
Formally Verified Big Step Semantics
out of x86-64 Binaries

Ian Roessle
Virginia Tech, USA
iroessle@vt.edu

Freek Verbeek
Virginia Tech, USA

freek@vt.edu

Binoy Ravindran
Virginia Tech, USA

binoy@vt.edu

Abstract
This paper presents a methodology for generating formally
proven equivalence theorems between decompiled x86-64
machine code and big step semantics. These proofs are built
on top of two additional contributions. First, a robust and
tested formal x86-64 machine model containing small step
semantics for 1625 instructions. Second, a decompilation-
into-logic methodology supporting both x86-64 assembly
and machine code at large scale. This work enables black-
box binary verification, i.e., formal verification of a binary
where source code is unavailable. As such, it can be applied
to safety-critical systems that consist of legacy components,
or components whose source code is unavailable due to
proprietary reasons. The methodology minimizes the trusted
code base by leveragingmachine-learned semantics to build a
formal machine model. We apply the methodology to several
case studies, including binaries that heavily rely on the SSE2
floating-point instruction set, and binaries that are obtained
by compiling code that is obtained by inlining assembly into
C code.

CCSConcepts •Theory of computation→Equational
logic and rewriting; Abstraction;

Keywords x86-64, semantics, theorem proving

ACM Reference Format:
Ian Roessle, Freek Verbeek, and Binoy Ravindran. 2019. Formally
Verified Big Step Semantics out of x86-64 Binaries. In Proceedings
of the 8th ACM SIGPLAN International Conference on Certified Pro-
grams and Proofs (CPP ’19), January 14–15, 2019, Cascais, Portugal.
ACM,NewYork, NY, USA, 15 pages. https://doi.org/10.1145/3293880.
3294102

1 Introduction
This paper targets bottom-up formal verification, i.e., veri-
fication of binaries where source code is unavailable. Our
aim is to use formal methods to analyze legacy systems,

ACM acknowledges that this contribution was authored or co-authored
by an employee, contractor, or affiliate of the United States government.
As such, the United States government retains a nonexclusive, royalty-free
right to publish or reproduce this article, or to allow others to do so, for
government purposes only.
CPP ’19, January 14–15, 2019, Cascais, Portugal
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6222-1/19/01. . . $15.00
https://doi.org/10.1145/3293880.3294102

or systems where source code is unavailable due to propri-
etary reasons. Various safety-critical systems in automotive,
aerospace, medical and military domains are built out of
components where the source code is not available [38].
In such a context, certification plays a crucial role. Certi-
fication can require a compliance proof based on formal
methods [32, 41]. Bottom-up formal verification can aid in
obtaining high levels of assurance for black-box components
running on commodity hardware, such as x86-64.

A binary typically consists of blocks composed by control
flow. In this paper, a block is defined as a sequence of instruc-
tions that can be modeled with only if-then-else statements
(no loops). A formal model of a binary can be obtained by
translating, e.g., loops to recursive functions, and blocks to
sequences of state updates. Each state update corresponds to
the semantics of one instruction, dictated by amachine model.
We call this the small-step semantics of that block. This ap-
proach is called decompilation-into-logic (DiL) [29, 30]. The
model obtained by DiL can, e.g., then be used to prove corre-
spondence to source code.
In a context where source code is unavailable, however,

small-step semantics do not suffice. A block can consist of
dozens of lines of machine code that is unintelligible and not
suitable for further analysis. This paper presents a method-
ology that largely automatically derives a formal model for
a block in a binary that is on the same level of abstraction
as C. We call this the big-step semantics of that block. This
provides insight into the semantics of the binary and enables
use of the generated formal model for correctness proofs.
Moreover, it provides a user with insight into the branching
conditions in the binary, which can aid in building test suites.

Of particular note within any formal verification effort is
the trusted code base (TCB) [21]. Specifically, the machine
model is part of the TCB. The x86-64 architecture presents a
unique challenge, since hand-writing a machine model of the
x86-64 architecture is inherently based on semi-formal Intel
manuals. Therefore, Heule et al. applied machine learning
to infer semantics from live x86-64 hardware [17]. Their
approach produced semantics that are more reliable than
the Intel manuals. We provide a DiL framework that maps
instructions in a binary to machine learned semantics. This
has an additional advantage that it learns a set of test cases
that cover intricate corner cases. We automatically prove
millions of lemmas using these test cases, which validate our
machine model against live x86-64 hardware.

https://doi.org/10.1145/3293880.3294102
https://doi.org/10.1145/3293880.3294102
https://doi.org/10.1145/3293880.3294102

CPP ’19, January 14–15, 2019, Cascais, Portugal Ian Roessle, Freek Verbeek, and Binoy Ravindran

This paper presents the following contributions: 1.) a
largely automated way to generate big-step semantics of
blocks in a binary, plus a formal proof of equivalence between
big- and small-step semantics, based on 2.) a machine learned
and formally tested x86-64 machine model containing 1625
instructions variants (IVs), and 3.) a DiL implementation for
x86-64 and the Isabelle/HOL theorem prover [9, 31]. The lat-
ter applies to both Objdump disassembled machine code and
symbolized assembly, making it possible to leverage recent
advances in reassembly [40].

The challenge of binary verification is the semantical gap
between a source language and a binary. This introduces
some limitations. Specifically, we are not able to extract typ-
ing information. Local variables and values in memory have
a known size, but their type is unknown. Our machine model
does not deal with concurrency. We cannot deal with self-
modifying code. To support calls to library functions and
indirect calls, a more advanced memory model is needed,
allowing assumptions on where loaded libraries are stored.
Finally, we have targeted x86-64 specifically, instead of mak-
ing the methodology generic.
The methodology is applied to several examples to show

that it is able to deal with, e.g., if-then-else structures, floating-
point operations and pointers. We verify an example where
the binary has been obtained by compiling C code mixed
with inline assembly. We also verify a binary containing
the remainder function from the FDLIBM floating point li-
brary1. For each case study, we show that the big-step seman-
tics lifted out of the binary is a close match to the original
source code. All case studies and the Isabelle/HOL proofs
are publicly available at: https://filebox.ece.vt.edu/~iroessle/
cpp_2019.zip

2 Methodology
The first step is disassembly (see Figure 1). Reassembly builds
on disassembly by also performing symbolization, where
memory references are translated from concrete addresses
to labels. Various reassembly tools exist, e.g., IDA Pro [11],
Ramblr [40], and Codesurfer [3]. Symbolization supports
formal verification that is agnostic of memory layout. We
use Ramblr. Ramblr provides sufficient symbolization, while
also ensuring recompilability.

We perform a deep embedding of the reassembled binary
into Isabelle/HOL. A deep embedding is a simple syntactic
translation requiring only a parser. This reduces the TCB, as
it prevents semantical errors in the translation. The result is
a binary model: a populated data structure in Isabelle/HOL,
which contains the text-, data- and bss-sections of the binary.
Section 3.3 provides more details.

To build a machine model, we leverage Strata [17]. Strata
provides trustworthy semantics of x86-64 instructions that

1http://www.netlib.org/fdlibm/

have been obtained by machine learning. Strata demon-
strates trustworthy semantics for 692 instructions, which
through generalization arguments expands to 1625 IVs. An
additional 119 instructions with 8-bit immediate operands
are supported by providing 256 formulas per instruction (one
formula per immediate value).

We extract generalized semantics out of Strata. The seman-
tics in Strata are stored either as assembly code fragments
that derive off a base set of instructions, or as functions
within C++. Strata has an application that can translate the
aforementioned into bit-vector formulas (bvf’s) for a spe-
cific instruction. However, there was no support for memory
operands and the output was specific to the supplied set of
operands. We developed a tool in the Strata C++ namespace
that implements the generalization arguments for memory
and immediate arguments, and outputs formulas for 1625 IVs
in a form generic with respect to operands (see Section 4). For
instructions unsupported by Strata (e.g., jumps), we define
hand-written semantics.

We developed a formal language called Chum that can be
used to express x86-64 instruction semantics. Chum serves
as an intermediary between Strata and Isabelle/HOL. It com-
bines standard bvf’s (such as in QF_BV in SMT-LIB [6]) with
our machine model. It thus contains operators to update the
machine state, such as memory read/writes, and register- and
flag assignments. We extract Chum from Strata. The result
– a file containing instruction semantics written in Chum –
is then deeply embedded into Isabelle/HOL. Essentially, this
methodology reduces the problem of giving semantics to
the full x86-64 instruction set to giving semantics to a small
bit-vector (bv) language. To minimize the TCB, a testing
framework is set up to test the formal instruction semantics
on an actual x86-64 machine (see Section 6).
The result of these steps is a trustworthy syntactical rep-

resentation of a binary in Isabelle/HOL, with trustworthy
semantics for each individual instruction. The next step is to
derive big-step semantics of blockswithin the binary (see Sec-
tion 5). We restrict the semantics of Chum to the executable
subset of the logic of Isabelle/HOL wherever possible. More-
over, we provide a library of rewrite rules proven correct
within Isabelle/HOL. This allows formal symbolic execution,
which automatically rewrites the per-instruction small-step
semantics to big-step block semantics.

3 Overview of Formal Model
3.1 Machine Model
The machine modelM consists of a state automaton with
instructions as labels. The set of states S is a defined using a
record. Let Rn denote the set of n-bit registers and F denote
the set of flags. We use the Isabelle datatype ′α word [9] to
define bv’s of length ′α .

S ≡ < regs :: Rn 7→ n word,mem :: 64 word 7→ 8 word,
flags :: F 7→ B> with n ∈ {64, 256}

https://filebox.ece.vt.edu/~iroessle/cpp_2019.zip
https://filebox.ece.vt.edu/~iroessle/cpp_2019.zip
http://www.netlib.org/fdlibm/

Formally Verified Big Step Semantics out of x86-64 Binaries CPP ’19, January 14–15, 2019, Cascais, Portugal

Disassembly
Assembly Binary Model

(4.1)
Strata Learning Strata

(4.2)
Chum Extraction

Chum Semantics

Testing (6)

Decompilation Big-Step Equivalence
Theorem

(5)
Binary

Abstraction

Machine Model

Deeply
Embed

Trusted Code Base Formal Environment

Figure 1. Methodology to lift abstract specifications out of x86-64 binaries

The state stores the contents of the registers, provides a
64-bit address space of bytes, and stores the flags. To access
a part of the state σ , read and write functions r and w are
defined. For example, r (rip,σ) reads the instruction pointer
register andw(a, 255,σ)writes at address a the byte 255 into
memory. Note that there are no registers smaller than 64
bits, nor are there 128-bit registers. For example, the 32-bit
register eax is a part of the 64-bit rax register. The semantics
of instructions concerning eax are thus expressed in terms
of operations on the 64-bit rax register. For example, writing
the 32-bit register eax will additionally zero out the upper
32 bits of rax, whereas writing to the 16-bit ax will leave the
upper 48 bits of the lower part untouched. Similar semantics
exist for 128-bit registers, which are actually part of the 256-
bit ones. Finally, we introduce functions rmem and wmem to
read and write blocks of bytes to the memory at once. For
example,wmem(v,a, s,σ) writes – in little-endian fashion –
value v into the memory at address a, split into a list of s
bytes. Depending on the size, the value is possibly truncated
or zero-extended.
The machine model is a step function over these states

labeled with assembly instructions. Let I denote the set of
instructions:

M :: I × S 7→ S

An instruction is determined by its IV and its operands. For
example:
Instruction: add rax, rbx
IV: add r64, r64
Operands: [rax,rbx]
Instruction: cmp dword ptr [rbp - 0x14], 0x7F
IV: cmp m32, imm32
Operands: [dword ptr [rbp - 0x14],0x7F]

3.2 Chum: Instruction Semantics
Central to the machine model is a function getChum :: V 7→
Chum, whereV is the set of IVs. The semantics of an instruc-
tion are fully determined by its IV. They are expressed by
a datatype Chum assigning bvf’s to registers and flags (see
Figure 2). The sequence of bvf’s of a certain IV are executed
independently, i.e., all assignments occur simultaneously on
the state.

chum → assignee B bvf | semantic; semantic
assignee → reg | mem | flg | var
mem → (loc,N)
loc → loc □a loc | 64 word | [reg] | label
bvf → bvf □b bvf | □u (bvf) | bvf !! N | val

| ⟨N,N⟩bvf | bvf
N

| if Bbvf then bvf else bvf

Bbvf → bvf □B bvf
val → var | closed
var → OP1 | OP2 | OP3
closed → r (reg,σ) | rmem(mem,σ) | imm

where
□a ∈{+,−, ∗, :},□b ∈ {+,−,∧,∨,⌣ , <<,+f ,−f , ...}
□u ∈{zxtend, sxtend,¬, parity, |_|f },□B ∈ {=,,, ≥, ≤, ...}

Figure 2. Chum grammar

Example 3.1. The semantics of the instruction add rax,
rbx are the same, regardless of which 64-bit registers are
used. Function getChum returns:

getChum(add r64, r64) = (OP1 B OP1+OP2;ZF B . . . ; . . .)

The instruction writes the sum (a function over bv’s) of the
operands to its first operand, and sets various flags.

At the top-level, Chum expresses semantics by assigning
bvf’s to parts of the state: registers, memory, or flags. The as-
signee can also be left open. A memory location is expressed
by an address and a size. The x86-64 instruction set allows
address computation within an instruction: addresses can be
computed using immediate values, values stored in registers,
or labels. A bvf consists of standard bv operations such as
logical and arithmetic operators, concatenation (⌣), shifting,
etc. The notation ⟨h, l⟩ denotes bit slicing: it takes the part
of the bv starting at bit l (from right to left) and ending at
bit h. The notation b

n
is used to denote that a bvf b is in n-bit

mode. The parity function is used to express whether the
number of set bits in the given bvf is odd. Floating point
operations are indicated by f , e.g., |a |f denotes the floating
point absolute function. The unary operator !! expresses
the nth bit of the given bvf, starting at the right.

CPP ’19, January 14–15, 2019, Cascais, Portugal Ian Roessle, Freek Verbeek, and Binoy Ravindran

This grammar is the basis for several artifacts: first, Chum
extraction code writes a plain-text file containing a list of
pairs of IVs and Chum semantics, based on this grammar.
Second, the grammar is defined as a Chum datatype in ML.
Third, the grammar is mechanized as a grammar file for
the MLTON compiler. MLTON then generates a parser that
reads in the plain-text file, and produces a populated Chum
datastructure in ML. Effectively, this deeply embeds the se-
mantics extracted from Strata into ML. Fourth, the grammar
is defined as a Chum datatype in Isabelle/HOL. The Chum
datastructure in ML is then deeply embedded into the Is-
abelle/HOL datastructure. The list of pairs is embedded as a
map, producing the function getChum.

3.2.1 Floating Point Operations
To the best of our knowledge, there is no word-level float-
ing point library in Isabelle/HOL. Operations are needed
such as: +f :: 64 word × 64 word 7→ 64 word. Defining
a library for these functions is outside of the scope of this
paper. These operations are introduced as constrained func-
tions. In Isabelle, a locale is added [4], which is a method for
providing a context where some functions are introduced
without a function body. One can then formulate constraints
over these functions. To ensure that these constraints are
not internally inconsistent, a witness is provided.
The floating point locale defines functions +f ,−f , ∗f ,÷f

over 64-bit words, representing double precision floating
point operations. Besides these, the constants 0+, 0−,∞+,∞−
and functions sign, isNaN, and |_|f are introduced regularly,
i.e., with a concrete meaning. Respectively, they return the
sign bit (bit 63), check whether the exponent consists solely
of 1’s and the mantissa is non-zero, and compute the absolute
value by setting the sign bit to 0. The constraints are based
on the IEEE 754-2008 standard [1]. Examples are:

x +f 0+ ≡ x

x ∗f 0+ ≡ if sign(x) then 0+ else 0−

x < {0+, 0−} =⇒ x ÷f 0+ ≡ if sign(x) then∞− else∞+

{x ,y} ⊆ {0+, 0−} =⇒ isNaN(x ÷f y)
The effect of using this locale instead of concretely defined
functions, is that they are not executable. For the constrained
functions, we can symbolically execute and simplify float-
ing point formulas only based on the rules introduced by
the locale. We will show in Section 5 that we can derive
floating point formulas out of a binary. However, floating
point constants are simply bv’s represented by hexadecimal
numbers.

3.3 Decompilation-Into-Logic
The binary model B consists of the instructions to be ex-
ecuted, an initial state, and a termination condition. Let A
denote the address space, i.e, A = 64 word.

B ≡ < fetch :: A 7→ I ,σ0 :: S, is_final :: A 7→ B >

Function fetch provides the current instruction to be exe-
cuted, based on the current rip. The initial state is obtained
by loading all data- and bss sections of the binary into mem-
ory. The termination condition decides when the binary is
finished based on an address.
In order to build the binary model in Isabelle/HOL, a

datatype is built that can store a deep embedding of the
binary. The datatype consists of datatypes for instructions,
registers, flags, address computations, labels, and immedi-
ates. Using the MLTON parser generator, a parser for x86-64
.s assembly files is built. Via ML, this parser then generates
a populated data structure within Isabelle/HOL. We have
added a command to Isabelle/HOL called x86_64_parser
which takes as input the name of an assembly file and loads
it into the theorem prover.
We source the .s assembly files from an x86_64 binary

using the Ramblr disassembler. Ramblr is modified to au-
tomatically add annotations in comment fields, which are
deeply embedded along with the assembly. The instruction
size is added in bytes. This is used to increment rip and to
compute relative offsets for branching instructions. The op-
code is added as well. An opcode is what tells the hardware
exactly what operation to perform. Within the Intel instruc-
tion set architecture (ISA) there are cases where the hardware
has multiple opcodes which support the same instruction,
often for optimization purposes. For example instruction
ror ax, 1 (Rotate Right) can be supported by two different
opcodes (0xD1 and 0xC1) as there is an optimized version of
the ror instruction for shifts of value 1. Instruction ror ax,
2 has support by only one opcode (0xC1). While it is gen-
erally assumed that multiple opcodes supporting the same
instruction behave identically, this additional information
is necessary for a full deep embedding of the binary within
Isabelle/HOL.
What it means to run a binary on top of a machine can

now be defined:

start = run(B.σ0)
run(σ) = let rip = r (rip,σ) in

if B.is_final(rip) then σ
else run(M(B.fetch(rip),σ))

4 Extraction of Chum from Strata
4.1 Strata and Stoke Introduction
We leverage the semantics machine learned by Strata [17]
from x86-64 hardware. The search space in which the in-
structions are learned is a subset of the assembly language
(strataAL) consisting of sequential permutations of 51 as-
sumed correct hard-coded register-only instructions and 11
pseudo-instructions (i.e., the base set). Strata uses a compiler
optimization tool called Stoke [34] to learn IVs as strataAL
fragments. Stoke requires as input a set of test cases (in-
put/output pairs). Initially it uses random test cases, with
some additional special test cases to cover common corner

Formally Verified Big Step Semantics out of x86-64 Binaries CPP ’19, January 14–15, 2019, Cascais, Portugal

cases or register values. Strata uses Stoke to learn multiple
strataAL fragments for a given instruction. Based on the sto-
chastic nature of the search, each of these learned strataAL
fragments can produce different results. Strata then uses
the Z3 SMT solver [10] to prove equivalence between these
learned strataAL fragments. If the SMT solver proves non-
equivalence, a counterexample is then fed back into the test
cases, and the process repeats. Ultimately the test cases we
use to validate our machine model are concolic versions of
these test cases Strata learned as part of this counterexample
guided refinement, along with the initial random test cases,
and heuristically interesting cases.

In total, Strata learns 692 instructions (one per each register-
only IV). Specifically excluded from their learning were
MMX, cryptography, x87, loop, string instructions (includ-
ing the rep prefix), and any post-Haswell ISA instructions.
Included are SSE (2 – 4.1), AVX, AVX2, FMA3, BM1, BM2, as
well as legacy x86 instruction sets.

Strata’s x86-64 semantics are stored in two different forms.
The learned semantics are stored as non-looping strataAL
fragments. The initial base set and pseudo instructions are
stored as manually written semantics composed as C++ code.
Stoke has an application called stoke_debug_circuit that
can produce a bvf for a learned instruction given its associ-
ated strataAL fragment. All formulas produced operate on
either whole 64-bit or 256-bit registers. For example, the bvf
for the 32-bit add eax, ebx will provide a formula that
writes to the 64-bit rax register.

It is not possible to directly leverage either the learned se-
mantics or the stoke_debug_circuit application, to extract
all the semantics from Strata. This is because:

1. The semantics are not in a form that can be directly
parsed and leveraged into logic. As mentioned, they
are stored as non-looping register-only assembly code
fragments (strataAL), or C++ code.

2. The stoke_debug_circuit application lacks support
for production of bvf’s that write to memory. For exam-
ple, it is unable to produce any bvf’s for the following
IV: sal m64, imm8.

3. The stoke_debug_circuit application produces for-
mulas for instructions. For tractability, we require for-
mulas generalized to IVs. When one considers instruc-
tions with immediate values, this generalization is
more complex than a simple symbolicmatch-and-replace.
Consider the IV sal r64, imm8. Stimulating the appli-
cation, for this IV, with operands rbx and 1, produces
the following bvf:

rbx B ⟨63, 0⟩(0
1
⌣rbx << 0

57
⌣1

8
)

Trivially, rbx can be replaced with symbol OP1 to rep-
resent operand 1. In terms of the immediate, one might
assume that substituting the 8-bit value 1 with sym-
bol OP2 would suffice. Consider, however the same IV

when stimulated with rbx and an immediate value of
0xFF:

rbx B ⟨63, 0⟩(0
1
⌣rbx << 0

57
⌣0x3F

8
)

This case demonstrates that generalization cannot be
achieved by a simple match-and-replace, as value 0xFF
is not found in the formula produced. This example
will be revisited in the next section, as we discuss our
approach for extracting semantics out of Strata.

4.2 Chum Extraction
We extract bvf’s from Strata, per IV, into a serialized ver-
sion of Chum. For register-only IVs, generating the bvf is
accomplished by stimulating stoke_debug_circuit with
an instruction that consists of the IV instantiated with safe
registers. A match-and-replace is then done from the safe
registers to open variables.
In choosing specific operands for the instruction to be

learned, registers were chosen such that they would general-
izable. For example, rbx and rcx were the chosen operands
utilized when learning binary register-only 64-bit IVs. These
are safe registers, as these registers are never directly written
to unless specified as operands. As a counterexample, rax is
an unsafe register as cmpxchg directly writes to it regardless
of whether rax is provided as an operand.

Consider the following example, which generates the bvf
for add r64, r64. Application stoke_debug_circuit is
stimulated with add rbx, rcx, which produces the follow-
ing bvf:

add rbx, rcx : rbx B ⟨63, 0⟩(0
1
⌣rbx + 0

1
⌣rcx)

This is match-and-replaced to:

add r64, r64 : OP1 B ⟨63, 0⟩(0
1
⌣OP1 + 0

1
⌣OP2)

For non-register-only IVs, the extraction process is more
involved. Each IV, iv, is mapped to a register-only IV that
supports it, iv ′. An IV, iv ′, supports iv if iv ′ has the same
mnemonic, number of operands, and each operand meets
specific criteria for generalization. An operand in iv does
not require generalization support if it is already a register.
For a non-register operand, the criteria are based on its type
and bit-length, as well as those of the corresponding register
operand of iv ′. The semantics for instruction iv are obtained
by stimulating stoke_debug_circuitwith iv ′with safe reg-
isters, which are then match-and-replaced to open variables.
Lastly, any operand size mismatches between the supporting
and supported operands are resolved. We will now discuss
the criteria for operand generalization and any required size
mismatch resolution.

4.2.1 Generalization to Immediate Operands.
The register operand providing support for the immedi-
ate must be of equal or greater size. Consider the example

CPP ’19, January 14–15, 2019, Cascais, Portugal Ian Roessle, Freek Verbeek, and Binoy Ravindran

from the previous section sal r64, imm8. This variant
finds support from the variant sal r64, r8. Application
stoke_debug_circuit is stimulated with sal rbx, cl,
which produces the following bvf:

sal rbx, cl :
rbx B ⟨63, 0⟩(0

1
⌣rbx << 0

57
⌣(⟨7, 0⟩rcx ∧ 0x3F

8
))

Doing the match-and-replace yields:

sal r64, imm8 :
OP1 B ⟨63, 0⟩(0

1
⌣OP1 << 0

57
⌣(⟨7, 0⟩OP2 ∧ 0x3F

8
))

Operator ∧ denotes standard bv conjunction. As there was
no size mismatch between cl and imm8 nothing further is
required. In case of a size mismatch, a sign extension is intro-
duced into the bvf after it is returned from stoke_debug_circuit.
Consider add r32, imm8. It is supported by add r32, r32. Se-
mantics are extracted by generalizing to open variables, and
introducing sign-extension:

add ebx, ecx :
ebx B 0

32
⌣⟨31, 0⟩(0

1
⌣⟨31, 0⟩ecx + 0

1
⌣⟨31, 0⟩ebx)

add r32, imm8 :
OP1B 0

32
⌣⟨31, 0⟩(0

1
⌣⟨31, 0⟩sxtend(OP2)

32
+ 0

1
⌣⟨31, 0⟩OP1)

4.2.2 Generalization to Memory Operands.
Similar to the immediate case, the register operand providing
support for the memory operand must be of equal or greater
size. As memory operands can be written to, this generaliza-
tion has another case to consider in resolving operand size
mismatches. If the supporting operand is being written to, a
slicing operator is introduced, truncating the bv to the appro-
priate size. Consider IV movapd m128,xmm. This is supported
by movapd xmm,xmm. Application stoke_debug_circuit is
stimulated with safe xmm-registers xmm1 and xmm2.

movapd xmm1, xmm2 : ymm1 B ⟨255, 128⟩ymm1⌣⟨127, 0⟩ymm2
movapd m128, xmm :
OP1 B ⟨127, 0⟩(⟨255, 128⟩OP1⌣⟨127, 0⟩OP2)

In case the supporting register operand is larger than the
supported memory operand, the upper parts of the register
are truncated. This means that no further steps are required.
Consider the following example for addsd xmm,m64 which
is supported by addsd xmm,xmm:

addsd xmm1, xmm2 : ymm1 B ⟨255, 128⟩ymm1⌣
⟨127, 64⟩ymm1⌣(⟨63, 0⟩ymm1 +f ⟨63, 0⟩ymm2)

addsd xmm, m64 : OP1 B
⟨255, 128⟩OP1⌣⟨127, 64⟩OP1⌣(⟨63, 0⟩OP1 +f ⟨63, 0⟩OP2)

For some instructions, we do not use learned semantics. Some
instructions have no Strata support. For these, we supply
manually written semantics. For another 119 IVs (with 8-bit
immediate operands), there is no register-only equivalent.
For these IVs, Strata learns 256 distinct formulas per variant.

Our methodology does not support these “brute-forced” for-
mulas. We drafted manual semantics to support branching
instructions such as jump and call, as well as stack operating
instructions such as push and pop. The learned semantics of
the parity flag are impractical for theorem proving, since they
produce very large bvf’s. We therefore express the semantics
of the parity flag manually.

Figure 3 shows the semantics of the sub IV after extraction
from Strata and embedding within Isabelle/HOL, for a 32-bit
register r32 = ⟨31, 0⟩r (r64,σ) and a 32-bit memory location
m32 = rmem(a, 4,σ) . The instruction causes 6 state changes:
the 64-bit register r64 corresponding to register r32 is com-
pletely overwritten with a bv consisting of 1.) zeroes for the
upper 32 bits, and 2.) for the lower 32 bits the lower 32 bits
of the result of two’s complement subtraction in 33-bit mode.
The input values come from reading register r64 and taking
the lower 32 bits and from reading 4 bytes of memory from
address a. The zero flag is obtained by checking whether the
result is zero, and the carry- and sign flags check respectively
bits 32 and 31. An overflow occurs when the most significant
bits (msb) initially were different, whereas the msb’s of the
result and the initial value at a are equal. Note that we do
not show the parity flag update.

r64 B 0
32
⌣⟨31, 0⟩(0

1
⌣¬op2 + 1

33
+ 0

1
⌣⟨31, 0⟩(op1))

ZF B ⟨31, 0⟩(0
1
⌣¬op2 + 1

33
+ 0

1
⌣⟨31, 0⟩(op1)) == 0

32
CF B ⟨32, 32⟩(0

1
⌣¬op2 + 1

33
+ 0

1
⌣⟨31, 0⟩(op1)) == 1

32
SF B ⟨31, 31⟩(0

1
⌣¬op2 + 1

33
+ 0

1
⌣⟨31, 0⟩(op1)) == 1

32
OF B ¬⟨31, 31⟩(op2) == 1

1
←→ ⟨31, 31⟩(op1 == 1

1
) ∧

¬(¬(⟨31, 31⟩(op2)) == 1
1
←→

⟨31, 31⟩(0
1
⌣¬op2 + 1

33
+ 0

1
⌣⟨31, 0⟩(op1)) == 1

1
)

where op1 = r (r64,σ), op2 = rmem(a, 4,σ)

Figure 3. Learned semantics of sub r32 m32 deeply em-
bedded into Isabelle/HOL.

5 Big-Step Semantics
The machine model provides small-step semantics, i.e., se-
mantics per instruction. Our objective is to find a high-level
representation of the big-step semantics of blocks within
the binary. Note that our definition of blocks characterizes
larger chunks of the code than the traditional notion of “basic
blocks”, i.e., our notion of blocks also includes if-statements.
Our aim is to prove an equivalence theorem of the form:

f (σb) = run(σb)
Here, function f should be defined using high-level, i.e., C-
like, constructs only. For the main function in the binary,
state σb will be the initial state. For the functions in other text

Formally Verified Big Step Semantics out of x86-64 Binaries CPP ’19, January 14–15, 2019, Cascais, Portugal

sections we quantify over any state σb with the read-only
data sections loaded. This ensures compositionality.
The approach we use is formal symbolic execution. The

symbolic execution engine needs to tackle two challenges:
1. Since the semantics embedded into Isabelle/HOL are

generated by a machine learning algorithm (instead of
being hand-written) they generally are not in a form
where they can be used for theorem proving directly.
Consider, e.g., the semantics in Figure 3. The semantics
are expressed in bv operations such as concatenation,
bit slicing and logical operations, instead of arithmetic
operations such as subtraction and (in)equality.

2. Whenever possible, the semantics of a sequence of
one or more instructions needs to be simplified to a
high-level operation.

Effectively, formal symbolic execution is implemented by
adding a library of formally proven correct rewrite rules
to the Isabelle simplifier. Whenever two subgoals are intro-
duced, an if-then-else is introduced in the logic manually.
This allows us to consider for each case whether we actu-
ally want to introduce an if-then-else, or whether we want
to add a precondition that prevents one of the cases from
happening.

5.1 Formal Symbolic Execution
The starting point is of the form:

run(σb) = ?f (σb)

Here, ?f is a function representing the high-level semantics
of the block. Crucially, this function does not have to be
defined when running symbolic execution. It is a schematic
variable. A schematic variable in a lemma basically means
that the final lemma as it will be proven and admitted to the
Isabelle logic has not been formulated yet. Whenever the
current goal has the form д(σb) = ?f (σb), the proof can be
stopped and the final formulation of the proven equivalence
theorem becomes run(σb) = д(σb).

Symbolic execution will rewrite and simplify the left hand
side of the goal. This will rewrite run to a function f repre-
senting a high-level equivalent of run.

Example 5.1. Consider the following assembly code:

push rbp

mov rbp , 0

pop rbp

This code first decrements the stack pointer, writes the frame
pointer rbp into memory at location rsp−8, and increments
rip. Second, it writes the immediate value 0 to rbp. Third,
it writes the value in the memory back to register rbp, then
increments the stack pointer, and increments rip again. All
these actions are executed symbolically. The equivalence
theorem becomes:

run(σb) = (rip B rip + 9; rsp − 8 ▷ rbp)(σb)

Function f is represented as two state updates: register rip is
incremented by 9, and the frame pointer is stored in memory
(notation a▷v denotes writing valuev into the memory at ad-
dress a). Note that both registers rsp and rbp are unchanged,
even though they have been changed during execution.

We have developed an Isabelle proof method using Eis-
bach [27]. A proof method is essentially a proof script that
can be used to automate certain tasks. Our proof method is
called symbolic_execution. It can be applied to a goal of
the following form:

run(σ) = f (σb).

If the current goal has this form,method symbolic_execution
does the following:

1. Check the termination condition on state σ . In case
of termination, rewrite run(σ) to σ and stop the proof
method.

2. Fetch the next instruction based on the current state
σ .

3. Check whether Strata semantics are available for that
IV. If not check whether there is a manually written
one available.

4. Simplify the semantics before applying them to the
current state.

5. Apply the simplified semantics to the current state σ ,
producing a new state σ ′.

6. Simplify state σ ′ to state σ ′′.
The resulting goal is of the form run(σ ′′) = f (σb), where σ ′′
is the result of execution of one instruction on σ . Whenever
the goal splits into two subgoals, we either introduce an
if-then-else in function f , or add a precondition to exclude
one of the two cases.

5.2 Rewrite Rules
We provide some interesting examples of rewrite rules that
are applied when doing symbolic execution in Figure 4. For
more details and proofs, we refer to the sources online.

Rules 1 to 8 are examples of rules that deal with word arith-
metic, logical operations, bit operations such as shifting and
concatenation, and bit slicing. The standard Isabelle/HOL
library provides a strong library and support to apply SMT
solvers such a Z3 [10] and CVC4 [5] to the current subgoal.
We have augmented this library, especially to deal with cases
of under- and overflow of memory addresses.
Rules 9 and 10 are examples of rewrite rules for memory.

The read- and write operations must, whenever applicable,
behave as a lens [12]. The first rule deals with writing to and
reading from the same address a, and the same size s . The
second rule deals with the case where these differ and do not
overlap. Here, the operator ▷◁ takes as input two blocks in the

CPP ’19, January 14–15, 2019, Cascais, Portugal Ian Roessle, Freek Verbeek, and Binoy Ravindran

m < n ⇒ ⟨m, 0⟩(a + b
n
) ≡ ⟨m, 0⟩(a

n
) + ⟨m, 0⟩(b

n
)

m < n ∧m < l ⇒ ⟨m, 0⟩(
l

zxtend(a
n
)) ≡ ⟨m, 0⟩(a

n
)

m < n ⇒ ⟨m, 0⟩(¬a
n
) ≡ ¬⟨m, 0⟩(a

n
)

⟨m, 0⟩(a
m+1
) ≡ a

m+1

¬a + 1 + b ≡ b − a
n+1

zxtend(¬a
n
) ≡

n+1

¬(2n + zxtend(a
n
))

⟨n,n⟩ a
n+1
≡ a ≥ 2n

n+1

m < n ⇒ zxtend(
m
a) < zxtend(

m

b)
n

≡
m
a <

m

b

rmem(a, s,wmem(v,a, s,σ)) ≡ v
(a, s) ▷◁ (a′, s ′) =⇒

rmem(a, s,wmem(v,a′, s ′,σ)) ≡ rmem(a, s,σ)
(a
n
∧ 0x7FFF . . .) ≡ |a |f

(|⟨63, 32⟩a
64
⟩|f = ⟨31, 0⟩a = 0) ≡ a ∈ {0−, 0+}

Figure 4. Examples of rewrite rules

memory and expresses separation. Without the assumption,
the write may overwrite some of the bytes in block (a, s),
invalidating the lemma. Rules for read/write with overlap
are added, and rules for write/write. These rules are crucial
in providing a higher level of abstraction: values that are
written into memory are split into bytes and then written
into memory in little-endian fashion. Reading then reverses
the order and subsequently concatenates them. The rules
simplify this behavior to a form where none of this is visible.
As discussed in Section 3.2.1, the semantics of floating

point instructions such as addsd are expressed in terms of
constrained functions. Based on those constraints, rewrite
rules are proven. For concrete operations, e.g., the abso-
lute function, we provide rules that simplify bit-level op-
erations to floating point functions (e.g., Rule 11). Common
bit-patterns and operations concerning the floating point
values 0− and 0+, are rewritten (Rule 12).

In total, the library consists of approximately 330 rewrite
lemmas, constituting approximately 10000 lines of Isabelle
code. This excludes the case studies and the parsers.

5.3 Pointers
We introduce the dereference operator for reading frommem-
ory: ∗[a, s] means reading s bytes from address a. Since we
do not extract typed code, we have to add the size s . Consider
the following line of C code (the code is compiled using gcc):

unsigned x = argv [1] [0] − ' 0 ' ;

The return value of the program is stored in register eax.
Running symbolic execution produces the following equiva-
lence theorem:

run(σb) = (eax B sxtend(∗[∗[rsi + 8, 8], 1]) − 48
32

; . . .)(σb)

The address stored in register rsi (storing argv, the second
operand of the main function) is first incremented by eight,
to get the address argv[1]. That value is then dereferenced
to obtain the value argv[1]. That value is treated as address
and dereferenced, producing value argv[1][0]. The value is
cast to an unsigned int by sign-extension, after which 48
is subtracted. Note that symbolic execution cannot provide
type information: the value 48 is subtracted, and it is not
inferred that this value is actually the character ′0′. What
is inferred is that the first dereferencing operator produces
an 8-byte value (in this case an address), and the second
dereferencing produces a 1-byte value (in this case a char).
Moreover, the final result is in 32-bit mode (in this example
an int).

int main () {
int var [] = { 1 0 , 1 00 , 2 0 0 } ;
int i , ∗ p t r ;
p t r = var ;
p t r += 2 ;
i = ∗ p t r ;
i ∗= 3 ;
return i ;

}

Figure 5. Pointer arithmetic

Consider the example in Figure 5, with pointer arithmetic.
This program will always return the value 600. We purpose-
fully compile this program without optimizations to ensure
that the binary actually performs the computations to derive
the return value. Symbolic execution rewrites the semantics
for the eax register to the constant value 600. However, an
additional assumption is required. Since this program deref-
erences a computed pointer, a StackGuard is introduced by
the gcc compiler [8]. This is a security mechanism, trying to
detect when a stack smashing attack occurs, i.e., an overflow
of the stack. The mechanism copies – at the beginning of
the function body – an unknown value (the canary) to an
address offset by the fs register:

mov rax , qword ptr fs:[0x28]

mov qword ptr [rbp - 8], rax

Before return, the canary is read from the memory into rcx
and compared to the value currently stored at the address.

Formally Verified Big Step Semantics out of x86-64 Binaries CPP ’19, January 14–15, 2019, Cascais, Portugal

xor rcx , qword ptr fs:[0x28]

A stack smash attack is detected when this result is not zero
(using a je instruction), i.e., when the canary has been over-
written. In that case, the function will not return normally,
but fail. Symbolic execution of instruction je introduces two
subgoals. A precondition is added, to exclude the case where
the canary is overwritten. That precondition suffices to prove
that this program indeed returns 600. The equivalence theo-
rem becomes:

(rsp−52, 52) ▷◁ (fs+40, 8)=⇒run(σb)=(eax B 600; ...)(σb)
The precondition ensures memory separation between two
blocks of memory. The first block is the stack frame with
52 bytes, and the second is the address fs + 40 with size 8.
The theorem needs to assume that the canary does not over-
lap with the stack frame. Given that assumption, symbolic
execution can automatically derive the intended semantics.

5.4 Floating Points
Consider the C code in Figure 6. The example has been pro-
vided by the US Air Force Research Laboratory. It computes
the current speed of some object. If that speed exceeds a
maximum value of 58.1152 m/s, an exception is thrown.
The three get_ functions return some unknown value, resp.
speed, brake, and accel.

const double veh i c l eMas s =1000 ; / / i n kg
const double t imeS t ep = . 0 0 1 ; / / 1 ms
int upda t eD i sp l aySpeed (void) {

double c u r r e n t S = g e t _ c u r r e n t _ s p e e d () ;
double brakeF= g e t _ c u r r e n t _ b r a k i n g _ f o r c e () ;
double a c c e l F = g e t _ c u r r e n t _ a c c e l _ f o r c e () ;
double newS = 0 . 0 ;
newS= cu r r e n t S + ((a c c e l F − brakeF)

/ v eh i c l eMas s ∗ t imeS t ep) ;
if (newS > 5 8 . 1 1 5 2) { / ∗ e x c e p t i o n ∗ / }
return (newS) ;

}

Figure 6. C code with floating point computations

Running symbolic execution produces two subgoals, due
to the if. Instead of extracting an if-statement in the logic,
we have added a precondition preventing the exception from
happening. The equivalence theorem becomes:

let v = (accel −f brake) ÷f 0x408F400000000000∗f
0xFCA9F1D24D62503F+f speed in0xE63FA4DFBE0E4D40
≤f v =⇒ run(σb) = (xmm0 B v ; . . .)(σb)

The hexadecimal constants are loaded from the data sections
of the binary, and are the floating point constants occurring
in the C code. The return value is stored in the xmm0 register.

5.5 Memcpy
Consider the following C code:

void swap (void ∗ a0 , void ∗ a1) {
const char temp [9] ;
memcpy ((void ∗) temp , a0 , 9) ;
memcpy (a0 , a1 , 9) ;
memcpy (a1 , temp , 9) ;

}

The code swaps 9 bytes at the given addresses. We have
compiled the code on Linux with gcc, optimization level 3.
Since a constant number of bytes is copied, this will replace
the memcpy function calls with inline assembly (we swap
9 bytes, since less bytes results in much simpler code; then
64-bit registers can be used to perform the swap). This means
that direct verification of this program not only requires a
formal C semantics, but additionally a semantics of assembly,
and a semantics to calling assembly from C.

The programwrites bytes into memory. Function bytes_of
takes as input aword and produces a list of byte-sized chunks,
such that the least significant byte comes last. Function rev
is the reverse function. The equivalence theorem becomes:

run(σb) =
(rdi ▷ rev(bytes_of ∗[rsi, 8]);
rdi + 8 ▷ rev(bytes_of ∗[rsi + 8, 1]); . . .) (σb)

After termination of the block, the 9 bytes stored at the
address in rdi are the 9 bytes initially stored at the address
in rsi in little-endian fashion. It is easy to prove that reading
9 bytes from the address in rdi produces the original 9 bytes
at the address in rsi.

6 Testing
We conduct testing of the machine model from within Is-
abelle/HOL. For each IV, we create Isabelle/HOL test lem-
mas. These test lemmas formulates that for a certain pre-
execution state the formalized semantics compute a correct
post-execution state. Each lemma is then proven automati-
cally using the proof method described in the previous sec-
tion. Testing makes sure that no errors are made during the
Chum extraction and deep embedding into Isabelle/HOL.
Most importantly, it validates the generalization arguments
made in Section 4.2.

A test case consists of a pre- and post-execution state. For
each IV, 6630 test cases are generated. The pre-execution
states are determined from the set Strata used as part of their
stochastic search methodology. This is significantly better
than just random testing, since they also include contain
cases learned by counter-example guided refinement. The
post-execution states are computed using dynamically gen-
erated binaries executed on live x86-64 hardware (Skylake
architecture). These binaries each consist of the instruction
under test, and – if applicable – a read/write data segment

CPP ’19, January 14–15, 2019, Cascais, Portugal Ian Roessle, Freek Verbeek, and Binoy Ravindran

for memory operands. The binaries are generated from tem-
plates. We show the template for instructions with a memory
source operand. For each test case, variables preceded by a
% are replaced by the appropriate values.

MemOperand:

.quad %mem_value

.section .text

.align 64

.globl main

.type main , @function

main:

%mnemonic %register ,[MemOperand]

ret

We utilize a custom built Pintool with Pin [26] to instrument
these binaries. For each test case, the Pintool injects the pre-
execution state into hardware, executes the instruction, and
extracts the post-execution state prior to executing the ret.

In Isabelle/HOL, each test case produces a test lemma us-
ing lemma templates. The following template is for register-
only 2-ary IVs:

lemma Test_Case : ∀dst, src :: reg · src , dst =⇒
let i = %mnemonic dst, src;
σpre = σ (dst B %dst, src B %src,flags B %flags)
in
M(i,σpre) B σ (dst B %dst ′, src = %src′,flags B %flags′)

These test lemmas show the step functionwithin themachine
model produces the state transformation as described in the
test case.

Proving this test lemma effectively achieves concolic test-
ing: instead of specifying the complete pre- and post-execution
state, only those portions of the state operated on are con-
cretely specified. Concolic testing dramatically increases
the amount of concrete states covered by a single test case.
Moreover, one test lemma tests all possible combinations of
registers / memory addresses.
In total, we tested 886 IVs. The IVs tested cover a wide

range of IVs operating on general registers, SIMD registers,
memory operands up to 256-bit and immediates. Out of scope
for consideration are instructions that contained uninter-
preted functions (439), optimized versions of another variant
(162), and ternary (124). Additionally, 14 variants were not
tested due to the length of the bvf’s and their slow execution
(blsi, tznt, and bt).

Two IVs failed on testing: movss xmm, m32 and movsd
xmm, m64. These two instructions fail to meet the generaliza-
tion argument from register to memory for a similar reason.
Consider the following semantic:

movsd xmm1, xmm2 :
ymm1 B ⟨255, 128⟩ymm1⌣(⟨127, 64⟩ymm1⌣⟨63, 0⟩ymm2)

Per the generalization argument to memory wewould expect
the following for movsd xmm, m64:

movsd xmm, m64 :
OP1 B ⟨255, 128⟩OP1⌣(⟨127, 64⟩OP1⌣⟨63, 0⟩OP2)

However, the actual semantics is:
OP1 B ⟨255, 128⟩OP1⌣(0

64
⌣⟨63, 0⟩OP2)

In these two variants, while they generalize correctly in
terms of reading operand 2, they introduce novel behavior
when writing to operand 1, with respect to the supporting
IV. We modeled these IVs manually in order to support case
studies that used these instructions.

7 Case Study: FDLIBM IEEE754 Remainder
Function

Figure 7 shows the source code of the IEEE 754 remainder
function for floating points from Sun’s FDLIBM library. The
C code defines functions __HI and __LO specifically for a
little-endian architecture. These functions are used to obtain
the high and low 32 bits of parameters’ x (the numerator) and
p (the denominator). The code performs a series of checks
dealing with division by zero, infinite values, and NaN’s. It
then uses the modulo function to normalize x to a value less
than 2p. Subsequently, it performs a series of if-then-else’s
to compute the result. The final line restores the sign bit.

The text section in the binary belonging to the remainder
function consists of 157 lines of assembly code. The binary
contains 3 data sections totaling 158 bytes of data. The code:
• contains various instructions from the SSE2 instruc-
tion set;
• contains 17 conditional jumps; based on the carry-,
zero-, and sign-flags;
• reads from memory to access the data sections in the
binary;
• uses the lea instruction to do pointer arithmetic;
• builds a return value by overwriting only parts of it,
i.e., the lower- and higher 32 bits of the 64-bit return
value are computed separately.

The right hand side of Figure 7 shows the semantics lifted
out of the binary. We show the value that is stored in register
xmm0 after execution of the block, i.e., the return value of the
function. The proof is largely automated: the proof consists
of repeatedly applying the method symbolic_execution
until it fails, i.e., until it is no longer able to rewrite the cur-
rent subgoal. In all those cases, the current subgoal could be
discharged with standard Isabelle/HOL tools, such as simp
and auto. No additional lemmas where required, and no in-
teractive theorem proving such as induction, generalization,
or quantifier-reasoning. We did introduce a cut. The current
proof has been split up into two parts, corresponding to the
point where the first x ′ is introduced. A cut can reduce the
number of instructions to be symbolically executed. For this

Formally Verified Big Step Semantics out of x86-64 Binaries CPP ’19, January 14–15, 2019, Cascais, Portugal

#define __HI (x) ∗ (1 + (int ∗)& x)
#define __LO (x) ∗ (int ∗)& x
double rem (double x , double p) {

int hx , hp ; unsigned sx , lx , l p ;
double p_h a l f ;
hx = __HI (x) ; l x = __LO (x) ;
hp = __HI (p) ; l p = __LO (p) ;
sx = hx & 0 x80000000 ;
hp &= 0 x 7 f f f f f f f ;
hx &= 0 x 7 f f f f f f f ;
if ((hp | l p) ==0)

return (x ∗ p) / (x ∗ p) ;
if ((hx>=0 x 7 f f 0 0 0 0 0) | |

((hp>=0 x 7 f f 0 0 0 0 0) &&
(((hp−0 x 7 f f 0 0 0 0 0) | l p) ! = 0)))

return (x ∗ p) / (x ∗ p) ;
if (hp <= 0 x 7 f d f f f f f)

x = mod (x , p + p) ;
if (((hx−hp) | (lx − l p)) = = 0)

return z e ro ∗ x ;
x = f a b s (x) ;
p = f a b s (p) ;
if (hp < 0 x00200000) {

if (x+x>p) {
x −= p ;
if (x + x >= p) x −= p ;

}
} else {

p _h a l f = 0 . 5 ∗ p ;
if (x > p_h a l f) {

x −= p ;
if (x >= p_ha l f) x −= p ;

}
}
__HI (x) ^= sx ;
return x ;

}

(a) Source code

let x = ymm0;
p = ymm1;
xlo = ⟨31, 0⟩x ;
xhi = ⟨63, 32⟩x ;
plo = ⟨31, 0⟩p;
phi = ⟨63, 32⟩p;

in
if p ∈ {0−, 0+}
∨ |xhi |f > 0x7FEFFFFF
∨ ((|phi |f > 0x7FEFFFFF) ∧
(|phi |f + 0x80100000 , 0 ∨ plo , 0)) then
(p ∗f x) ÷f (p ∗f x)

elseif xlo = plo ∧ |xhi |f = |phi |f then
0+ ∗f x

else
let x ′ = if |phi |f > 0x7FDFFFFF then x

else mod(x ,p +f p)) in
let x ′ =
if |phi |f > 0x1FFFFF then
if |p |f ∗f 0.5 ≤f |x ′ |f then
|x ′ |f
elseif |p |f ∗f 0.5 <f (|x ′ |f −f |p |f) then
|x ′ |f −f |p |f
else
|x ′ |f −f |p |f −f |p |f

else
if |p |f ≤f |x ′ |f + |x ′ |f then
|x ′ |f
elseif |p |f <f |x ′ |f −f |p |f +f (|x ′ |f −f |p |f)
|x ′ |f −f |p |f
else
|x ′ |f −f |p |f −f |p |f

in
xor_sign(x ′,msb(x))

(b) Semantics extracted from binary

Figure 7. FDLIBM IEEE754 floating point remainder. Source code is shown instead of the assembly, due to space limitation.
Only the binary is used when applying the methodology.

example, the current proof requires symbolic execution of
231 instructions. This is more than the 157 from the text
section, since conditional jumps can cause instructions to be
executed twice. Without introducing the cut-point, a signifi-
cantly larger amount of instructions are executed twice (or
more). Introducing a cut thus improves verification time.
We have added one function to the Isabelle/HOL logic

specifically for this case. Function xor_sign takes as input a
64-bit word w and a Boolean b. It XOR’s the sign bit of w

with b:

xor_sign(w
n
,b) ≡ set_bit(n − 1,msb(w) , b)

We then add rewrite lemmas for this function:

a ⊕ b ∧ 2n−1
n

≡ xor_sign(a,msb(b)) (1)

xor_sign(|a |f ,msb(a)) ≡ a (2)

CPP ’19, January 14–15, 2019, Cascais, Portugal Ian Roessle, Freek Verbeek, and Binoy Ravindran

Rule 1 introduces function xor_sign, when certain bit opera-
tions occur. When given an absolute value and the msb of
that value, the function has no effect (Rule 2).
The construction of the high-level specification, i.e., the

code in Figure 7b, is largely automated as well. There are
two types of user interaction required. The first concerns the
introduction of if-then-else statements. The second interac-
tion is introducing let-constructs. Whenever a value occurs
twice, such as the value ⟨31, 0⟩x , it is determined manually
whether it makes sense to introduce a let. Semantically,
this makes no difference. However, without this interaction
the extracted semantics can become significantly larger and
more unreadable. Using let essentially allows to introduce
local variables. For sake of presentation, we have matched
the variable names to the ones in the original C code.
The control flow structure between the C code and the

lifted semantics are different, but similar. Since the library
of rewrite rules is sometimes able to rewrite bv operations
to arithmetic, the lifted branching conditions can be on a
higher level of abstraction than the original C code. For ex-
ample, the branching condition (hp | lp) == 0 uses a
logical bv operation, whereas the lifted semantics branch on
p ∈ {0−, 0+}. As another example, the C code branches on
((hx - hp) | (lx - lp)) == 0. The equivalent branch-
ing condition in the semantics lifted out of the binary is
expressed solely in arithmetic operations: xlo = plo ∧ |xhi |f =
|phi |f .

8 Related Work
Figure 8 shows a summary of related work. We consider DiL,
x86 machine models and their testing methodologies, and
binary verification efforts in general. We compare it to our
approach, called Leviathan.

8.1 Decompilation-Into-Logic
Binary verification mandates an underlying mechanism for
lifting machine code into logic with associated pre- and post-
conditions for correctness. Myreen et al. [29, 30] present
such an approach, architecture-agnostic.
Our implementation differs on one aspect: our approach

allows decompiling assembly source code as well as machine
code. The difference is in the fact that assembly code is often
position-independent (symbolized memory references). This
requires proofs to quantify over all possible address layouts
that an assembler could make. Position-dependent machine
code does not require this, as everything is resolved to a
specific (virtual) address.
Our methodology, like existing works, is able to scale to

large binaries. We successfully decompiled-into-logic the
binary of gcc 4.9 with approximately 361K lines machine
code in 1.3 hours on a machine with a 6-core Intel i9-8950HK
CPU running at between 2.9 and 4.8Ghz. Myreen et al. have
applied DiL to 1.3k lines of assembly within 1.5 hours.

8.2 Machine Models
Underneath any binary verification effort is a machine model
of the ISA. RISC architectures [2] have smaller instruction
sets, and the ARM instruction set is well modeled [13]. All
related works that tackle x86 do so by manually coding op-
erational semantics based on semi-formally specified Intel
documentation [16]. Generally, support is lacking for more
complex x86 instructions added within later processor revi-
sions.
Sarkar et al. introduce a formal x86 machine model in

HOL4 [33] supporting 33 IVs. Their model is supported by a
DiL framework. The focus of their work was concurrency:
proving memory consistency levels in multiprocessor exe-
cution. As of the latest release of HOL: Kananaskis-12, this
model has been extended to 114 IVs.
Kaufmann and Hunt developed an x86 machine model

in ACL2 supporting 21 instructions [18, 19]. Goel et al. ex-
tended this work to 407 IVs and used those semantics to
verify a modified word-count program that avoids AVX in-
structions [14, 15]. A major contribution of this work was to
formalize system call behavior.
Leroy et al. developed CompCert: a certified compiler

which relies on an ISAmachinemodel to perform co-simulation
between a pre- and post-compiled program to verify compi-
lation [23–25]. This work initially targeted the PowerPC, but
has since been extended to x86 as of CompCert v3.4, with
support for 172 IVs.

8.3 Testing Methodologies
Testing methodologies found in related works test using ei-
ther 1.) likely execution sequences (LE) or 2.) random execu-
tion (RE). Testing over likely execution sequences generalizes
well to realistic code. It is less likely however to accurately
cover undefined behavior or rarely executed code. Random
(or fuzz) testing ensures a certain amount of coverage over
each variant, and is more likely to find undefined behavior.
Purely random testing, however, requires more test cases to
provide coverage over likely execution paths, as more cases
are utilized exploring potentially undefined or infrequent
behavior.

Goel et al. utilized Pintool to verify co-simulation between
their model and live hardware, over a benchmark applica-
tion [15]. This approach tests the model over a likely se-
quence of execution. Sarkar et al [33], perform random test-
ing on a sample of input/output pairs for each IV.
In our model, we perform RE, LE, and testing derived

from an iterative counterexample guided refinement ma-
chine learning process (CE). The refinement strategy and
associated test cases generated, tease out corner cases in
instructions with more exotic/complex behavior [17]. We
go further by making concolic versions of all three types of
tests, which significantly increases coverage.

Formally Verified Big Step Semantics out of x86-64 Binaries CPP ’19, January 14–15, 2019, Cascais, Portugal

x86 Machine Models
Model / Framework IVs Supported (Total, Post Pentium-Pro) Testing Methodology DiL support
Leviathan 1625, 1210 concolic, RE, LE, CE yes
Sarkar et al. [33] 114, 0 RE yes
Goel et al [14, 15, 18, 19] 407, (unknown/no-SIMD) co-simulation, LE n/a
CompCert [23–25] 172, 16 unknown n/a

Binary Verification Efforts
Verification Effort Architecture Source Code Required Verification Properties
Leviathan x86 No Big-Step Equivalence
Translation Validation seL4 [20, 37] ARMv6 Yes Functional Correctness
CakeML [22] ARM/x86 Yes Verified Compilation
CompCert [23–25] PowerPC/ARM/x86 Yes Verified Compilation
Costanzo et al [7] x86 Yes Confidentiality
Goel et al [15] x86 Yes Functional Correctness

Figure 8. Related x86 machine models and binary verification efforts

8.4 Binary Verification Efforts
One of the most influential current state-of-the-art formal
verification efforts has been the work done in seL4 [20, 28].
The seL4microkernel is anOSwith a formal specification and
a formal conformance proof that the implementation satisfies
the specification. Subsequently, it is proven that the ARM
binary conforms to the source code of the implementation.
The properties proven include, but are not limited to, no
buffer overflows, no null pointer dereferences, no memory
leaks, and noninterference. Its binary verification effort is
based on – among others – the work of Sewell et al. [37].
Various research targets verification of the compilation

process [22–25, 37]. The CompCert project provides an opti-
mizing C99 compiler with such guarantees. This achieved by
correspondence proofs between each intermediate represen-
tation during the CompCert compilation process. It targets
the PowerPC, ARM, RISC-V and x86 ISAs. Constanzo et al.
leverage the CompCert machine model to verify informa-
tion flows within multiple processes [7]. CakeML [22, 39]
is a framework for verified compilation of a functional ML-
like programming language. CakeML is available for several
architectures, including RISC-V and x86-64.

9 Conclusion
To apply formal methods to systems where source code is un-
available, bottom-up formal verification is required. Bottom-
up formal verification starts with a binary and considers it a
black-box. This paper presents a fundament of bottom-up
verification: a methodology for embedding a binary into a
theorem prover and lifting it to a higher level of abstraction.
It is shown that we can take blocks of assembly in x86-64
binaries and systematically derive a formally proven correct
high-level representation of the semantics of those blocks.

Our methodology is largely automated. The proofs of con-
formance between the binary and the high-level semantics
are taken care of by developed proof methods and standard

off-the-shelf Isabelle/HOL tools. The formulation of the high-
level representation is obtained by running formal symbolic
execution. Interactively, when non-determinism occurs, a
user can decide to introduce if-then-else statements in the
high-level representation, or add preconditions to exclude
the non-determinism. The exact branching condition (or pre-
condition) is provided by the proof methods; the choice how
to resolve the non-determinism is left to the user. Finally, a
user can interactively introduce local variables to derive a
more succinct high-level representation.
Bottom-up verification minimizes the TCB, as no com-

pilers need to be trusted, nor is a semantical model of the
source language needed. Obtaining a trustworthy machine
model of an architecture as complex as x86-64 is a challenge.
We have leveraged the machine learned semantics of Strata.
To gain further trust in the machine model, test lemmas
are proven within Isabelle/HOL that demonstrate equiva-
lence between the machine model and instructions run on
an actual machine.
We aim to apply this methodology to industrial control

systems, which are characterized by relatively simple flow-
control but advanced floating point formulas. This requires
a strong reasoning engine over low-level models of floating
point operations. In the near future, we want to deal with
concurrency by combining our model with x86-TSO [35, 36].
Eventually, this will result in a reliable bottom-up verification
methodology for concurrent, safety-critical systems.

Acknowledgments
This work is supported in part by ONR under grant N00014-
17-1-2297. The authors would like to thank Dr. Peter Lam-
mich for his useful insights while developing our method-
ology in Isabelle/HOL. The authors gratefully acknowledge
the highly insightful feedback of Dr. Lok Yan, US AFRL, and
the reviewers, which have significantly improved the paper.

CPP ’19, January 14–15, 2019, Cascais, Portugal Ian Roessle, Freek Verbeek, and Binoy Ravindran

References
[1] [n. d.]. IEEE Standard for Floating-Point Arithmetic. https://doi.org/10.

1109/IEEESTD.2008.4610935
[2] ARM ARM. 2012. Architecture Reference Manual. ARMv7-A and

ARMv7-R edition (2012).
[3] Gogul Balakrishnan, Radu Gruian, Thomas Reps, and Tim Teitelbaum.

2005. CodeSurfer/x86 – A platform for analyzing x86 executables. In
International Conference on Compiler Construction. Springer, 250–254.

[4] Clemens Ballarin. 2003. Locales and locale expressions in Isabelle/Isar.
In International Workshop on Types for Proofs and Programs. Springer,
34–50.

[5] Clark Barrett, Christopher L Conway, Morgan Deters, Liana Hadarean,
Dejan Jovanović, Tim King, Andrew Reynolds, and Cesare Tinelli.
2011. Cvc4. In International Conference on Computer Aided Verification.
Springer, 171–177.

[6] Clark Barrett, Aaron Stump, Cesare Tinelli, et al. 2010. The SMT-LIB
standard: Version 2.0. In Proceedings of the 8th International Workshop
on Satisfiability Modulo Theories (Edinburgh, England), Vol. 13. 14.

[7] David Costanzo, Zhong Shao, and Ronghui Gu. 2016. End-to-end
verification of information-flow security for C and assembly programs.
ACM SIGPLAN Notices 51, 6 (2016), 648–664.

[8] Crispin Cowan, Steve Beattie, Ryan Finnin Day, Calton Pu, Perry
Wagle, and Erik Walthinsen. 1999. Protecting systems from stack
smashing attacks with StackGuard. In Linux Expo.

[9] Jeremy Dawson. 2009. Isabelle theories for machine words. Electronic
Notes in Theoretical Computer Science 250, 1 (2009), 55–70.

[10] Leonardo De Moura and Nikolaj Bjørner. 2008. Z3: An efficient SMT
solver. In International conference on Tools and Algorithms for the Con-
struction and Analysis of Systems. Springer, 337–340.

[11] Chris Eagle. 2011. The IDA pro book. No Starch Press.
[12] John Nathan Foster. 2009. Bidirectional programming languages. Ph.D.

Dissertation. University of Pennsylvania.
[13] Anthony Fox andMagnus OMyreen. 2010. A trustworthy monadic for-

malization of the ARMv7 instruction set architecture. In International
Conference on Interactive Theorem Proving. Springer, 243–258.

[14] Shilpi Goel, Warren A Hunt, and Matt Kaufmann. 2017. Engineering
a formal, executable x86 ISA simulator for software verification. In
Provably Correct Systems. Springer, 173–209.

[15] Shilpi Goel, Warren A. Hunt, Matt Kaufmann, and Soumava Ghosh.
2014. Simulation and Formal Verification of x86 Machine-Code Pro-
grams That Make System Calls. In Proceedings of the 14th Conference
on Formal Methods in Computer-Aided Design (FMCAD ’14). FMCAD
Inc, Austin, TX, Article 18, 8 pages. http://dl.acm.org/citation.cfm?
id=2682923.2682944

[16] Part Guide. 2011. Intel® 64 and IA-32 Architectures Software De-
veloperâĂŹs Manual. Volume 3B: System programming Guide, Part 2
(2011).

[17] Stefan Heule, Eric Schkufza, Rahul Sharma, and Alex Aiken. 2016.
Stratified Synthesis: Automatically Learning the x86-64 Instruction Set.
In Proceedings of the 37th ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI ’16). ACM, New York, NY,
USA, 237–250. https://doi.org/10.1145/2908080.2908121

[18] Warren Hunt Jr and Matt Kaufmann. 2012. Towards a Formal Model of
the X86 ISA. Technical Report. University of Texas at Austin Austin
United States.

[19] Matt Kaufmann, Panagiotis Manolios, and J Strother Moore. 2013.
Computer-aided reasoning: ACL2 case studies. Vol. 4. Springer Science
& Business Media.

[20] Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick,
David Cock, Philip Derrin, Dhammika Elkaduwe, Kai Engelhardt, Rafal
Kolanski, Michael Norrish, et al. 2009. seL4: Formal verification of
an OS kernel. In Proceedings of the ACM SIGOPS 22nd symposium on
Operating systems principles. ACM, 207–220.

[21] Ramana Kumar, Eric Mullen, Zachary Tatlock, and Magnus O Myreen.
2018. Software Verification with ITPs Should Use Binary Code Ex-
traction to Reduce the TCB. In International Conference on Interactive
Theorem Proving (ITP’18).

[22] Ramana Kumar, Magnus OMyreen, Michael Norrish, and Scott Owens.
2014. CakeML: a verified implementation of ML. In ACM SIGPLAN
Notices, Vol. 49. ACM, 179–191.

[23] Xavier Leroy. 2009. Formal verification of a realistic compiler. Commun.
ACM 52, 7 (2009), 107–115.

[24] Xavier Leroy. 2009. A formally verified compiler back-end. Journal
of Automated Reasoning 43, 4 (2009), 363–446. http://xavierleroy.org/
publi/compcert-backend.pdf

[25] Xavier Leroy et al. 2012. The CompCert verified compiler. Documen-
tation and userâĂŹs manual. INRIA Paris-Rocquencourt (2012).

[26] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser,
Geoff Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazel-
wood. 2005. Pin: building customized program analysis tools with
dynamic instrumentation. In Acm sigplan notices, Vol. 40. ACM, 190–
200.

[27] Daniel Matichuk, Toby Murray, and Makarius Wenzel. 2016. Eisbach:
A proof method language for Isabelle. Journal of Automated Reasoning
56, 3 (2016), 261–282.

[28] Toby Murray, Daniel Matichuk, Matthew Brassil, Peter Gammie, Tim-
othy Bourke, Sean Seefried, Corey Lewis, Xin Gao, and Gerwin Klein.
2013. seL4: from general purpose to a proof of information flow en-
forcement. In Security and Privacy (SP), 2013 IEEE Symposium on. IEEE,
415–429.

[29] MagnusOMyreen,Michael JCGordon, and Konrad Slind. 2012. Decom-
pilation into logic – Improved. In Formal Methods in Computer-Aided
Design (FMCAD), 2012. IEEE, 78–81.

[30] M. O. Myreen, M. J. C. Gordon, and K. Slind. 2008. Machine-Code
Verification for Multiple Architectures – An Application of Decompi-
lation into Logic. In 2008 Formal Methods in Computer-Aided Design.
1–8. https://doi.org/10.1109/FMCAD.2008.ECP.24

[31] Tobias Nipkow, Lawrence C Paulson, and Markus Wenzel. 2002. Is-
abelle/HOL: a proof assistant for higher-order logic. Vol. 2283. Springer
Science & Business Media.

[32] John Rushby. 1997. Formal methods and their role in the certification
of critical systems. In Safety and reliability of software based systems.
Springer, 1–42.

[33] Susmit Sarkar, Peter Sewell, Francesco Zappa Nardelli, Scott Owens,
Tom Ridge, Thomas Braibant, Magnus O Myreen, and Jade Alglave.
2009. The semantics of x86-CC multiprocessor machine code. In ACM
SIGPLAN Notices, Vol. 44. ACM, 379–391.

[34] Eric Schkufza, Rahul Sharma, and Alex Aiken. 2013. Stochastic super-
optimization. In ACM SIGARCH Computer Architecture News, Vol. 41.
ACM, 305–316.

[35] Jaroslav Ševčík, Viktor Vafeiadis, Francesco Zappa Nardelli, Suresh
Jagannathan, and Peter Sewell. 2013. CompCertTSO: A verified com-
piler for relaxed-memory concurrency. Journal of the ACM (JACM)
60, 3 (2013), 22.

[36] Peter Sewell, Susmit Sarkar, Scott Owens, Francesco Zappa Nardelli,
and Magnus O Myreen. 2010. x86-TSO: a rigorous and usable pro-
grammer’s model for x86 multiprocessors. Commun. ACM 53, 7 (2010),
89–97.

[37] Thomas Arthur Leck Sewell, Magnus O Myreen, and Gerwin Klein.
2013. Translation validation for a verified OS kernel. In ACM SIGPLAN
Notices, Vol. 48. ACM, 471–482.

[38] Sardar Muhammad Sulaman, Alma Orucevic-Alagic, Markus Borg,
Krzysztof Wnuk, Martin Höst, and Jose Luis de la Vara. 2014. Develop-
ment of Safety-Critical Software Systems Using Open Source Software
– A SystematicMap. In Software Engineering and Advanced Applications
(SEAA), 2014 40th EUROMICRO Conference on. IEEE, 17–24.

https://doi.org/10.1109/IEEESTD.2008.4610935
https://doi.org/10.1109/IEEESTD.2008.4610935
http://dl.acm.org/citation.cfm?id=2682923.2682944
http://dl.acm.org/citation.cfm?id=2682923.2682944
https://doi.org/10.1145/2908080.2908121
http://xavierleroy.org/publi/compcert-backend.pdf
http://xavierleroy.org/publi/compcert-backend.pdf
https://doi.org/10.1109/FMCAD.2008.ECP.24

Formally Verified Big Step Semantics out of x86-64 Binaries CPP ’19, January 14–15, 2019, Cascais, Portugal

[39] Yong Kiam Tan, Magnus O Myreen, Ramana Kumar, Anthony Fox,
Scott Owens, and Michael Norrish. 2016. A new verified compiler
backend for CakeML. In ACM SIGPLAN Notices, Vol. 51. ACM, 60–73.

[40] Ruoyu Wang, Yan Shoshitaishvili, Antonio Bianchi, Aravind Machiry,
John Grosen, Paul Grosen, Christopher Kruegel, and Giovanni Vigna.
2017. Ramblr: Making Reassembly Great Again. In Proceedings of the

24th Annual Symposium on Network and Distributed System Security
(NDSS’17).

[41] Jim Woodcock, Peter Gorm Larsen, Juan Bicarregui, and John Fitzger-
ald. 2009. Formal Methods: Practice and Experience. ACM Computing
Survey 41, 4, Article 19 (Oct. 2009), 36 pages. https://doi.org/10.1145/
1592434.1592436

https://doi.org/10.1145/1592434.1592436
https://doi.org/10.1145/1592434.1592436

	Abstract
	1 Introduction
	2 Methodology
	3 Overview of Formal Model
	3.1 Machine Model
	3.2 Chum: Instruction Semantics
	3.3 Decompilation-Into-Logic

	4 Extraction of Chum from Strata
	4.1 Strata and Stoke Introduction
	4.2 Chum Extraction

	5 Big-Step Semantics
	5.1 Formal Symbolic Execution
	5.2 Rewrite Rules
	5.3 Pointers
	5.4 Floating Points
	5.5 Memcpy

	6 Testing
	7 Case Study: FDLIBM IEEE754 Remainder Function
	8 Related Work
	8.1 Decompilation-Into-Logic
	8.2 Machine Models
	8.3 Testing Methodologies
	8.4 Binary Verification Efforts

	9 Conclusion
	Acknowledgments
	References

