
On Utility Accrual Processor Scheduling with Wait-Free
Synchronization for Embedded Real-Time Software

ABSTRACT
We present the first wait-free utility accrual (UA) real-time
scheduling algorithms for embedded real-time systems. UA
scheduling algorithms allow application activities to be sub-
ject to time/utility function (TUF) time constraints, and
optimize criteria such as maximizing the sum of the activi-
ties’ attained utilities. We present UA algorithms that use
wait-free synchronization for mutually exclusively accessing
shared data objects. We derive upper bounds on the maxi-
mum possible increase in activity utility with wait-free over
their lock-based counterparts, while incurring the minimum
possible additional space costs, and thereby establish the
tradeoffs between wait-free and lock-based object sharing
for UA scheduling. Our implementation measurements on a
POSIX RTOS reveal that (during under-loads), the wait-free
algorithms yield optimal utility for step TUFs and signifi-
cantly higher utility (than lock-based) for non-step TUFs.

1. INTRODUCTION
Emerging real-time embedded systems such as robotic sys-

tems in the space domain (e.g., NASA’s Mars Rover [6])
and control systems in the defense domain (e.g., airborne
tracking systems [4]) are subject to time constraints that
are “soft” in the sense that completing an activity at any
time will result in some (positive or negative) utility to the
system, and that utility depends on the activity’s comple-
tion time. With such soft time constraints, the optimality
criteria is often to complete all time-constrained activities
as close as possible to their optimal completion times—so
as to yield maximal collective utility.

-
Time

6Utility

0

bbbb

(a)

-
Time

6Utility

S
S

S
S

0

HHH
(b)

-
Time

6Utility

0
(c)

Figure 1: Example TUF Time Constraints

Jensen’s time/utility functions (or TUFs) [5] allow the
semantics of soft time constraints to be precisely specified.
A TUF, which generalizes the deadline constraint, specifies
the utility to the system resulting from the completion of an
activity as a function of its completion time. Figures 1(a)–
1(b) show time constraints specified using TUFs of two real
applications in the defense domain (see [4] and the refer-
ences therein). The classical deadline is a binary-valued,
downward “step” shaped TUF; Figure 1(c) shows examples.

When activities are subject to TUF time constraints, the
scheduling criteria are based on accrued utility—e.g., maxi-
mizing the summed attained utility. Such criteria are called
utility accrual (or UA) criteria, and scheduling algorithms
that optimize them are called UA scheduling algorithms.

Note that UA algorithms that maximize summed utility
under downward step TUFs (or deadlines), meet all activity
deadlines during under-loads [5, 11]. Thus, UA scheduling
algorithms’ timeliness behavior subsume the optimal time-
liness behavior of deadline scheduling.

1.1 Shared Data and Synchronization
Most embedded real-time systems involve mutually exclu-

sive, concurrent access to shared data objects, resulting in
contention for those objects. Resolution of the contention di-
rectly affects the system’s timeliness, and thus the system’s
behavior. Mechanisms that resolve such contention can be
broadly classified into: (1) lock-based schemes—e.g., [10, 5];
and (2) non-blocking schemes including wait-free protocols
(e.g., [8, 2, 7]) and lock-free protocols (e.g., [1]).

Lock-based protocols have several disadvantages such as
serialized access to shared objects, resulting in reduced con-
currency and thus reduced resource utilization [1]. Further,
many lock-based protocols typically incur additional run-
time overhead due to protocol (or scheduler) activations that
occur when activities request previously locked shared ob-
jects, which are scheduling events [10, 5]. Another disadvan-
tage is the possibility of deadlocks that can occur when lock
holders crash, causing indefinite starvation to blockers. Fur-
ther, many (real-time) lock-based protocols require a-priori
knowledge of the ceilings of locks [10], which may be some-
times difficult to obtain. Furthermore, OS data structures
(e.g., semaphore control blocks) must be a-priori updated
with that knowledge, resulting in reduced flexibility [1].

These drawbacks have motivated research on wait-free ob-
ject sharing in real-time systems. Wait-free protocols use
multiple buffers (e.g., a circular buffer). For the single-
writer/multiple-reader problem, wait-free protocols typically
use buffers that is proportional to the maximum number of
times the readers can be preempted by the writer, during
when the readers are reading. The maximum number of
preemptions of a reader by the writer bounds the number of
times the writer can update the object while the reader is
reading. Thus, by using as many buffers as the worst-case
number of preemptions of readers by the writer, the readers
and the writer can continuously read and write in different
buffers, respectively, and thereby avoid interference.

However, wait-free protocols incur additional space costs
due to their usage of multiple buffers, which is infeasible
for many small-memory embedded real-time systems. Prior
research have shown how to mitigate such costs. In [8],

Kopetz et al. present one of the earliest wait-free protocols.
Chen et al. build upon [8] and present an efficient wait-
free protocol in [2]. Huang et al. improve the time costs of
Chen’s protocol in [7]. Chen’s protocol is further improved
by Cho et al. to develop the space-optimal wait-free protocol
for the single-writer/multiple-reader problem in [3].

1.2 Synchronization Under UA Scheduling
In this paper, we consider wait-free synchronization for

the single-writer/multiple-reader problem in embedded real-
time systems that are subject to TUF time constraints and
UA optimality criteria. Our motivation to consider wait-free
synchronization for UA scheduling is to reap its advantages
(e.g., reduced object access time, greater concurrency, re-
duced run-time overhead, fault-tolerance) toward better op-
timization of UA criteria. In particular, we hypothesize that
the reduced shared object access time under wait-free syn-
chronization will result in increased activity attained utility.
Of course, this will come with the additional buffer cost.

Thus, our goal is to develop wait-free UA scheduling algo-
rithms that use the absolute minimum buffer size, and ver-
ify whether such algorithms can yield greater activity utility
than lock-based ones. This will allow us to establish the fun-
damental tradeoffs between wait-free and lock-based object
sharing for UA scheduling. We precisely do so in this paper.

We focus on wait-free synchronization, as opposed to lock-
free, as lock-free incurs additional time costs (due to their
retry loops), which can potentially reduce attained utility.
We consider the single-writer/multiple-reader problem, as it
occurs in most embedded real-time systems [7]. Further, we
consider the UA optimality criteria of maximizing the sum
of the activities’ attained utilities, while yielding optimal
total utility for step TUFs during under-loads, and ensuring
the integrity of shared data objects under concurrent access.

UA scheduling under wait-free synchronization has never
been studied in the past. Thus, we consider the two lock-
based UA algorithms that match our exact UA criteria: (1)
the Resource-constrained Utility Accrual (or RUA) schedul-
ing algorithm [11] and (2) the Dependent Activity Schedul-
ing Algorithm (or DASA) [5]. We develop wait-free versions
of RUA and DASA using the space-optimal protocol in [3].

We analytically compare RUA’s and DASA’s wait-free
and lock-based versions. We establish upper bounds on the
maximum increase in utility that is possible with wait-free
over lock-based. The upper bounds — the first such — ver-
ify our hypothesis. Our measurements from a POSIX RTOS
implementation reveal that during under-loads, wait-free al-
gorithms yield optimal utility for step TUFs and signifi-
cantly higher utility (than lock-based) for non-step TUFs.

Thus, the paper’s central contribution is wait-free UA
scheduling algorithms, the upper bounds on their maximum
possible increase in activity utility over lock-based, for the
minimum additional space cost, and the resulting tradeoff.
We are not aware of any other wait-free UA algorithm.

The rest of the paper is organized as follows: In Section 2,
we overview the wait-free protocol in [3] for completeness.
We describe RUA, develop its wait-free version, and derive
the upper bound on the increase in utility in Section 3. Simi-
larly, we present results for DASA in Section 4. In Section 5,
we discuss our implementation experience and report our
measurements. Finally, we conclude the paper in Section 6.

2. AN OPTIMAL WAIT-FREE PROTOCOL
The wait-free synchronization requires the protocol to hold

two properties: safety and orderliness. The safety property
ensures that the shared object does not become corrupted

during reading and writing—i.e., ensures mutual exclusion.
The orderliness property ensures that all readers always read
the latest data that is completely written by the writer.
In [3], Cho et al. present a wait-free protocol that achieves
these two properties, and uses the minimum possible num-
ber of buffers. We summarize this protocol.

2.1 Number of Buffers in Use
The single-writer/multiple-reader problem is considered

under the periodic task model, for under-load situations.
For convenience, the total number of readers are denoted by
M and the ith reader by Ri. The reader Ri’s jth instance of

reading is denoted by R
[j]
i . The writer’s kth writing instance

is denoted by W [k]. R
[j]
i (op) stands for a specific operation

op of R
[j]
i —e.g., R

[j]
i (READING[i] = 0) implies the execu-

tion of one operatoin in Chen’s algorithm [2]. W [k](op) also

stands for the operation in W [k]. If R
[j]
i reads what W [k]

writes, we denote it as w(R
[j]
i) = W [k].

W
[1]
 W
[2]
 W
[3]
 W
[4]
 W
[5]
 W
[6]
 W
[7]
 W
[8]

R
1

R

2

R

3

R

4

W

t

1

t

2

Figure 2: Number of Buffers in Use

Suppose we have 4 readers and 1 writer, as shown in Fig-
ure 2. At time t1, w(R1)=W [2], w(R2)=W [2], and w(R3)=W [1].
This implies that two buffers are being accessed by the read-
ers. Additionally, to achieve the safety and orderliness prop-
erties, one buffer is required to store and save the latest
completely written data by W [4], and another is needed for
the next writing operation by W [5]. Thus, four buffers are
being used in total, at time t1.

The basic intuition for determining the minimum number
of buffers is to construct a worst-case where the required
number of buffers are as large as possible, when the max-
imum possible number of interferences of all readers with
the writer occurs. This problem can be mapped into the
Diverse Selection Problem (or DSP).

2.2 Diverse Selection Problem
The DSP, D(R, ~R(~x)), is defined with the problem range

R and the range vector ~R(~x) of all elements in the vector ~x.
Each element xi in the vector ~x has the range ri = [li, ui].
The solution to the problem D is represented as a vector
~x =< x1, ..., xM >, where the vector size n(~x) is M . Every
xi must satisfy its range constraint ri and the problem range
constraint R simultaneously. {~x} is defined as a set including
all elements of ~x, but without duplicates. Thus, the size of
{~x}, n({~x}), is less than or equal to n(~x). The objective
of DSP is to determine the maximum n({~x}) by selecting
~x, satisfying all range constraints as diversely as possible.
In [3], Cho et al. present an efficient approach to solve DSP
by an inductive strategy.

Given a vector, ~v =< v1, ..., vi, ... >, the number of vi’s
having k value is denoted by H(~v, k), and the maximum

value among all vi’s as Top(~v). Given D(R, ~R~x), the optimal
solution of D when R = [t1, t2] is denoted as nmax

[t1,t2]({~x}).
Here, the lower bounds of all ranges are assumed to be 1 to

make it easily applicable to the wait-free problem.

Theorem 1 (DSP for the Wait-Free Protocol).
In the DSP D(R, ~u) with R = [1, N], nmax

[t+1]({~x}) =

�
nmax

[t] ({~x}) + 1, if
Pt+1

k=0 H(~r, N − k) > nmax
[t] ({~x})

nmax
[t] ({~x}), otherwise

where N = Top(~u), [t]=[N − t, N], and 0 ≤ t < N . When
t = 0, nmax

[0] ({~x}) = 1.

Proof. See [3].

As shown in Theorem 1, the solution to D([1, N], ~r) can
be decomposed and build up from D([i, N], ~r), where 1 ≤
i ≤ N , inductively.

2.3 DSP and WFBP
The DSP has similarity with the Wait-Free Buffer size

decision Problem (or WFBP). Here, there are M readers
and their maximum interferences are < Nmax

1 , ..., Nmax
M >.

WFBP’s objective is to determine the worst-case maximum
number of buffers.

W
[7]
 W
[6]
 W
[5]
 W
[4]
 W
[3]
 W
[2]
 W
[1]

R
1

R

2

R

3

R

4

t

Figure 3: A Worst-Case of the WFBP

Figure 3 illustrates with an example, how to construct
the worst-case where the required number of buffers are as
large as possible. In this example, R1’s maximum inter-
ference is 5, which is illustrated in a line. It means that
w(R1) may belong to the set {W [1],...,W [6]}. The worst-

case is assumed to happen at time t between W [2] and W [1],
where W [2] writes the latest completely written data, and
W [1] is the next writing operation for which another buffer
is needed. For this reason, WFBP is restated as determin-
ing ~x =< w(R1), ..., w(RM) > that will maximize n({~x} ∪
{W [1], W [2]}), where w(Ri) ∈ {W [1], ..., W [Nmax

i +1]}. If W [j]

is abbreviated as j, the problem is redefined as determining
~x =< x1, ..., xM > that will maximize n({~x}∪{1, 2}), where
xi ∈ {1, ..., Nmax

i + 1}. Therefore, the final solution {~x} of
a given WFBP is obtained with a sum of the solution from
a mapped DSP and a set {1, 2}.

Corollary 2 (The Optimality). If a solution to the
WFBP can be obtained, then it must be the minimum and
space-optimal buffer size that satisfies the two properties,
safety and orderliness.

Proof. See [3].

Algorithm 1 solves WFBP based on Theorem 1. The sum
and the function doesExist(t) correspond to

P
H(~u, ...) and

H(~u, t) in Theorem 1. Note that Algorithm 1 is independent
of the scheduling algorithm. Instead, it depends on Nmax

analysis.

Algorithm 1: Algorithm for WFBP

input : number of readers M; maximum1

interference Nmax[M]
output: required buffer size n2

sum=n=0;3

on1=on2=false;4

for i = 0 to M-1 do Nmax[i]++;5

sort(Nmax[1,...,M]);6

for t=Nmax[0] to 1 do7

sum += doesExist(t, Nmax[1,...,M]);8

if sum>n then9

n++;10

if t=2 then on2 = true;11

if t=1 then on1 = true;12

if on2=false then n++;13

if on1=false then n++;14

3. SYNCHRONIZATION IN RUA
RUA [11] considers activities subject to arbitrarily shaped

TUF time constraints and concurrent sharing of non-CPU
resources including logical (e.g., data objects) and physical
(e.g., disks) resources. The algorithm allows concurrent re-
source sharing under mutual exclusion constraints.

RUA’s objective is to maximize the total utility accrued
by all activities. To develop RUA’s wait-free version, we
first overview the original lock-based algorithm.

3.1 Lock-Based RUA
RUA’s scheduling events include task arrivals, task depar-

tures, and lock, and unlock requests. When RUA is invoked,
it first builds each task’s dependency list—that arises due
to mutually exclusive object sharing—by following the chain
of object request and ownership. The algorithm then checks
for deadlocks by detecting the presence of a cycle in the ob-
ject/resource graph — a necessary condition for deadlocks.
Deadlocks are resolved by aborting that task in the cycle,
which will likely contribute the least utility.

After handling deadlocks, RUA examines tasks in the or-
der of non-increasing potential utility densities (or PUDs).
The PUD of a task is the ratio of the expected task utility to
the remaining task execution time, and thus measures the
task’s return of investment. The algorithm inserts a task
and its dependents into a tentative schedule, in the order of
their critical times, earliest critical time first. Critical time
is the time at which the task TUF has zero utility–i.e., the
“deadline” time (all TUFs are assumed to have such a time).
The insertion is done by respecting the tasks’ dependencies.

After insertion, RUA checks the schedule’s feasibility. If
infeasible, the inserted task and its dependents are rejected.
The algorithm repeats the process until all tasks are exam-
ined, and selects the task at the schedule head for execution.

If a task’s critical time is reached and its execution has
not been completed, an exception is raised, which is also a
scheduling event, and the task is immediately aborted.

In [11], Wu et al. bound the maximum blocking time that
a task may experience under RUA for the special-case of the
single-unit resource model:

Theorem 3 (RUA’s Blocking Time). Under RUA with
the single-unit resource model, a task Ti can be blocked for
at most the duration of min(n, m) critical sections, where
n is the number of tasks that can block Ti and have longer
critical times than Ti, and m is the number of resources that
can be used to block Ti.

Proof. See [11].

3.2 Wait-Free RUA
We focus on the single-unit resource model for develop-

ing RUA’s wait-free version. With wait-free synchroniza-
tion, RUA is significantly simplified: Scheduling events now
include only task arrivals and task departures — lock and
unlock requests are not needed anymore. Further, no depen-
dency list arises and need to be built. Moreover, deadlocks
will not occur due to the absence of object/resource depen-
dencies. All these reduce the algorithm’s complexity. RUA’s
wait-free version is described in Algorithm 2.

Algorithm 2: Wait-Free RUA

input : Tr, task set in the ready queue1

output: selected thread Texe2

Initialization: t=tcur, σ = φ;3

for ∀Ti ∈ Tr do4

if feasible(Ti) then5

Ti.PUD = Ui(t+Ti.ExecTime)
Ti.ExecTime

;6

else7

abort(Ti);8

σtmp1=sortByPUD(Tr);9

for ∀Ti ∈ σtmp1 from head to tail do10

if Ti.PUD > 0 then11

σtmp2 = σ;12

InsertByDeadline(Ti,σtmp2);13

if feasible(σtmp2) then14

σ = σtmp2;15

else16

break;17

Texe=headOf(σ);18

return Texe;19

Lock-based RUA’s time complexity grows as a function of
the number of tasks, while that for wait-free RUA, it grows
as a function of the number of readers and number of shared
objects. (The cost of lock-based RUA is independent of the
number of objects, as the dependency list built by RUA
may contain all tasks in the worst-case, irrespective of the
number of objects.) The number of readers can exceed the
number of tasks under nested critical sections—e.g., a single
task can make multiple (nested) object requests, resulting
in as many readers as there are requests.

With n tasks and m readers, the time complexity of lock-
based RUA is O(n2 log n) [11], while that of wait-free RUA
is O(n2 +m), as Algorithm 2 shows. Especially if there is no
nested object request, the number of readers m, is bounded
by n. When that happens, wait-free RUA improves upon
lock-based RUA from O(n2 log n) to O(n2).

We now formally compare task sojourn times under wait-
free and lock-based versions of RUA. We assume that all
accesses to lock-based shared objects require r units of time,
and that to wait-free shared objects require w units. The
computation time ci of a task Ti can be written as ci =
ui + mi × tacc, where ui is the computation time excluding
accesses to shared objects; mi is the number of shared object
accesses by Ti; and tacc is the maximum computation time
for any object access—i.e., r for lock-based objects and w
for wait-free objects.

Theorem 4 (Comparison of RUA’s Sojourn Times).
Under RUA, as the critical section tacc of a task Ti becomes

longer, the difference between the sojourn time with lock-
based synchronization, slb, and that with wait-free protocol,
swf , converges to the range:

0 ≤ slb − swf ≤ r ·min(ni, mi),

where ni is the number of tasks that can block Ti and have
longer critical times than Ti, and mi is the number of shared
data objects that can be used to block Ti.

Proof. The sojourn time of a task Ti under RUA with
lock-based synchronization includes the execution time ci =
ui + mi × r, the preemption time Ii, and the blocking time
Bi. Based on Theorem 3, the blocking time Bi is at most
mi ×min(ni, mi). On the other hand, the sojourn time of
task Ti under RUA with wait-free protocol does not include
any blocking time. Therefore, the difference between lock-
based synchronization and wait-free is at most mi×(r−w)+
r×min(mi, ni). Assuming that the data for synchronization
is large enough such that the execution time difference in the
algorithm between lock-based synchronization and wait-free
becomes negligible (i.e., the time for reading and writing the
data object becomes dominant in the time for synchroniza-
tion), then r and w converge and become equal. In this case,
the sojourn time of Ti under lock-based synchronization is
longer than that under wait-free by r ×min(ni, mi).

The reduced sojourn time of a task under wait-free in-
creases the accrued utility of the task, for non-increasing
TUFs. Further, this potentially allows greater number of
tasks to be scheduled and completed before their critical
times, yielding more total accrued utility (for such TUFs).

Based on Theorem 4, we can now estimate the difference
in the Accrual Utility Ratio (or AUR) between wait-free and
lock-based, for non-increasing TUFs. AUR is the ratio of the
actual accrued utility to the maximum possible utility.

Corollary 5. Under RUA, with non-increasing TUFs,
as the critical section tacc of a task Ti becomes longer, the
difference in AUR, ∆AUR = AURwf − AURlb, between
lock-based synchronization and wait-free converges to:

0 ≤ ∆AUR ≤
NX

i=1

Ui(swf)− Ui(swf + r ·min(mi, ni))

Ui(0)
,

where Ui(t) denotes the utility accrued by task Ti when it
completes at time t, and N is the number of tasks.

Proof. It directly follows from Theorem 4.

When the data for synchronization is small and the time
for reading and writing the shared data object is not dom-
inant, r and w are more dependent on the object sharing
algorithm. The execution time of lock-based synchroniza-
tion, r, includes the time for the locking and unlocking pro-
cedure (needed for mutual exclusion), executing the sched-
uler, and accessing the shared object, while w includes the
time for controlling the wait-free protocol’s variables and ac-
cessing the shared object. The wait-free protocol does not
activate the scheduler, and hence avoids significant system
overhead. Consequently, w’s of many wait-free protocols are
known to be shorter than r [3, 7]. Thus, no matter what the
size of the data to communicate between tasks is, wait-free
synchronization conclusively accrues more utility compared
with lock-based synchronization.

4. SYNCHRONIZATION IN DASA
DASA [5] considers activities subject to step-shaped TUFs

and concurrent sharing of non-CPU resources (e.g., data

objects, disks) under mutual exclusion constraints and un-
der the single-unit resource request model. Thus, DASA’s
model is a proper subset of RUA: DASA is restricted to
step TUFs and the single-unit model, while RUA allows ar-
bitrarily shaped TUFs and the multi-unit model (we focus
on RUA’s single-unit model here).

Like RUA, DASA’s objective is to maximize the total
utility accrued by all activities. DASA’s basic operation is
identical to that of RUA for the single-unit model (see Sec-
tion 3.1). Thus, for the single-unit model, RUA’s behavior
subsumes DASA’s. Therefore, in [11], Wu et al. also show
that the maximum blocking time that a task may suffer un-
der DASA is identical to that under RUA (for the single-unit
model), which is stated in Theorem 3.

4.1 Wait-Free DASA
Since TUFs under DASA are step-shaped, shorter sojourn

time does not increase accrued utility, as tasks accrue the
same utility irrespective of when they complete before their
critical times, as long as they do so. However, shorter so-
journ time is still beneficial, as it reduces the likelihood of
missing task critical times. Hence, lesser the number of tasks
missing their critical times, higher will be the total accrued
utility.

Wait-free synchronization prevents DASA from loosing
utility no matter how many dependencies arise. Similar to
wait-free RUA, wait-free DASA is also simplified: Schedul-
ing events now include only arrivals and departures, no de-
pendency list needs to be built, and no deadlocks will occur.

The time complexities of lock-based and wait-free DASA
are identical to that of lock-based and wait-free RUA: O(n2) [5]
and O(n2 + m), respectively. Similar to wait-free RUA,
when m is bounded by n, wait-free DASA improves upon
lock-based DASA from O(n2 log n) to O(n2).

The comparison of DASA’s sojourn times under lock-based
and that under wait-free is similar to Theorem 4:

Theorem 6 (Comparison of DASA’s Sojourn Times).
Under DASA, as the critical section tacc of a task Ti becomes
longer, the difference between the sojourn time with lock-
based synchronization, slb, and that with wait-free protocol,
swf , converges to:

0 ≤ slb − swf ≤ r ×min(ni, mi),

where ni is the number of tasks that can block Ti and have
longer critical times than Ti, and mi is the number of shared
data objects that can be used to block Ti.

Proof. See proof of Theorem 4.

5. IMPLEMENTATION EXPERIENCE
We implemented the lock-based and wait-free algorithms

in the meta-scheduler scheduling framework [9], which al-
lows middleware-level real-time scheduling atop POSIX RTOSes.
We used QNX Neutrino 6.3 RTOS running on a 500MHz,
Pentium-III processor in our implementation.

Our task model for computing the wait-free buffer size fol-
lows the model in [7]. We determine the maximum number
of times the writer can interfere with the reader, Nmax as:

Nmax = max(2,
lPR − (C − CR)

PW

m
).

PR and PW denote the reader’s and the writer’s period,
respectively. For simplicity, we set the task critical times to
be the same as the task periods.

C is the reader’s worst-case execution time, and CR is the
time needed to perform a read operation.

Table 1: Experimental Parameters for Tasks
Name P(msec) C(msec) Shared Objects

Writer1 100 10 r1

Writer2 100 10 r2

Writer3 100 10 r3

Writer4 100 10 r4

Writer5 100 10 r5

Reader1 900 100 r1 r2 r3 r4 r5

Reader2 1000 100 r2 r3 r4 r5 r1

Reader3 1100 100 r3 r4 r5 r1 r2

Reader4 1200 100 r4 r5 r1 r2 r3

Reader5 1300 100 r5 r1 r2 r3 r4

Table 1 shows our task parameters. We consider a task set
of 10 tasks, which includes 5 readers and 5 writers, mutually
exclusively sharing at most 5 data objects. We set CR for
each object to be approximately 20% of C for each reader,
which implies that tasks share large amounts of data. We
allow a reader to read from 1 object to at most 5 objects. We
also vary the number of readers from 1 to 5. The minimum
buffer size needed for the wait-free protocol is calculated by
Algorithm 1. The actual amount of memory needed is the
buffer size multiplied by the message size in bytes.

For each experiment, we generate approximately 16,000
tasks and measure the AUR and the CMR (or critical time
meet ratio) under RUA’s and DASA’s lock-based and wait-
free versions, where CMR is the ratio of the number of tasks
that meet their critical times to the total number of task
releases. The performance comparison between both are
shown with the varying number of shared objects and the
varying number of tasks.

(a) Lock-Based (b) Wait-Free

Figure 4: Performance of Lock-Based and Wait-Free DASA
Under Increasing Number of Shared Objects

Figure 4 and Figure 5 show lock-based and wait-free DASA’s
AUR and CMR (on the right-side y-axes), under increasing
number of shared data objects and under increasing number
of reader tasks, respectively. The figures also show (on the
left-side y-axes) the number of buffers used by lock-based
and wait-free, as well as the number of task blockings’ and
task abortions that occur under lock-based.

From Figures 4(a) and 5(a), we observe that the AUR and
CMR of lock-based DASA decrease as the number of shared
objects and number of readers increase. This is because, as
the number of shared objects and readers increase, greater
number of task blockings’ occurs, resulting in increased so-
journ times, critical time-misses, and consequent abortions.

Wait-free DASA is not subject to this behavior, as Fig-
ures 4(b) and 5(b) show. Wait-free DASA achieves 100%
AUR and CMR even as the number of shared objects and
readers increase. This is because, wait-free eliminates task
blockings’. Consequently, the algorithm produces a critical
time (or deadline)-ordered schedule, which is optimal for
under-load situations (i.e., all critical times are satisfied).
Thus, all tasks complete before their critical times, and the

(a) Lock-Based (b) Wait-Free

Figure 5: Performance of Lock-Based and Wait-Free DASA
Under Increasing Number of Readers

algorithm achieves the maximum possible total utility.
However, the number of buffers needed for wait-free (cal-

culated by Algorithm 1) increases as the number of objects
and readers increase. But Algorithm 1 is space-optimal —
the needed buffer size is the absolute minimum possible.

(a) Lock-Based (b) Wait-Free

Figure 6: Performance of Lock-Based and Wait-Free RUA
Under Increasing Number of Shared Objects

Similar to the DASA experiments, we compare the per-
formance of RUA’s lock-based and wait-free versions. Since
RUA allows arbitrarily-shaped TUFs, we consider a het-
erogenous class of TUF shapes including step, parabolic,
and linearly-decreasing. The results are shown in Figures 6
and 7. We observe similar trends as that of DASA’s: Lock-
based RUA’s AUR and CMR decrease as the objects and
readers increase, due to increased task blockings’.

(a) Lock-Based (b) Wait-Free

Figure 7: Performance of Lock-Based and Wait-Free RUA
Under Increasing Number of Readers

Similar to DASA, wait-free sharing alleviates task block-
ings’ under RUA. Consequently, RUA produces optimal-
schedules during under-load situations in terms of meeting
all task critical times, and thus yields 100% CMR.

RUA with wait-free sharing yields greater AUR than that
under lock-based, as objects and readers increase. However,
unlike DASA, RUA does not yield 100% AUR with wait-free,
because tasks accrue different utility depending upon when

they complete, even when they do so before task critical
times (due to non-step shapes). Further, the algorithm does
not necessarily complete tasks at their optimal times as that
scheduling problem is NP-hard (and RUA is a heuristic).

6. CONCLUSION
In this paper, we introduce for the first time, wait-free

synchronization for UA real-time scheduling. We develop
wait-free versions of two UA algorithms, RUA and DASA,
using the space-optimal wait-free protocol for the single-
writer/multiple-reader problem. We establish upper bounds
on the maximum possible increase in activity utility that is
possible with wait-free, compared to their lock-based coun-
terparts. Our implementation measurements on a POSIX
RTOS show that during under-loads, wait-free algorithms
yield optimal utility for step TUFs and significantly higher
utility (than lock-based) for non-step TUFs.

Several aspects of the work are directions for further re-
search. Examples include extending the results to the multiple-
writer/multiple-reader problem and overload situations.

7. REFERENCES
[1] J. H. Anderson, S. Ramamurthy, and K. Jeffay.

Real-time computing with lock-free shared objects.
ACM TOCS, 15(2):134–165, 1997.

[2] J. Chen and A. Burns. A fully asynchronous
reader/writer mechanism for multiprocessor real-time
systems. Technical Report YCS-288, CS Dept.,
University of York, May 1997.

[3] H. Cho, B. Ravindran, and E. D. Jensen. A
space-optimal, wait-free real-time synchronization
protocol. In IEEE ECRTS, 2005.

[4] R. Clark, E. D. Jensen, et al. An adaptive, distributed
airborne tracking system. In IEEE WPDRTS, pages
353–362, April 1999.

[5] R. K. Clark. Scheduling Dependent Real-Time
Activities. PhD thesis, CMU CS Dept., 1990.

[6] R. K. Clark, E. D. Jensen, and N. F. Rouquette.
Software organization to facilitate dynamic processor
scheduling. In IEEE WPDRTS, April 2004.

[7] H. Huang, P. Pillai, and K. G. Shin. Improving
wait-free algorithms for interprocess communication in
embedded real-time systems. In USENIX Annual
Technical Conference, pages 303–316, 2002.

[8] H. Kopetz and J. Reisinger. The non-blocking write
protocol nbw. In IEEE RTSS, pages 131–137, 1993.

[9] P. Li, B. Ravindran, et al. A formally verified
application-level framework for real-time scheduling
on posix real-time operating systems. IEEE Trans.
Software Engineering, 30(9):613 – 629, Sept. 2004.

[10] L. Sha, R. Rajkumar, and J. P. Lehoczky. Priority
inheritance protocols: An approach to real-time
synchronization. IEEE Trans. Computers,
39(9):1175–1185, 1990.

[11] H. Wu, B. Ravindran, et al. Utility accrual scheduling
under arbitrary time/utility functions and multiunit
resource constraints. In IEEE RTCSA, August 2004.

