receives an
update from another node, it determines whether the new
channel will cause interference to an already established
channel. If an already established channel is affected by any
new channel, the algorithm recalculates the channel. A high
level description of GloDUCE is given in Algorithm 2.

4 SIMULATION STUDY

To study the performance of the algorithms in large data
spaces, we randomly generate network topologies with
increasing edge-to-node ratios. This increases the network
connectivity and provides a basis for comparison of the
proposed algorithms and OSPF. Some thread character-
istics, like the shape of the TUFs, message sizes, and
message termination times, are varied during the study.
Table 2 shows the parameters of the simulation experi-
ments. A more detailed description of the simulation model
and tools employed is available in [24].

434 IEEE TRANSACTIONS ON COMPUTERS, VOL. 55, NO. 4, APRIL 2006

The topology used in the simulation experiments
consisted of 15 routers interconnecting five source-destina-
tion pairs. The links connecting the nodes had a bandwidth
of 64kbps. The values of the bandwidth and data rate of
traffic generators are chosen such that the links are loaded
when more than one flow3 uses the same link. Each message
generated by a particular flow has the same message
characteristics (such as TUF, message size, etc.). The
simulation experiments can be broadly classified into two
categories:

1. Homogeneous TUFs—All threads have a similar
type of TUF.

2. Heterogeneous TUFs—Each thread has a different
type of TUF.

Experiments were conducted by varying interarrival
times, message sizes, and message termination times under
these classes of TUF shapes. The experiments were repeated
for different edge to node ratios from 0:933 to 1:867. Each
simulation experiment was repeated for different seed
values and the average and standard deviation were
calculated. Here, we present the results that were obtained
for the Pareto distribution; results under other distributions
can be found in [24].

4.1 Homogeneous TUFs

Under the homogeneous case, the simulation was con-
ducted with all threads having the same TUF shape
including step TUF (Fig. 4a), soft-step TUF (Fig. 4b),
and track association (asoc) TUF (Fig. 4c). The actual TUF
characteristics for each thread are outlined in Table 3. In
addition, the termination times for all threads is set as 3:0
seconds.

4.1.1 Varying Message Interarrival Times

In Fig. 5, we plot the system-wide percentage utility accrued
(or % UA) and percentage termination time misses (or %
TM) with respect to the edge-to-node ratio for OSPF,
LocDUCE, and GloDUCE. The edge-to-node ratios are
indicated by r0, r1, etc. The results for other TUFs follow
the same trend and have been omitted because of page
constraints; they can be found in [24].

The utility obtained under OSPF is not affected by increase
in the connectivity. This shows that, even with an increase in

the edge-to-node ratio, there is no noticeable change in the
shortest paths. Hence, the system-wide utility obtained

remains low and the termination time misses remains high.
This condition offers a very good scenario for comparing

performance with the LocDUCE and GloDUCE algorithms.
From the plot, we find that both LocDUCE and GloDUCE

have a similar performance except for r4. LocDUCE has a
lower system-wide utility than GloDUCE for this ratio. To

investigate this further, Fig. 6 shows the % TM values
obtained for the threads with LocDUCE and GloDUCE at r4.
In this plot, the threads are denoted asT1,T2, etc. We observe

that the % TM for T2 under GloDUCE is less when compared
to LocDUCE (Fig. 6).

Fig. 7 shows the partial topology for r4 along with the

routes taken for T2, T4, and T5. The paths taken by the
other threads are not shown here as they do not affect T2.

Also, from Table 3, we find that T2 has lesser utility than T4

and T5. The routes shown for messages of T2, T4 and T5 in

Fig. 7a and Fig. 7b correspond to the paths taken under
LocDUCE and GloDUCE, respectively.

When LocDUCE is used for channel establishment,

router R2 routes T4 along the path R2-R0-R3. The UPA

CHANNAKESHAVA ET AL.: UTILITY ACCRUAL CHANNEL ESTABLISHMENT IN MULTIHOP NETWORKS 435

3. A flow here is the aggregation of the remote calls made by a single
thread over the duration of the simulation.

TABLE 2
Simulation Study Parameters

Fig. 4. TUFs for homogeneous class of simulation runs. (a) Step.

(b) Soft-step. (c) (MITRE/TOG AWACS) Track association.

TABLE 3
Maximum TUF Utility of Threads

scheduler of the link R0-R3 prefers the higher utility traffic
of T4 over that of T2. Thus, T2 suffers very high % TM
under LocDUCE. The same topology under GloDUCE,
yields a different result, as shown in Fig. 7b. Each router
maintains information about channels established through
other routers and, hence, avoids the paths that are loaded.
In this example, R0 routes the traffic from T2 along a longer
path as it is aware of the fact that the link R0-R3 is in the
channel of T4. Thus, GloDUCE is able to achieve a higher
% UA and lower % TM (as in Fig. 6) for T2.

4.1.2 Varying Message Termination Time

In this simulation study, the messages have varying
termination time values. The termination times of the
messages were varied around a mean value and the
performance of the algorithms was measured. The perfor-
mance is as shown in Fig. 8. Here, even though we observe the
same trend as before, i.e., both LocDUCE and GloDUCE
outperform OSPF, the magnitude of the differences is
reduced considerably. This can be attributed to the fact that
the termination time values are randomly chosen in the
different distributions considered and affect all the algo-
rithms in a similar manner. LocDUCE and GloDUCE perform
better than OSPF even under this condition. In some cases,
GloDUCE performs slightly better than LocDUCE.

4.2 Heterogeneous TUFs

In the heterogeneous case, the simulation comparison was
conducted with threads having different TUFs. For exam-
ple, threads with step, soft-step, and linear TUFs
were all simultaneously executed. Both maximum utility
value and TUF type were varied. The experiments were
performed with threads characterized by TUFs shown in
Fig. 9, in addition to the ones in Fig. 4.

In order to offset the effect of the location of the threads
on a particular source-destination pair, simulation runs
were conducted by rotating the threads so that the thread

with a certain TUF executed on all the possible source
nodes. For example, T1 with a step TUF executes from
source S1 in one run, from S2 in another, and so on, until it
is run between all possible source-destination pairs. The
results presented here are the average of all such runs.
Table 4 shows the shape of the TUF and the maximum
utility of the threads. The termination times of all the
threads is set as 3.0 seconds.

4.2.1 Varying Message Interarrival Times

The same set of simulation experiments outlined in
Section 4.1.1 was repeated with threads having time
constraints, as listed in Table 4. Fig. 10 shows the % UA
comparison of OSPF, LocDUCE, and GloDUCE when the
interarrival times are varied and TUFs are heterogeneous.

In Fig. 11, we show the comparison of the utility obtained
for various TUFs between LocDUCE and GloDUCE for the
ratio r4. For this topology, GloDUCE performs better than
LocDUCE, which shows the difference between the two
algorithms. In the case of ratio r4, GloDUCE prefers the
step and soft-step TUFs over the linear TUF and
achieves a better system-wide utility than LocDUCE.

The results for heterogeneous TUFs where the message
sizes and termination times are varied follow the same
trend as observed for the homogeneous TUFs. These results
can be found in [24].

4.3 Downstream Loading

To observe the difference between LocDUCE and GloDUCE,
a specific simulation was setup. Fig. 12 shows the topology
and link bandwidth considered for performing this study.
In this experiment, there are three source nodes generating
traffic. Sources S1 (thread T1) and S2 (thread T2) generate
the thread traffic under observation. Source S3 (thread T3)
generates an increasing rate of background traffic to load

436 IEEE TRANSACTIONS ON COMPUTERS, VOL. 55, NO. 4, APRIL 2006

Fig. 5. Performance comparison under varying interarrival times (Step

TUFs). (a) % UA. (b) % TM.

Fig. 6. Percentage TM Comparison for Ratio r4.

Fig. 7. Partial topology for edge to node ration r4. (a) LocDUCE.

(b) GloDUCE.

Fig. 8. Varying message termination times: % UA comparison

the link R1-R2. The destination nodes D1, D2, and D3 form
the sink for the messages. Table 5 shows the characteristics
of the threads used in the experiment. Table 5 also lists the
data rate of the threads. In the experiments, all threads have
Step TUFs and the same termination time value.

Fig. 13 shows the % UA and % TM of T2 for LocDUCE
and GloDUCE algorithms. The background rate in Fig. 13 is
the rate at which T3 generates traffic. From these plots, we
find that LocDUCE performs better than GloDUCE at very
low background rates and, for higher background rates,
GloDUCE outperforms LocDUCE.

GloDUCE performs better than LocDUCE because of its
distributed nature. Assuming that T1 transmits first,
GloDUCE routes its traffic along the path R0-R2, while T2

routes along the path R0-R1-R2. When T3 starts transmit-
ting and, because it has a higher utility than T2, R1 chooses
the shortest available path along R1-R2 and creates a
channel for T3. R1 broadcasts this channel information to
other routers in the network. Now, R0 reevaluates the
channel already established for T2 and chooses the path R0-
R2 instead of the earlier path through R1. In the case of
LocDUCE, R0 is not aware of the channel established for T3
and continues to route traffic through the already estab-
lished channel for T2. Thus, LocDUCE suffers degradation
in performance for T2. This performance holds only for the
condition that T3 has a higher utility than T2. In either case,
it should be noted that the system-wide accrued utility will
be lower than GloDUCE.

4.4 Comparison of LocDUCE and GloDUCE with
Optimal Algorithm

In this section, we compare the performance of LocDUCE
and GloDUCE with the optimal algorithm for small
problem sizes. We used a simple setup to illustrate the
performance of the proposed algorithms as it was compu-
tationally prohibitive to run the optimal algorithms on the
setup used for the simulation experiments. The topology
used for the simulations is shown in Fig. 14. We considered
several scenarios for the comparisons. In one scenario, there

were no downstream flows that affect the performance (we
call this “Exp-I”). The simulation for measuring perfor-
mance was conducted for homogeneous TUFs (step,
soft_step and assoc individually) and heterogeneous
TUFs (different TUFs in a single run). The thread TUFs are
listed in Table 3 and Table 4. The results obtained for both
LocDUCE and GloDUCE for Exp-I are shown in columns 2
and 3 of Table 6.

In the other set of experiments, the topology was slightly
changed so that downstream traffic was generated by
connecting two source nodes S4 and S5, one each to the
routers R1 and R3, respectively. The experiments were
repeated for two cases: 1) higher utility downstream traffic
(Exp-II) and 2) lower utility downstream traffic (Exp-III).
The results obtained are shown in the last four columns of
Table 6 for Exp-II and Exp-III, respectively.

Table 6 shows that the performance of both LocDUCE and
GloDUCE for Exp-I is close to the optimal. For the scenarios in
Exp-II and Exp-III (where there are downstream loads), the
performance of LocDUCE degrades, while the performance
of GloDUCE is very close to the optimal.

5 IMPLEMENTATION EXPERIENCE

We implemented LocDUCE and GloDUCE in the Linux
operating system (kernel version 2.4.18). The implementa-
tion includes: 1) an application layer UA routing module
(URM) and 2) MAC layer UA packet scheduler (in the
Linux kernel). The routing module implements both the
LocDUCE and GloDUCE algorithms. The incoming appli-
cation packets are captured off the interface and routed
through the URM. Upon deciding the routes (based on the
algorithm), the packets are placed on the corresponding
outgoing links. The packets’ normal path through the
operating system is avoided by configuring a firewall and

CHANNAKESHAVA ET AL.: UTILITY ACCRUAL CHANNEL ESTABLISHMENT IN MULTIHOP NETWORKS 437

Fig. 9. TUFs for heterogeneous experiments.

TABLE 4
Thread TUF Characteristics

Fig. 10. Percentage UA comparison for varying interarrival times under

heterogeneous TUFs.

Fig. 11. Percentage UA comparison for different TUFs under LocDUCE

and GLODUCE.

dropping duplicate packets. The complete implementation

details can be found in [24].

5.1 Experimental Settings

Our experimental testbed is comprised of Linux machines

configured as routers and interconnecting subnets, forming a

WAN. The subnets contain source and destination nodes that

host segments of distributable threads. The threads invoke

operations on remote objects and generate real-time traffic.
Fig. 15 shows the network topology used in the study.

The machines S1 and S2 are the source nodes and D is the

destination. The machines R1, R2, R3, and R4 are the

routers.
We considered six TUF shapes in our study. These

include the step TUF, the plot correlation and track

maintenance TUFs (referred to as “soft-step” TUFs here-

after), and the AWACS association TUF shown in Fig. 1a,

Fig. 1b, and Fig. 1c, respectively. We also considered TUFs

with linear, quadratic, and exponential shapes, as they are

close variants of the AWACS TUF.
Our experimental scenarios include: 1) static and

2) dynamic. In the static scenario, message attributes such

as data rate, message size, and interarrival time remain the

same. In the dynamic scenario, we vary attributes including

message laxity, arrival rate, message size, and utility

variance. Table 7 shows TUFs of the threads and the source

nodes generating the messages in the experiments. The

maximum utility of each thread was 100 and messages’

termination time is set to 4.0 seconds.

5.2 Static Scenario

Fig. 16 shows the % UA of OSPF, LocDUCE, and GloDUCE.

The threads in this experiment were characterized by

heterogeneous TUFs, i.e., each thread having a different

TUFs (see Table 7). Percentage UA is the percentage of

accrued aggregate utility to the maximum possible utility.

From Fig. 16, we observe that both LocDUCE and
GloDUCE perform better than OSPF. The better performance
of these algorithms over OSPF can be explained as follows:
OSPF always selects the shortest path to a destination for any
message. For example, for threads 2, 4, 5, and 6, OSPF takes
the shortest path, R2-R3 to D. This decision of the algorithm
does not optimize the message flows along all of the available
paths. Although some versions of OSPF perform equal-cost
load-balancing, the loads along the paths having the different
costs are not balanced. Hence, when the shortest path
becomes overloaded, the performance for all message flows
degrades, irrespective of the TUFs.

Under LocDUCE or GloDUCE, the messages traverse
diverse paths, one through R2-R3 and another through R2-
R4-R3. Thus, the performance is better.

Fig. 17 shows the performance comparison between
OSPF, LocDUCE, and GloDUCE in terms of % UA for some
of the threads used in the static scenario, for exp, linear,
quad, and asoc TUFs. Again, from Fig. 17, we observe that
LocDUCE and GloDUCE perform better and accrue more
utility than OSPF for all TUFs. This is because OSPF does
not differentiate among the messages with different TUFs
and, thus, does not prefer certain messages over others.
LocDUCE does this differentiation and achieves higher
system-wide and thread-level utility. Since GloDUCE per-
forms global allocation, it prefers a lightly loaded route over
a heavily loaded route and uses the entire path to make this
decision. Thus, GloDUCE performs better than OSPF for all
TUFs and, in some cases, outperforms LocDUCE (as shown
for asoc TUF in Fig. 17).

5.3 Dynamic Scenario

For this scenario, we start four threads at node S2, which
then invoke remote operations on node D. We increase the
message arrival rate from two packets/sec to 10 packets/
sec in steps of two.

438 IEEE TRANSACTIONS ON COMPUTERS, VOL. 55, NO. 4, APRIL 2006

Fig. 12. Topology for downstream load simulation.

TABLE 5
TUFs of Different Threads

Fig. 13. Performance comparison for T2 under increasing downstream

load. (a) % UA. (b) % TM.

Fig. 14. Topology for comparison with the optimal algorithm.

Fig. 18 shows the % UA of OSPF, LocDUCE, and
GloDUCE under increasing message arrival rates. Table 8
shows the average and standard deviation values for the
experiments.

From Fig. 18, we observe that both LocDUCE and
GloDUCE perform significantly better than OSPF, espe-
cially at higher arrival rates. Note that the data rate
indicated is the individual rate for the messages. Thus,
the actual load on the link is four times this value.
Therefore, even under such heavily loaded conditions, we
observe that LocDUCE and GloDUCE perform better.
GloDUCE performs slightly better than LocDUCE.

The good performance of LocDUCE over OSPF is due to
the fact that there are multiple paths to the destination,
which are not explored by OSPF. We also observe that all
message flows suffer the same performance degradation
under OSPF. This is due to the fact that OSPF does not
prefer one message flow over another and the scheduling is
strictly first-in-first-out. From Table 8, we observe that the
standard deviation for % UA is low. The same trend was
observed for % TM. This indicates the consistency of the
algorithm performance.

5.4 Downstream Loading

A study similar to the one performed in simulation
(Section 4.3) was conducted in the implementation. In this
study, the links between R1 and R3 in the testbed (Fig. 15)
are considered to be downstream links and thread transi-
tions from S1 and S2, and terminate at D. The performance
of LocDUCE and GloDUCE was compared and the results
are plotted in Fig. 19.

From Fig. 19, we observe that the performance is
identical to the simulation results. We can see that
GloDUCE performs better than LocDUCE, accruing higher
system-wide utility. We were unable to increase the

background traffic beyond 112kbps. This is because of the
limitations of the libpcap library and the Berkeley

packet filter used in the prototype implementation.
Fig. 20 shows the implementation overheads for channel

establishment and runtime.

6 PAST AND RELATED EFFORTS

Real-time channels (or RTCs) were first defined in the work
[16] of Ferrari and Verma. They proposed a scheme for
establishing real-time channels in wide area networks. In
this work, the authors established deterministic and
statistical delay bounds for real-time traffic over wide area
networks. In [18], Kandlur et al. develop a scheme for
computing guarantees for delivery time of messages
belonging to real-time channels. They use message schedul-
ing and network flow control so that predictable delay
bounds are obtained for packets. This scheme consists of
two distinct phases: a channel establishment phase that
selects the appropriate route; and a runtime message
scheduling mechanism that ensures that the guarantees of
the channel are not violated. They also propose a channel
establishment algorithm.

Unlike [16] and [18], [19] proposes a parallel probe
algorithm with different heuristics along different paths.
They employ a reservation phase, in the forward direction
from source to destination, to reserve resources and a
relaxation phase, in the reverse direction, for releasing excess
resources allocated during the previous phase. Admission
control is performed during the reservation phase. If a call
is rejected, resources reserved along the forward path are
released.

A distributed route selection algorithm for RTCs is
proposed in [20]. They employ the scheduling mechanism
developed in [18]. Unlike in [18], this scheme accounts for
flows currently being established. The algorithm searches
for a route in parallel by flooding connection requests

CHANNAKESHAVA ET AL.: UTILITY ACCRUAL CHANNEL ESTABLISHMENT IN MULTIHOP NETWORKS 439

Fig. 15. Experimental network testbed.

TABLE 6
System-Wide Utility: Comparison of LocDUCE and GloDUCE with Optimal Algorithm (Normalized Values)

TABLE 7
Experimental Parameters

through the network and prunes infeasible routes quickly.
They use a multiclass earliest due date first packet
scheduling algorithm at the interfaces. The worst-case delay
for the message flows, in the path from source to
destination, is computed using fixed priority scheduling.

The concept of dependable real-time communication is
proposed in [25], where a dependable communication
channel is one that consists of a primary channel and one
or more backup channels. Sufficient resources are allocated
along the primary channel. Fault tolerance is provided by
allocating sparse resources along a backup channel.
Raghavan et al. [26] propose a mixture of forward-recovery
and detect, and detect and recover approach. This scheme
uses bandwidth splitting and forward error correction. In
addition to this, sparse resources are used for the detect and
recovery approach outlined in [25]. Construction of backup
channels, also called “segmented backups” is proposed in
[27]. Unlike an end-to-end backup channel, a segmented
backup consists of multiple backup channels spanning
portions of a primary path.

In all the past approaches, the focus has been on
deadline-based systems. To the best of our knowledge,
there is no existing work that establishes real-time channels
for messages based on TUFs. Most of the earlier schemes,
like [20], propose some admission control schemes to limit
link utilization from exceeding 100 percent. But, our
approach does not perform an explicit admission control
when a flow enters the system, but performs an implicit
control when scheduling packets. Also, we consider over-
load scenarios for most cases. Shin et al. [20] also use a static
priority-based algorithm for determining whether a parti-
cular flow satisfies the admission control and use a
multiclass EDF algorithm for runtime packet scheduling.

Converting the multiclass EDF scheduler in [20] and
replacing it with a TUF is not straightforward without being

unfair to [20] or our approach. One example method to
adapt the multiclass EDF scheduler to our model is:
1) ignoring the non-real-time queue, 2) expressing deadlines
using step TUFs having the same nonzero utility value
until deadline time and zero after that, and 3) disabling
admission control and admitting all the flows for consider-
ing overload scenarios. Allowing flows that would other-
wise have been rejected by admission control would result
in extremely poor performance for the approach in [20].
This is because EDF is known to suffer from the “domino
effect” problem for utilization values beyond 100 percent
[12]. Also, the message models employed in [20] and our
approach are different and the delay analysis derived for
both approaches do not match.

7 CONCLUSION AND FUTURE WORK

In this paper, we present utility accrual channel establish-
ment algorithms, LocDUCE and GloDUCE, for multihop
networks. LocDUCE performs localized UA-based channel
allocation without considering other real-time channels
established in the network. On the other hand, GloDUCE
performs global allocation of channels, and considers
channels established through other routers in the network.
Our simulation studies and implementation measurements
reveal the effectiveness of the algorithms and their superior
performance with respect to the OSPF protocol. We also
observe that the algorithms perform close to the optimal
algorithm for some cases.

LocDUCE maximizes total utility, by performing local
optimization. This makes the algorithm relatively simple
(with respect to GloDUCE). The volume of state informa-
tion stored at a router is limited to the channels
established through that router. Since LocDUCE performs
a local decision, there are situations when the algorithm’s

440 IEEE TRANSACTIONS ON COMPUTERS, VOL. 55, NO. 4, APRIL 2006

Fig. 16. Percent UA comparison.

Fig. 17. Thread performance under a static scenario.

Fig. 18. Dynamic scenario performance under increasing rate of thread

transitions.

TABLE 8
Average and Standard Deviation

performance degrades. For example, when the down-

stream traffic has a higher utility than upstream traffic,

LocDUCE performs worse than OSPF in some cases. On

the contrary, GloDUCE performs a global optimization

and accrues much higher system-wide utility than

LocDUCE. In most situations, both algorithms perform

identically. However, when downstream traffic has higher

utility than upstream traffic, GloDUCE performs better.

Thus, we envision that this scheme is best suited for mesh

networks, with shorter path lengths from source to

destination.
For GloDUCE, each intermediate router maintains

information on all existing channels in the network. When

a new channel is created, this information is broadcast to all

routers in the system. This can possibly flood the network

with channel update packets, especially when application

packet arrivals are skewed.
Some aspects of the work are directions for further

research. Examples include establishing channels while

providing stronger assurances on message timeliness

behavior (individual and collective) and tolerating link

and node failures.

ACKNOWLEDGMENTS

The authors thank the anonymous reviewers for their

helpful comments and suggestions. This work was partially

supported by the US Office of Naval Research under Grant

N00014-00-1-0549. E.D. Jensen’s participation was spon-

sored by the MITRE Technology Program.

REFERENCES

[1] OMG, “Real-Time CORBA 2.0: Dynamic Scheduling Specifica-
tion,” technical report, Object Management Group, Sept. 2001,
OMG Final Adopted Specification, http://www.omg.org/docs/
ptc/01-08-34.pdf.

[2] E.D. Jensen, A. Wellings, R. Clark, and D. Wells, “The Distributed
Real-Time Specification for Java: A Status Report,” Proc. Embedded
Systems Conf., 2002.

[3] J.D. Northcutt, Mechanisms for Reliable Distributed Real-Time
Operating Systems—The Alpha Kernel. Academic Press, 1987.

[4] The Open Group Research Inst.’s Real-Time Group, MK7.3a
Release Notes. Cambridge, Mass.: The Open Group Research Inst.,
Oct. 1998.

[5] GlobalSecurity.org, “Multi-Platform Radar Technology Insertion
Program,” http://www.globalsecurity.org/intell/systems/mp-
rtip.htm/, Apr. 2005.

[6] GlobalSecurity.org, “BMC3I Battle Management, Command,
Control, Communications and Intelligence,” http://www.global
security.org/space/systems/bmc3i.htm/, Apr. 2005.

[7] W. Horn, “Some Simple Scheduling Algorithms,” Naval Research
Logistics Quarterly, vol. 21, pp. 177-185, 1974.

[8] E.D. Jensen, C.D. Locke, and H. Tokuda, “A Time-Driven
Scheduling Model for Real-Time Systems,” Proc. IEEE Real-Time
Systems Symp. (RTSS), pp. 112-122, 1985.

[9] R. Clark et al., “An Adaptive, Distributed Airborne Tracking
System,” Proc. Workshop Parallel and Distributed Real-Time Systems
(WPDRTS), pp. 353-362, Apr. 1999.

[10] D. Maynard et al., “An Example Real-Time Command, Control,
and Battle Management Application for Alpha,” technical report,
Computer Science Dept., Carnegie Mellon Univ., Dec. 1988.

[11] P. Li, “Utility Accrual Real-Time Scheduling: Models and
Algorithms,” PhD dissertation, Virginia Tech, 2004.

[12] C.D. Locke, “Best-Effort Decision Making for Real-Time Schedul-
ing,” PhD dissertation, Carnegie Mellon Univ., 1986.

[13] R. Clark, “Scheduling Dependent Real-Time Activities,” PhD
dissertation, Carnegie Mellon Univ., 1990.

[14] J. Wang and B. Ravindran, “Time-Utility Function-Driven
Switched Ethernet: Packet Scheduling Algorithm, Implementa-
tion, and Feasibility Analysis,” IEEE Trans. Parallel and Distributed
Systems, vol. 15, no. 1, Jan. 2004.

[15] H. Wu, B. Ravindran, E.D. Jensen, and U. Balli, “Utility Accrual
Scheduling under Arbitrary Time/Utility Functions and Multiunit
Resource Constraints,” Proc. IEEE Int’l Conf. Embedded Systems and
Real-Time Computing Systems and Applications (RTCSA), pp. 80-98,
Aug. 2004.

[16] D. Ferrari and D.C. Verma, “A Scheme for Real-Time Channel
Establishment in Wide Area Networks,” IEEE J. Selected Areas in
Comm., vol. 8, no. 3, pp. 368-379, Apr. 1990.

[17] V. Kompella, “Multicast Routing Algorithms for Multimedia
Traffic,” PhD dissertation, Univ. of California, San Diego, 1993.

[18] D.D. Kandlur, K.G. Shin, and D. Ferrari, “Real-Time Communica-
tion in Multi-Hop Networks,” IEEE Trans. Parallel and Distributed
Systems, vol. 5, no. 10, pp. 1044-1056, Oct. 1994.

[19] G. Manimaran, H.S. Rahul, and C.S. R. Murthy, “A New
Distributed Route Selection Approach for Channel Establishment
in Real-Time Networks,” IEEE/ACM Trans. Networking, vol. 7,
no. 5, pp. 698-709, Oct. 1999.

[20] K.G. Shin, C. Chou, and S. Kweon, “Distributed Route Selection
for Establishing Real-Time Channels,” IEEE Trans. Parallel and
Distributed Systems, vol. 11, no. 3, pp. 318-335, Mar. 2000.

[21] G.L. Lann, “Proof-Based System Engineering and Embedded
Systems,” Lecture Notes on Computer Science, G. Rozenberg and
F. Vaandrager, eds., vol. 1494, pp. 208-248. Springer-Verlag, Oct.
1998.

[22] K. Channakeshava and B. Ravindran, “On Utility Accrual
Channel Establishment in Multi-Hop Networks,” Proc. IEEE Int’l
Symp. Object-Oriented Real-Time Distributed Computing (ISORC),
pp. 277-284, May 2004.

[23] K. Chen and P. Muhlethaler, “A Scheduling Algorithm for Tasks
Described by Time Value Function,” J. Real-Time Systems, vol. 10,
no. 3, pp. 293-312, May 1996.

[24] K. Channakeshava, “Utility Accrual Real-Time Channel Establish-
ment in Multi-Hop Networks,” master’s thesis, Virginia Tech,
Aug. 2003, http://scholar.lib.vt.edu/theses/available/etd-
0322004-173216/.

[25] S. Han and K.G. Shin, “A Primary-Backup Channel Approach to
Dependable Real-Time Communication in Multi-Hop Networks,”
IEEE Trans. Computers, vol. 47, no. 1, pp. 46-61, Jan. 1998.

CHANNAKESHAVA ET AL.: UTILITY ACCRUAL CHANNEL ESTABLISHMENT IN MULTIHOP NETWORKS 441

Fig. 19. Percent UA comparison under increasing downstream loads.

Fig. 20. Implementation overhead. (a) Establishment. (b) Runtime.

[26] S. Raghavan, G. Manimaran, and C.S.R. Murthy, “An Integrated
Scheme for Establishing Dependable Real-Time Channels in
Multi-Hop Networks,” Proc. Eighth Int’l Conf. Computer Comm.
and Networks (ICCCN), Oct. 1999.

[27] K.P. Gummadi, M.J. Pradeep, and C.S. R. Murthy, “An Efficient
Primary-Segmented Backup Scheme for Dependable Real-Time
Communication in Multihop Networks,” IEEE/ACM Trans.
Networking, vol. 11, no. 1, pp. 81-94, Feb. 2003.

Karthik Channakeshava is a PhD student in
the Bradley Department of Electrical and Com-
puter Engineering at Virginia Tech. He received
the master’s degree in computer enginering from
the same university. He received the BEng
degree in electrical engineering from Bangalore
University. He is currently working on energy
management issues for resource constrained
nodes in ad hoc and sensor networks. His
research interests include distributed real-time

systems, ad hoc and sensor networks, and network quality of service.
He is a student member of the IEEE.

Binoy Ravindran is an associate professor in
the Bradley Department of Electrical and Com-
puter Engineering at Virginia Tech. He is
fascinated and challenged by building adaptive
real-time software, i.e., real-time application and
system software that can dynamically adapt to
uncertainties in their operating environments
and satisfy time constraints, acceptably well
with acceptable predictability, according to ap-
plication-specific criteria. Toward that end, he

focuses on time/utility function (TUF)/utility accrual (UA) real-time
scheduling and resource management—an adaptive time-critical re-
source management paradigm invented by Doug Jensen (almost 35
years ago) and a central concept behind the Alpha distributed real-time
kernel. His students have recently developed several new results on
TUF/UA scheduling and resource management, including those on
stochastic scheduling, distributed scheduling, energy consumption,
memory management and garbage collection, and nonblocking syn-
chronization. Many of these new results have been transitioned for use
in US Department of Defense programs. He is a senior member of the
IEEE and a member of the IEEE Computer Society.

E. Douglas Jensen is the consulting scientist of
the Information Technologies Directorate at the
MITRE Corporation. His principal focus is on
time-critical resource management in dynamic
distributed object systems, particularly for com-
bat platform and battle management applica-
tions. He directs and conducts research,
performs technology transition, and consults on
US Department of Defense programs. He joined
MITRE from previous positions at HP, Digital

Equipment, and other computer companies. From 1979 to 1987, he was
on the faculty of the Computer Science Department at Carnegie Mellon
University, where he created and directed the largest academic real-
time research group of its time. Prior to that, he was employed in the
real-time computer industry, where he engaged in research and
advanced technology development of distributed real-time computer
systems, hardware, and software. He is considered one of the original
pioneers, and leading visionaries, of distributed real-time computer
systems and is widely sought throughout the world as a speaker and
consultant. He is a member of the IEEE.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

442 IEEE TRANSACTIONS ON COMPUTERS, VOL. 55, NO. 4, APRIL 2006

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

