
Stramash: A Fused-Kernel Design Operating System for
Cache-Coherent, Heterogeneous-ISA Platforms

Tong Xing
TheUniversity ofEdinburgh

Edinburgh, UK
tong.xing@ed.ac.uk

Cong Xiong∗
Imperial College London

London, UK
cong.xiong24@imperial.ac.uk

Tianrui Wei
UC Berkeley
Berkeley, USA

tianruiwei@berkeley.edu

April Sanchez†
Google

Sunnyvale, USA
aprilsanchez@ucsb.edu

Binoy Ravindran
Virginia Tech

Blacksburg, USA
binoy@vt.edu

Jonathan Balkind
UC Santa Barbara
Santa Barbara, USA
jbalkind@ucsb.edu

Antonio Barbalace
TheUniversity ofEdinburgh

Edinburgh, UK
antonio.barbalace@ed.ac.uk

Abstract
We live in the world of heterogeneous computing. With

specialised elements reaching all aspects of our computer sys-
tems and their prevalence only growing,wemust act to rein in
their inherent complexity.One area that has seen significantly
less investment in termsofdevelopment isheterogeneous-ISA
systems, specifically because of complexity. To date, hetero-
geneous-ISA processors have required significant software
overheads,workarounds, and coordination layers,making the
developmentofmore advanced softwarehard, andmotivating
little further development of more advanced hardware.
In this paper, we take a fused approach to heterogene-

ity, and introduce a new operating system (OS) design, the
fused-kernel OS, which goes beyond the multiple-kernel OS
design, exploiting cache-coherent shared memory among
heterogeneous-ISA CPUs as a first principle – introducing a
set of newOS kernel mechanisms.We built a prototype fused-
kernel OS, Stramash-Linux, to demonstrate the applicability
of our design to monolithic OS kernels. We profile Stramash
OS components on real hardware but tested them on an archi-
tectural simulator – Stramash-QEMU, which we design and
build. Our evaluation begins by validating the accuracy of our
simulator, achievinganaverageof less than4%errors.We then
performadirect comparisonbetweenour fused-kernelOSand
state-of-the-art multiple-kernel OS designs. Results demon-
strate speedups of up to 2.1× onNPBbenchmarks. Further,we
provide an in-depth analysis of the differences and trade-offs
between fused-kernel and multiple-kernel OS designs.

∗Cong Xiong worked on this project when at The University of Edinburgh
†April Sanchez worked on this project when at UC Santa Barbara

Thiswork is licensedunderaCreativeCommonsAttribution4.0 International
License.
ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1079-7/2025/03.
https://doi.org/10.1145/3676641.3716275

CCSConcepts: •Computer systems organization→Het-
erogeneous (hybrid) systems; • Software and its engi-
neering→Operating systems; Simulator / interpreter.

Keywords: OperatingSystems,Multiple-Kernel, Fused-kernel,
Simulation,Heterogeneous, CacheCoherent, SharedMemory

ACMReference Format:
Tong Xing, Cong Xiong, TianruiWei, April Sanchez, Binoy Ravin-
dran, Jonathan Balkind, and Antonio Barbalace. 2025. Stramash:
A Fused-Kernel Design Operating System for Cache-Coherent,
Heterogeneous-ISA Platforms. In Proceedings of the 30th ACM In-
ternational Conference on Architectural Support for Programming
Languages and Operating Systems, Volume 2 (ASPLOS ’25), March
30-April 3, 2025, Rotterdam, Netherlands.ACM, New York, NY, USA,
17 pages. https://doi.org/10.1145/3676641.3716275

1 Introduction
Heterogeneous-ISA systems have garnered significant in-

terest in recent years by providing a “lighter” and more pro-
grammable approach toheterogeneity than the adoptionof ac-
celerators, making it possible to run existing general-purpose
code with greater efficiency than running with a single in-
struction set [7, 8, 26, 60]. However, building and running
these systems presents inherent challenges due to the various
fundamental mismatches between hardware and software
that come with integrating different ISAs. To date, commer-
cially available platforms focused on loosely-coupled systems
without hardware cache coherence, for example, those based
around PCIe. As a result, heterogeneity in ISA is still consid-
ered a liability rather than an opportunity, with its introduc-
tion leading to overheads and system-level complexity rather
than an introduction of ISA-generic capabilities that provide
forgreater efficiency. Instead, today’sheterogeneous-ISAplat-
forms run a separate software stack per CPU [9, 58]. Applica-
tions running thereon are perceived to be in a distributed sys-
tem and hence cannot leverage per-platform optimizations.
New HW landscape. The hardware landscape is rapidly
changing. There are several PCIe extensions that consider
cache-coherent shared memory (including CXL [25], Open-
CAPI [48] and CCIX [20]), making tighter interconnection

https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode
https://doi.org/10.1145/3676641.3716275
https://doi.org/10.1145/3676641.3716275

ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands Tong Xing et al.

of heterogeneous processing units an inevitable trend. Addi-
tionally, hardware research platforms have begun the move
toward greater integration, providing cache-coherent het-
erogeneous-ISA processor designs [7, 36] or environments
where such processors could be prototyped [2], but rather
than offering rapid prototyping, their FPGA/ASIC orienta-
tion requires long development cycles. As such, these so-
lutions have left open the question of what their accompa-
nying software systems should look like. While we have a
number of research operating systems to adopt strategies
from [11, 13, 15, 17, 22, 38, 43, 47], none of these had the
capability of leverage on cache-coherent shared memory,
which we argue will make possible a large suite of perfor-
mance improvements. Indeed, there exist commercial SoCs
with some levels of heterogeneity, such as Intel Alder Lake
or Arm big.LITTLE. Still, their heterogeneity is more focused
on power efficiency than instruction semantics – single-ISA
heterogeneity. In fact, such SoCs simply run traditional OSes
for homogeneous-ISAmulticores, e.g., vanilla Linux.
A New OS Design. With the emergence of platforms with
cache-coherent shared memory amongst heterogeneous-ISA
processors, sketched in Figure 1, which sound like shared
memory multiprocessor systems but with heterogeneous
cores, a naïve question is if also those can run classic SMP
OSes? Classic SMP OSes are compiled to run on CPUs of the
same ISA, so they cannot run amongst heterogeneous-ISA
CPUs. Multiple-kernel OSes address ISA-heterogeneity, but
existing designs are shared-nothing – i.e., designed to avoid
using shared memory between kernel instances, for scalabil-
ity [15], for heterogeneity, or because cache coherency sim-
ply did not exist before [11]. With the introduction of cache-
coherent shared memory, a new OS design that exploits it
together with heterogeneous-ISA is sought: the fused-kernel
OS. Note we do not claim that heterogeneous-ISA platforms
provide better efficiency,we recognize that their effectiveness
depends on application- and platform-specific factors, which
have yet to be fully demonstrated. Instead, our primary goal
is to enable these emerging platforms to run applications as
efficiently as possible by minimizing OS-related overheads.

We implemented the fused-kernel OS design atop Linux, in
Stramash-Linux, starting from an academic multiple-kernel
OS, Popcorn-Linux [11], to demonstrate the feasibility of our
design and its applicability to traditional monolithic OSes.
While amultiple-kernelOS enables applications to share state,
a fused-kernel OS enables applications and kernel code to
share (some or all) state among different kernel instances [12].
Stramash-Linux. Stramash-Linux is designed to fully ex-
ploit cache-coherent sharedmemorywith the fused-kernelOS
design. First and foremost, we nearly eliminate inter-kernel
messaging, preferring higher-performance communication
via cache-coherent shared memory, including sharing OS’
data structures among kernel instances. Based on this, we
introduce approaches tomake OS services on different kernel
instances share data effectively, including locking, because

Figure 1. Stramash’s target hardware and software model

shared data cannot always be shared as-is but may need to
be in architecture-dependent formats, e.g. page table. While
shared data access is the core of the fused-kernel OS design,
prototypingStramash-Linuxwithin theLinuxkernel required
the introduction of newmechanisms to reduce OS overhead.
HardwareSimulator. Whileweawait theenvisionedemerg-
ing hardware and academic prototypes that remain ill-suited
to OS development, we implemented our own hardware sim-
ulator, Stramash-QEMU, by extending the industry-hardened
QEMU with a cache simulator. By staying in the software
realm, Stramash provides for high-speed prototyping exploit-
ing widely-adopted ISAs like x86 and Arm, in contrast to
prior hardware-oriented prototyping platforms like BYOC [7]
which rely on outdated or less-adopted ISAs.

Stramash-QEMU"fuses" togethermultipleQEMUinstances
with a memory system simulator as the first in a new class of
coherent, heterogeneous-ISA simulators. The software flexi-
bility provided by Stramash-QEMU enables the investigation
of architecture- and platform-level changes of particular in-
terest to architects, as well as research into operating systems.
In this paper, we introduce our fused approach to shared
memory and interrupt delivery, among others.
Key Results. With our fused-kernel OS, Stramash-Linux,
we demonstrate up to 2.1× speedup over the state-of-the-
art multiple-kernel OS Popcorn-Linux. We also validate that
Stramash-QEMU can achieve performance measurements
within 4% on average vs bare metal. Stramash-Linux and
Stramash-QEMU source code can be found at https://github.
com/systems-nuts/Stramash-AE/
Contributions. Briefly, our contributions include:

• The fused-kernel OS design, a shared-mostly multiple-
kernel OS that minimises communication overhead
among kernel instances, and a prototype of it based on
Linux, Stramash-Linux;

• The fused-simulator design, combining single-ISA sim-
ulators into a single multi-ISA simulation platform pro-
viding cache-coherent shared memory, and its imple-
mentation based on QEMU, Stramash-QEMU;

• The validation of Stramash-QEMU using two physical
AArch64 plus x86-64 platforms;

• A quantitative comparison of Stramash-Linux versus
Popcorn-Linux on Stramash-QEMU.

https://github.com/systems-nuts/Stramash-AE/
https://github.com/systems-nuts/Stramash-AE/

Stramash: A Fused-Kernel Design OS for Cache-Coherent, Heterogeneous-ISA Platforms ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands

Figure 2. Comparison of OS designs for heterogeneous-ISA
cache-coherent shared memory platforms.

LimitationsandFutureWork. This paper focuses on anew
OS design, its implementation into a state-of-the-practice OS
(Linux), and the supporting simulation environment. We de-
liberately donot study the scalability of this approach–which
is not possible to do efficiently today with a software simu-
lator alone. Currently, we only target x86-64 and AArch64.
Extending that to other 64-bit ISAs is mainly an engineering
effort, due to the same bit-width. However, targeting diverse
bit-width ISAs requires further research, which is beyond our
current scope. Likewise, Popcorn’s compilers [44, 49] have
only been used for pairs of ISAs of the same bit-width so far.
Moreover, security and fault-tolerance, while part of our

design (see below), are futurework. Indeed, security and fault-
tolerance related specifications may exist, like CXL’s IDE and
RAS, but we believe it is not worth speculating on the actual
security or failure behaviors without a hardware prototype.
2 Background &RelatedWork
There are a variety of architectural studies which have

shownperformance, efficiency, and security benefits to adopt-
ing heterogeneous-ISA system designs [14, 55, 59, 60]. In the
systems realm, a number of new operating system [15, 17, 21,
38, 47] designs have been proposed that leverage existing (or
minimally modified) hardware to exploit the architectural
benefits and enhance system performance.
Systems Software. Heterogeneous-ISA platforms with gen-
eral purpose-CPUs, with or without shared memory, are not
new [7, 57, 58, 63], e.g., an x86 host CPU featuring a Xeon
Phi, or Arm-based smartNIC/SSD. The most common ap-
proach to run software on such platforms is to run a separate
software stack – including at least the OS/runtime and ap-
plications, per island of homogeneous-ISA CPUs, “separated
kernel” in Figure 2. Applications must be rewritten to run in a
distributed (or offloaded) system where communication hap-
pens explicitly via message passing. This approach cannot
exploit cache-coherent sharedmemory evenwhen available.
To more effectively support application execution among

heterogeneous-ISA cores, new systems software is needed.
Applications must be compiled to support live execution mi-
gration, and a runtime or OS is needed to provide the same
execution environment on source and destinationCPUs. Both
runtime and OS solutions have been proposed, in this paper

we focus on the OS ones and not on runtime ones like H-
Container [10, 62] (C-based), and PadMig [31] (Java-based).
In the last decade, several works proposed new OS archi-

tectures to provide the abstraction of a single system among
different single-ISA or multiple-ISA heterogeneous CPU plat-
forms, including Helios [47], Barrelfish [15], K2 [38], Pop-
corn [11], and Flick [21]. Applications running atop these
enjoy the same OS interface and services among diverse
CPUs, and applications may either spawn threads or migrate
threads to a CPU of a different ISA. All works we are aware
of achieve this by using multiple, communicating kernel in-
stances, where CPUs of different ISAs run different OS kernel
instances, "multiple-kernel" in Figure 2.
Different from SMPOSes, where a single kernel instance

runs among all CPU cores, which share all kernel data struc-
tures (shared everything [16]), multiple-kernel OSes tend to
either do not share anything (shared nothing) [11, 15, 21, 47],
or share a few kernel data structures (shared something) [37].
Note that shared nothing multiple kernels do share memory
as an optimisation [15, 35]. Anyhow, the level of data sharing
in kernel space is unrelated to the level of sharing in user
space. In fact, shared-nothing multiple kernels do provide ap-
plications with consistent shared memory when applications
run amongst kernel instances, either by distributed shared
memory (DSM) [11, 53] or using hardware remapping [21].
Two main factors lead the evolution of multiple-kernel

OSes to shared nothing/something. Firstly, the potentially
poor scalability of cache-coherent shared memory intercon-
nects [15], or their high power draw [38]. Secondly, the ab-
sence of hardware with heterogeneous-ISA CPU cores on
cache-coherent sharedmemory,whichhindered furtherOSre-
search,making ourwork the first of its kind. Previous projects
leverage either non-coherent domains [11, 17, 38], or domains
connected via high-latency buses with snooping [21].
Prototyping Environments. Early heterogeneous-ISA sys-
tem prototypes have largely exploited existing hardware.
A number of systems used existing x86 server hardware
with PCIe non-transparent bridges to connect processors
of other ISAs [11, 17]. Others exploited existing systems-on-
chip which provided limited heterogeneous-ISA capability
(e.g., Arm+Thumb) [38]. While these platforms enable full-
speed execution of proposed OS designs, they do not feature
cache-coherent memory, necessitating software consistency
layers that degradeperformanceand increaseOScomplexity–
particularly for research prototypes building on top of Linux.

Recently,BYOCintroducedacachecoherentheterogeneous-
ISA prototyping environment [7]. BYOC uses FPGA emula-
tion to provide high-speed prototyping which could eventu-
ally be realised in silicon. The system supports several ISAs
(SPARC v9, RISC-V, i486), but does not feature 64 bit x86 or
Arm ISAs, which would be of most interest to OS developers
and users. Further, prototyping an architectural change re-
quires a full, FPGA-ready implementation, which is a high bar
to entry. Towards the end of this work, AMD announced an

ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands Tong Xing et al.

Figure 3.Memory configurations and OS kernel placements.

Embedded series of SoC that has Ryzen and Xilinx FPGA [4],
where the FPGA could be programmed as RISC-V; SOPHON
released SG200X SoCs featuring RISC-V and Arm cores [56].
Both platforms featuring CC shared memory between cores.

We takeadifferent approach toprototypingby fusingmulti-
ple instances of QEMUwith an extension of the Cache plugin
memory system simulator. This enables OS, architecture, and
platform prototyping in software at a relatively high speed
without the need for full hardware implementation. With
QEMU, we can also exploit proprietary ISAs like 64-bit x86
and Arm. Our work is the first we are aware of to fuse mul-
tiple QEMU instances of different ISAs together with shared
memory backed by an architectural cache simulator.
3 HardwareModel

Stramash targets emerging platforms with cache-coherent
heterogeneous-ISA CPUs integrated into an SoC (like BYOC
or SOPHON’s SG200X) or interconnected via emerging cache-
coherent buses (like CXL). Hence, we considered at least 3
memory hardware configurations: Separated, Shared, and
Fully Shared, depicted in Figure 3. In the Separated configu-
ration, each CPU group has its own memory, with coherence
managed by a Last Level Cache (LLC), like in NUMA. In the
Shared configuration, each CPU group has access to a private
memory, and all CPUs can access a cache-coherent shared
memory, like CXL 3.0 [23]. In the Fully Shared configuration,
there is a single, shared memory for all processors, although
it may be mapped to different addresses, like the academic
research project OpenPiton [8]. Each processor is capable
of sending Inter Processor Interrupts (IPI) to any other pro-
cessor in the system. All MMIO devices are accessible by all
processors. Regarding memory consistency, we assume all
processors abide by the strongest memory consistencymodel
of all ISAs (Arm already supports running in TSOmode). This
assumption is justified by standards like CXL 3.0 that add a
MESI cache coherency protocol for inter-host sharedmemory
–where hosts can be of any ISA. Systems supporting heteroge-
neous consistency models could take advantage of tools like
ArMOR [40] to defend against consistencymodelmismatches.

Stramash leverages cache coherent shared memory for
communication, and IPI for notification. Additionally, for

inter-CPU-group communication, Stramash may rely on cus-
tom communication devices (e.g., hardware FIFOs or spin-
locks [57]) in embedded SoCs – not in this paper, or the use of
built-in switching functionality in an Ethernet NIC [18, 45],
i.e., sending network packets between ISAs – used herein.
4 Design Principles
With the goal of enabling existing applications to exploit

cache coherent heterogeneous-ISACPUsplatformswithmax-
imumperformance (withminimalOS/runtime overheads) the
fused-OS is based on the following design principles:

• Run applications as-is, or with minimal modifications,
to support legacy;

• Target traditional widely-used OS design – monolithic
OSes, to attract a large user community, while remain-
ing applicable to other OS designs;

• Generality, to support a wide variety of ISAs, and di-
verse heterogeneous-memory configurations;

• Minimize data movement; hence, avoid copies across
ISA boundaries as much as possible;

• Security, to ensure that the security of each kernel in-
stance is not undermined by the kernel-level sharing.

For our architecture simulator – developed to validate our
prototype fused-kernel OS, similar principles apply:

• Exploit, andeventuallyextend,existingprojects, reusing
designs and APIs;

• Based on traditional widely-used simulators/emulators
to attract a larger user community;

• Fast prototyping, easy configuration – while support-
ing different memory hierarchies;

• Fast execution speed, with ability to enable a cycle ap-
proximate memory model;

• Accurate, to reflect the different ISAs’ memory models
and their interactions (e.g., for atomic instructions).

5 Fused-kernel Operating Systems Design
We introduce a "fused approach" to multiple-kernel oper-

ating system design, pulling together – fusing – OS services
running on different kernel instances. This means that (some
of) the data structures of one kernel instance can be accessed
by the other kernel instance(s) directly via shared memory.
Hence, enabling multiple kernel instances to work as one,
reducing OS service latency and improving execution speed.
Design andMethodology. We introduce a newOS design,
the fused-kernel OS, rightmost design in Figure 2. Differently
from previous multiple-kernel OSes, which are based on the
shared nothing principle, fused-kernel OSes are based on the
principle of shared-mostly – i.e., different kernel instances
do communicate using shared memory or share a single state
in shared memory. Thus, avoiding prior work’s communica-
tion overheads including serialization and deserialization of
data structures, coordination protocols, message copying, etc.
Such design enables tight coordination between kernels to
share hardware and software resources.

Stramash: A Fused-Kernel Design OS for Cache-Coherent, Heterogeneous-ISA Platforms ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands

OS services in a fused-kernel OS are either: local or global.
Local OS services do not require any communication be-
tween kernel instances, while global do. Global OS services
are mainly built upon shared memory, but when that is too
complicated, inter-kernel message-passing is used, like in a
multiple-kernel. As shown in previous literature, message-
passing requires an OS service to be rewritten as a distributed
service, i.e., using coordination protocols.When using shared
memory, we introduce two OS service architectures:

• one in which an OS service is rewritten to adopt a com-
mon data format in shared memory amongst kernels;

• one in which each kernel instance keeps its own data
format, but theothersuseaccessor functions to read/write
the original data, including locks.

The latter isnecessarywhenhandlingarchitecture-dependent
data, like page tables, while the first fits services that are ar-
chitecture independent. A collection of accessor functions
targeting a specific ISAmakes up a remote CPU driver.
Based on our design principles and the way OS services

communicate, our fused-kernel design further introduces the
following architectural choices described below.
MinimalResource Provisioning. To quickly provide global
resources, each kernel instance fully utilizes its own private
hardware resources (e.g., memory) when available, and ac-
quires anyother shared resourceonlywhenneeded, returning
resources to global allocators when no longer needed.

This is in stark contrast to traditional OSes, which discover
and initialize all resources available on a machine at boot,
ready for later allocation. In our design, while all resources
are discovered and initialized at boot, shared resources are
maintained in a global pool before being assigned to a kernel
instance – such as a CXL shared memory pool. Thus, at boot
time a kernel instance is given aminimal amount of resources.
Interrupts and Inter-kernel Notification. Inmost cases all
hardware resources are globally accessible, and each kernel
instance knows about those – including memory and devices,
but basedon theprevious architectural choicekernels areonly
provided with needed resources. Despite that, each kernel
always maps all interrupts, especially IPIs, for notification.
Single virtual address space. To simplify the development
of accessor functions, and reduce their pointer arithmetic over-
heads,we introduce a single kernel-level virtual address space
among kernel instances – which still allows for part of the
kernel-level address space to be private.
Minimal/secure kernel-level data sharing. As heteroge-
neous SoCs are gaining traction, the number of security issues
has been rising steadily [14, 55, 59]; e.g., a simple defect in a
wifi chip could enable remote code execution onAndroid [30].
Thus, although not the primary focus of this paper, a fused-
kernelOSneeds toconsider thesecurityaspectswhenrunning
on shared memory on different heterogeneous-ISA cores.

Specifically,wepostulate thatkernel instances should share
only required data structures. Everything else should be in
private memory or protected by hardware enforcement, like

MPU, MMU, IOMMU, and hardware capabilities. To make
hardware protection effective, we also propose to pack data
structures’ data in contiguous physical memory – so it is
simple to categorize and share between kernels.
Applications’ Compiler and Linker. Applications must be
compiled in a way that makes them amenable to migration,
such that they can continue executing on another ISA-CPU
carrying over the existing application state minus the CPU-
state that is converted. Inter-kernel threadmigration isoffered
as anOS service and includes functionalities to show the same
application state on different kernel instances. Inter-kernel
processmigration is simpler because there is nokernel state to
be kept consistent after migration. In this work, we reuse the
open-source Popcorn-Linux Compiler Toolchain [49] to com-
pile applications to run on Stramash OS. We direct interested
readers to such project literature [41, 42].
6 Stramash-Linux Implementation

We implemented a prototype of our fused-kernel OS, called
Stramash-Linux, based on the Linux kernel 5.2.12. To avoid
reinventing the wheel, we adopted OS components from the
open-sourcePopcorn-Linuxproject, includingprocess/thread
migration and the messaging layer. To build Stramash-Linux
we contributed around 9200 LoC atop Popcorn-Linux. We
chose the Popcorn-Linux project because it is the only one
providing an open-source, fully-functioning OS and compiler
toolchain, which actually produces executable binaries that
can migrate across heterogeneous-ISA CPUs.
Prototype Limitations. Because we based our work on the
Popcorn project, which fully supports only the x86 and Arm
ISAs, our Stramash prototype inherits the same limitation.
However, we believe that our design applies to other ISA
mixtures as well, including different bit-widths and endi-
anesses. x86-64 and AArch64 are widely adopted, specifically
on emerging platforms targeted by this paper. Hence, other
ISAmixtures are out of the scope of this paper.
While we did implement support for data packing in con-

tiguous physical memory – including moving pages to re-
organize data, we did not find an efficient method to limit
the kernel-space remotely accessible memory between ISAs.
Capabilities being a potential candidate, but it is future work.
6.1 Booting Kernels

Within the hardware model proposed, heterogeneous ISA
coreswould have access to the entire sharedmemory, devices,
etc. Therefore, like a traditional OS, Stramash-Linux will dis-
cover all memory and devices, but initialize only a minimal
set of those to enable a working system; the rest of the re-
sources are managed by global pools. At the time of writing,
we limit the area usable by each kernel instance using BIOS
tables/device trees. The OS reads the memory map tables pro-
vided by the firmware and adjusts its boundaries based on
that. Thus, kernel instances’ memory areas do not overlap
(see Figure 4). Once the boot is complete, kernel instances
establish a communication channel to coordinate and bring
up all OS services to share resources in a fused manner.

ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands Tong Xing et al.

Figure 4. Physical memory layout. x86 instance starts at 0x0;
Arm instance starts at 0xA0000000; Shared Memory Pool
from 0x100000000 to 0x200000000.

6.2 Message-passing Communication
Stramash-Linux uses a messaging layer to communicate

between kernel instances. This is based on one or more pairs
of shared memory ring buffers per kernel pair, to exploit
shared memory to minimize latency and payload cost. After
a message has been enqueued on a ring buffer, the messaging
layer sends a cross-ISA IPI to the receiver core group.We also
support polling in place of interrupt dispatching.
6.3 Global Memory Allocator
Stramash-Linux implements a global memory allocator

that manages physical memory among kernel instances. The
current memory allocator exploits and extends the memory
Hot-plug subsystem, with several modifications. Different
from Hot-plug, Stramash-Linux does not require the mem-
ory block to be unplugged. Instead, for hot removal, it first
evacuates the memory block and then isolates the pages. We
picked this solution after testing different options, including
the continuous memory allocator (CMA) as in K2 [38], all
required major modifications to the Linux source code.
TheMemory Allocator. Figure 4 shows an example of mem-
ory layout in Stramash on an Arm+x86 configuration with
8GB of RAM.We have implemented a fixed-size global mem-
ory allocator with a configurable block size (from 32MB to
4GB).Weopted for aminimumsizeof 32MBto reduce theover-
head associated with frequent memory assignments. Each
kernel starts with a fixed amount of blocks. When the total
memory pressure on a certain kernel instance passes 70%, that
kernel requests an additional block from the global memory
allocator. If a block is free, it is directly assigned. If there are
no free blocks, the allocator will try to evict a block from the
other kernels until it also reaches the same memory pressure.
6.4 Fused Virtual Address Space
Stramash-Linux supports user-space process/thread mi-

gration across ISAs. Unlike Popcorn-Linux, which uses soft-
ware DSM to provide a single application virtual address
space among kernels – passing memory pages as messages,
Stramash-Linux leverages cache-coherent shared memory to
maintain a page table per kernel instance due to the differing
page table format in Arm and x86. Both page tables refer to
the same physical memory pages for the same application.

FusedKernelVirtualAddressSpace. Stramash-Linuxaligns
kernel virtual addresses across different kernel instances, en-
abling full addressability of another kernel’s memory. By ad-
justing the vmalloc ranges of x86 to align with the direct map
range of the Arm instance, the Arm’s virtual address space
becomes fully addressable to the x86 kernel instance, and vice
versa. We refer to this configuration as the Fused Kernel Vir-
tual Address Space. This distinctive capability distinguishes
Stramash from other multi-kernel operating systems by al-
lowing it to share kernel virtual addresses and data structures
seamlessly, enhancing interactions without redundancy.
It is worth noting that for some data structures, today we

need to disable the randomized layout to enable direct remote
access. If the layout of shared data structures varies, some
(simple) handling is needed. However, this is typically not a
concern, as few data structures vary across ISAs.
Software Remote Page TableWalker. Stramash-Linux al-
lows one kernel to access the page table of the other ker-
nel through a cross-ISA software page walk to reduce long-
latency round-trips message passing overhead. Currently,
both x86 and Arm in Stramash-Linux are using 5-level page
tables. To acquire the page table entry (PTE) in the origin
kernel, the remote kernel has to walk through those tables
with proper page masks. Each level page mask is re-defined
if it is different between x86 and Arm.
SoftwareRemoteVMAWalker. UnlikePopcorn-Linux,where
a VMA fault triggers a message exchange to the original ker-
nel, in Stramash-Linux, each kernel can access the other ker-
nel’s VMA lists, with appropriate VMA locks acquired. Note
that in our Linux kernel, the VMA lists are still maintained
using the RB-tree structure not a Maple-tree.
Stramash Page Fault Handler. In the current version of
Popcorn-Linux, anonymous pages are allocated in the origin
kernel – where the application starts, which introduces at
least 2 rounds of message passing, i.e., the request/response
of the page allocation and replication. In Stramash-Linux, the
remote kernel allocates anonymous pages without needing
to notify the origin kernel. The remote kernel first allocates
a page, inserts it into its own page table, and adds it to the
origin kernel’s page table with the remote node ISA format.
Once the processmigrates back to the origin kernel, the origin
kernel can simply reconfigure the PTE to its own format and
access the page via cache-coherent shared memory. When a
process is terminated, the origin kernel only invalidates the
PTE and does not attempt to release the page, as it was allo-
cated by the remote kernel. The remote kernel, on the other
hand, takes responsibility for invalidating its own PTE and
releasing the page, thus finalizing the memory recycling. To
manage simultaneous access, we have implemented a cross-
ISA page table lock (Stramash-PTL), ensuring that only one
instance can modify the page table at a time. This method ef-
fectively bypasses the reliance on the Copy-On-Write (COW)
policy heavily utilized in Popcorn-Linux. In contrast to Pop-
corn, where the COW policy minimizes messaging during

Stramash: A Fused-Kernel Design OS for Cache-Coherent, Heterogeneous-ISA Platforms ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands

frequent page updates, Stramash-Linux allows direct page
access without such overhead.
6.5 Cross-ISA locking
Atomicity. Stramash-Linux’s AArch64 kernel includes sup-
port for Large System Extensions (LSE) [5], which provides
a non-interruptible read-modify-write sequence in a single
instruction, Compare-and-Swap (CAS). These atomic instruc-
tions can replace Load-Link/Store-Conditional (LL/SC) op-
erations. Stramash ensures that all kernel spinlock-related
instructions use the CAS instruction, providing a more ef-
ficient and robust mechanism for handling cross-ISA locks.
Additionally, with the integration of Stramash-QEMU, de-
tailed in Section 7.1, operations involving atomic instructions
maintain their integrity cross-ISAs.
Futex. Popcorn-Linux manages Futex (fast userspace mu-
tex) operations by relying on the origin kernel to create and
control all Futex instances. When a lock is requested, the re-
mote kernel must message the origin kernel to engage the
lock, and all subsequent locking actions aremaintained by the
origin kernel. In contrast, Stramash-Linux allows the remote
kernel to directly access the Futex locking list. This reduces
dependency on the origin kernel for locking operations. Upon
unlocking, if the thread is currently waiting in the origin
kernel, the remote kernel sends a cross-ISA IPI to the origin
kernel to wake up the thread.
6.6 Fused Namespace
For applications that migrate inter-ISA, Stramash-Linux

enables the same mount, PID, net, UTS, user, and cgroup
namespaces. These provide the same environment when an
application migrates. Also, the same list of CPUs including
topological information is available on every kernel instance.
7 StramashHardware Simulator

A hardware simulator is necessary to thoroughly evaluate
our Fused-kernel OS against the state-of-the-art. Inspired by
the Fused-kernel OS, our fused-simulator connects multiple
traditional single-ISA simulators as one and presents cache
coherent shared memory to every simulated core. Stramash-
QEMU also supports mechanisms for communication across
ISAs other than shared memory, including IPIs, memory
remapping, private memory, device sharing, parallel bootup,
and cache simulator. Stramash-QEMU targets emerging plat-
forms with cache-coherent shared memory, focusing pri-
marily on memory systemmodeling. It is worth noting that
Stramash-QEMU is generic enough to be reconfigured for
different hardwaremodels.We based our simulator onQEMU
8.0.0 to execute software on heterogeneous CPU cores, specif-
ically AArch64 and x86-64. We have extended the current
QEMU Cache plugin [51] to support a 3-level cache and CXL.
Our contributions amount to about 7100 LoC to QEMU.
We employ system-level simulation to model all OS and

application details. As the application runs, it accesses a main
memory that is coherent across all simulator instances. With
Cache simulation enabled, allmemory accesses are forwarded

to our Cache plugin, which provides detailed memory access
overhead and feedback on latency to our timing model.
7.1 Pervasive Cache-coherent SharedMemory
In Stramash-QEMU, guest memory is allocated on a per-

host basis. Any memory operation from a single guest will
be reflected in others, respecting the rules of cache coher-
ence. By running both Stramash-QEMU instances on the x86
host, the actual memory operations will follow the host’s x86
TSOmemory consistency model. Given that this is a stricter
model, this setup ensures that both instances are protected
frommemoryconsistency issues.However, there is apotential
complication where the x86 host translates the Arm guest’s
LL/SC instructions into the host’s CAS instructions [24, 40].
Stramash-QEMU uses the Cortex-A76 as the Arm CPU core,
which supports LSE and thus CAS instructions.We have care-
fully configured the QEMU tiny code generator (TCG) to
ensure relevant Arm instructions are correctly translated.
7.2 Inter-ISA Interrupts
Interrupts are crucial for interactions between CPU cores

and between cores and external devices. In a heterogeneous-
ISA setting, different ISAs have their approaches to interrupt
management. To take a fused approach to interrupt manage-
ment and thus facilitate interrupt sharingacross architectures,
we have prototyped cross-ISA IPIs that enable native IPI com-
munication between CPUs of different ISAs.We extended the
AArch64 SGI and x86 APIC by adding extra logic to route the
native IPI to the peripheral device, and then notify the other
ISA to generate a native IPI.We assign an unused IRQnumber
in Linux and set up respective handlers for each ISA’s kernel
to handle the IPI.
7.3 Stramash Timebase
Stramash-QEMU introduces a cross-ISA timing model to

coordinate simulated time. Our design resembles manycore
simulators such as PriME [28], where the memory system
becomes the primary factor, and core performance is, by de-
fault, modeledwith a fixed non-memory IPC [29]. This allows
us to implement our custom Stramash time base, which can
quickly simulate cycle-accurate timing information.
TimeinQEMU. QEMUisa functional simulator rather thana
cycle-accurate simulator. While QEMU can provide the guest
with emulated time, thismeasurement is rather basic and does
not offer much insight into the performance of the emulated
hardware. Additionally, QEMU’s TCG backend supports in-
struction counting (icount), enabling the countingof executed
instructions. Icount is a simple yet effective way to profile
software. It is widely supported in tools such as perf, Valgrind,
and Intel Pin [39]. We have configured QEMU to utilize an
instruction count-based timing model, with time progressing
according to instruction counting. This ensures alignment in
speed between I/O and instruction emulation, preventing an
emulated hardware device from running unrealistically fast.
We have disabled thewarp time feature of QEMU to eliminate
any influence from the host’s real-time adjustments.

ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands Tong Xing et al.

InstructionCounting. Measuringprograms’executiontime
in a heterogeneous-ISA platform is not as straightforward as
in homogeneous-ISA platforms because the application can
migrate between CPUs of diverse ISA at runtime. We have
integrated our icount approachwith Linux Perf to get an accu-
ratemeasurement of the time that the application has actually
executed. We use this approach in Stramash-QEMU valida-
tion, comparingour instructioncount to thenative instruction
count on the physical machine, described in Section 9.1.2.
TimingModelling. Although the alignment of the instruc-
tion count-based timing model ensures a minimum latency
for each emulated instruction, it does not offer any perfor-
mancemodelingmetrics. Toaddress this limitationandenable
system-level profiling, we have integrated a modified version
of QEMU’s Cache plugin. We have added a 3-level cache fea-
ture to model the performance of memory systems, which
has been validated in comparison with the GEM5MESI three-
level cachememorymodel [33] in Section 9.1.3. Eachmemory
instruction executed by QEMU passes to our Cache plugin
which analyzes the cache behavior, whether it is a hit or miss,
and accordingly adds memory access overhead to the icount.
This information is then sent back to QEMU as feedback, en-
hancing the accuracy of the performance modeling metrics.
CXLAccess Overhead Feedback. Stramash-QEMU Cache
plugin simulates the latency of data transmission on the CXL
bus. Wemodel the overhead introduced by CXL to maintain
coherence among replicas in the caches of various processors
in heterogeneous systems. We consider the additional delays
brought on by SNOOPmessages and Responses, which play
a crucial role in the invalidation and update processes, includ-
ing Back-Invalidate Snoop, Snoop Invalidate, and Snoop Data
[23].When one processor attempts to write to the samemem-
ory location accessed by another, it issues a "Snoop Invalidate"
request. This operation mandates that all other processors
invalidate the corresponding cache lines they hold, ensuring
coherence and preventing outdated data access. Conversely,
if a processor intends to read from the same memory loca-
tion already accessed by another, it triggers a "Snoop Data"
request. This command converts the cache line’s state from
"Exclusive" to "Shared" in other processors.
7.4 IO Devices

Wehave enhancedQEMUsuch thatwhen an instance lacks
a particular device, it creates a memory mapping for that de-
vice. Consequently, all memory accesses are redirected to the
QEMU instance containing the respective device.
8 Experimental Methodology

Weevaluated Stramash on a SupermicroX11DPi-N(T)with
dual Intel Xeon Gold 6230R CPU and 768GB of RAM. We
set up Stramash-QEMU with the different hardware mod-
els described in Section 3 and compared Stramash-Linux to
Popcorn-Linux. To the best of our knowledge, there are no
other open-source projects that enable applications to run
across different ISAs aside from Popcorn-Linux.

8.1 Stramash-QEMU Setup
Stramash-QEMUhas been setup to simulate the threemod-

els in Figure 3, which we configure with different physical
memory layouts for each QEMU instance. See Figure 4 as a
reference. In the Separatedmodel, the x86 instance has local
memory ranges from 0x0 to 1.5GB, 4GB to 6GB, and the Arm
instance has local memory ranges from 1.5GB to 3GB and
6GB to 8GB. In the Sharedmodel, the memory range of 4GB
to 8GB is considered remote memory for both x86 and Arm
instances, and all other local memory ranges remain the same
as in the Separatedmodel. In the Fully Sharedmodel, all
memory ranges are considered local memory.
In the experiments, we use the memory latencies of the

Xeon Gold and ThunderX2 pairs as shown in Table 2. When
Stramash-QEMU encounters a memory operation to an ad-
dress, it first checks if the address is in the cache and then
it adds the corresponding cache latency. If the cache line is
invalidated ormissed, it reloads it frommemory back into the
cache. Based on different hardware models, the address could
be in local memory or remote memory, and the correspond-
ing latency is added accordingly. Therefore, in the Shared
model, if an address is found in another cache, depending on
whether it is a read or write operation, the Cache-Plugin will
follow the appropriate MESI transition and add the simulated
CXL snooping overhead. For example, if one node writes to
a cache line, the other node will invalidate that cache line if it
is in shared state through a simulated invalidation – a snoop
invalidation overhead is added. The Separatedmodel could
be configured as NUMA or CXL; currently, we use the CXL
snooping overhead to simulate the cost of cache coherence,
but it can be set with the cost of Intel QPI[34] or AMD Infinity
Fabric[3], etc. Fully Shared includes just one shared cache
and memory. After such operations have been simulated, we
add the corresponding overheads to the QEMU icount. We
also actively maintain the same icount speed on both QEMU
instances to ensure that both QEMU icounts increase and
proceed at a similar rate.
8.2 OSes Setup

Local andremotephysicalmemoryrangesarefixed forboth
the x86 and Arm instances of each hardwaremodel simulated
by Stramash-QEMU. If the x86 instance acquires a physical
memory range that belongs to the Arm’s local memory, any
memory operations to this physicalmemory from the x86will
incur additional remote memory access overhead, simulated
by our Cache-Plugin.
For both Stramash-Linux and Popcorn-Linux, we provide

a 128 MB shared memory area to serve as the message layer,
which is configured as a ring buffer. Because Stramash-Linux
can directly access each other’s memory, depending on the
memory model, the location of the message layer’s memory
area varies, and memory access latency is added accordingly.
SetupforPopcorn-Linux. Unlike Stramash-Linux, Popcorn-
Linux kernel instances do not directly access each other’s
memory. We run two versions of Popcorn-Linux. The first,

Stramash: A Fused-Kernel Design OS for Cache-Coherent, Heterogeneous-ISA Platforms ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands

Popcorn-LinuxMessaging over Shared Memory (SHM) em-
ploys a shared memory–based messaging layer. When either
side accesses this sharedmemory, based on the corresponding
hardware model, the Cache Plugin will add corresponding
memory access latency. Meanwhile, all other physical mem-
ory is used exclusively by one kernel or the other. We set up
Popcorn SHM on all 3 hardware models, Separated-SHM:
the messaging layer is mapped at x86’s local and Arm’s re-
mote memory; Shared-SHM: the messaging layer is mapped
at both kernels’ remote memory; Fully Shared-SHM: the
messaging layer is mapped at both kernels’ local memory. For
Stramash-Linux and Popcorn-Linux messaging over shared
memory, the IPI overhead is 2𝜇𝑠 , detailed in Section 9.1.1.

The second,PopcornLinuxMessagingoverNetwork (TCP)
where each kernel only accesses its localmemory and commu-
nicates with other kernels via TCP/IP. Because this doesn’t
exploit shared memory, it performs the same independently
of the hardware model. We add approximately 75𝜇𝑠 delay
for each message round trip to simulate network latency,
which is theaverage latencyof a64KB(DefaultPopcorn-Linux
message payload size [50]) packet round-trip time measured
software-to-software on SmartNIC hardware [18].
8.3 Benchmarks
Amongst others, we extensively run workloads from the

NAS Parallel Benchmark (NPB) [46] collecting execution
time, instructions, and cycles number on bare-metal and on
Stramash-QEMU – using our Linux perf. We selected NPB
because it has different memory access patterns, including
read and write intensive workloads.
9 Evaluation
9.1 Stramash-QEMUValidation

We validated the accuracy of our hardware simulator, Stra-
mash QEMU, with bare-metal measurements on two refer-
ence platforms. Those are two pairs of Arm and x86 ma-
chines, small_Armand small_x86, big_Armandbig_x86. The
small_Arm, a smartNIC, and the small_x86, a low-spec server,
are interconnectedviaPCIebuswhere thesmartNICisplugged
in. To run Popcorn-Linux on this setup we ported it to the
Linux kernel 4.14.79 needed by the smartNIC. The big_Arm
and big_x86, two high-spec servers, are running Popcorn-
Linuxkernelversion5.2.12.Theserversareconnected through
100Gbps Ethernet. In both cases, Popcorn-Linux exploits the
TCP/IPmessaging layer. Their technical details are shown
in Table 1. We also compare Stramash-QEMUCache-Plugin
with Gem5 to assess the rigorousness of our cache model.

9.1.1 IPI Cost Characterisation. Stramash-QEMU inte-
grates two or more QEMU instances, each emulating a differ-
ent ISA processor complex. To the best of our knowledge, we
are thefirst toenableQEMUstoexchangecross-ISAIPIs. In the
absence of real hardware to measure our proposed cross-ISA
IPI, the exact latency remains unknown. Therefore, we used
the latency of cross-NUMA IPI as a placeholder for cross-ISA

Table 1.Machines for Popcorn-Linux baseline data collection

Name Core Hz RAM
Small_Arm Broadcom Armv8 A72 8 cores 3.0GHz 8GB
Big_Arm Dual Cavium ThunderX2 CN9980 2.0GHz 256GB

v2.2 (32 cores/128 threads)
Small_x86 Xeon E5-2620 v4 2.1GHz 16GB

(8 cores/16 threads)
Big_x86 Dual Xeon Gold 6230R 2.1GHz 768GB

(26 cores/52 threads)

Table 2. Stramash-QEMU Cache plugin Memory Operation
Latency, CXL latency for remote memory[54]

Core Operation Latency(cycles)
Cortex-A72[27] L1/L2/L3/mem/remote-mem 4/9/*/300/780
ThunderX2[32] L1/L2/L3/mem/remote-mem 4/9/30/300/620
E5-2620[19] L1/L2/L3/mem/remote-mem 4/12/38/300/640
Xeon Gold[61] L1/L2/L3/mem/remote-mem 4/14/50/300/640

Table 3. Message Count During Migration and Replicate
Page Count During RuntimeMigration

Message Count Replicated Pages

Popcorn Stramash Reduced Rate Popcorn Stramash Reduced Rate

IS 207124 22 99.98% 16918 7 99.96%
CG 16074 34 99.78% 5603 7 99.88%
MG 287672 6 99.99% 110275 9 99.99%
FT 164702 326 99.80% 98787 16459 83.34%

Table 4.Memory allocator overhead of performing offline
and online operations with different memory slice sizes

Qemu-x86 Qemu-Arm

Numof Pages Offline Online Offline Online

215 12.5ms 5.8ms 4.8ms 5.8ms
216 27.7ms 10.9ms 16.1ms 12.3ms
217 38.6ms 14.3ms 14.3ms 16.7ms
218 66.6ms 22.6ms 21.1ms 28.8ms
219 129.4ms 36.5ms 36.4ms 42.6ms
220 246.3ms 68.1ms 64.4ms 80.9ms

latency—aconfigurableparameter inStramash.Toobtaina re-
alistic IPI overhead,wemeasured IPI latency on realmachines.
We implemented a kernel module to measure IPI latency

between all core pairs on both Arm and x86 machine sets
with minimal overhead. The RDTSC instruction was used to
capture timestamps, MONITOR/MWAIT to minimize mea-
surement overheads. Figure 5 and 6 show the measurements.
Theaverage IPI latency isabout2𝜇𝑠 in largemachinepairs, and
we have used this value as our simulated cross-ISA IPI cost.

9.1.2 InstructionCount. WeuseNPB benchmarks for the
icount validation. We use the Stramash-QEMU perf+icount
tool introduced in Section 7.3 to record the icount data from
both kernel instances during themigration. By comparing the
instruction-per-cycle (IPC) results from the (native) perf tool
on a realmachine,we estimate the IPC for Stramash. Since the

ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands Tong Xing et al.

Figure 5. IPI latency results Arm Figure 6. IPI latency results x86

Figure 7. icount validation of small_x86 and
small_Arm (∗_𝑠), and also big_x86 and big_Arm
(∗_𝑏). Note relative error x axes, always <13%.

Figure 8. Cache Simulation Validation

Stramash-Linux target heterogeneous platform is not avail-
able, we use Popcorn-Linux on two real machines and native
perf to profile the application pre- and post-migration, collect-
ing instruction and cycle counts. We then align these native
perf results with the Stramash icount data to approximate the
cycles. Then we compare this approximation with the actual
cycle counts from native perf on the two machines.

The results are shown in Figure 7, the suffixes b and s repre-
sent the native perf on the big machine set and small machine
set shown in Table 1. The ICOUNT bars are the Popcorn mes-
saging with Shared Memory approximated cycle result, the
STRAMASH ICOUNT bars are the result with fused virtual ad-
dress enabled, while the PERF_CYCLE bars are the native perf
result. The overheads of icount are always less than 13%, and
about 4% on average – hence, the accuracy of the tool.

9.1.3 Cache plugin. Stramash-QEMU, with its Cache plu-
gin, targets precise timing verification as mentioned before.
We compare our Cache plugin results with the Gem5MESI

Three-Level cache model, a Ruby modular framework for
building cache coherence protocols in simulation environ-
ments. The same three-level cache structure and size are con-
structed in our Cache plugin to ensure consistency in our
comparisons. We evaluated the NPB benchmarks—CG, IS,
MG, and FT—and analyzed their cache behavior, results in
Figure 8. It shows the cache hit rates for different cache levels,
including the L1 instruction/data cache, L2, and L3 caches.
Across the four benchmarks, the performance of our cache
simulator closely aligns with that of Gem5 Ruby, with dis-
crepancies in L1, L2, and L3 caches being less than 5%. This
demonstrates the accuracy of our cache simulator.
9.2 Stramash-Linux Evaluation

We conducted several experiments to demonstrate the dif-
ference between Stramash-Linux and Popcorn-Linux to an-
swer the question: Is the Fused-kernel OS design better than
Multi-kernel OS, or is there a trade-off? In the following ex-
periments, we set up a pair of AArch64 and x86-64 kernel in-
stances in Stramash-QEMU, with 8GB ofmemory in total.We
ran single-thread NPB applications that migrate between ISA-
different CPUs; the migration points chosen are the same as
Popcorn Linux [11] – there is amigration and back-migration
for each processing procedure (similarly to offloading).
9.2.1 Benchmarking Cross-ISAMigration. The results
are shown in Figure 9, with the y-axis representing execution
time (lower is better) normalised to the Vanilla case (the ap-
plication runs locally without migration involved). Popcorn-
Linux Messaging over Network (TCP) and Popcorn-Linux
Messaging over Shared Memory (SHMwith 3 different mem-
ory models) serve as our baseline. Fully Shared, Shared and
Separated show the results of Stramash-Linux with the spe-
cific memory models used in Stramash-QEMU, cf. Figure 3.
We observed that Stramash Linux results provide up to a 2×
speedup compared to Popcorn-Linux SHM with the same
memory model setup and 2.6× to TCP in the IS benchmark.
However, some benchmarks show a less significant speedup.
Performance improvement breakdown. From our observa-
tion, performance varies between different NPB benchmarks,
indicating thatperformance improvement isapplication-specific.
In all cases, Stramash Linux with (Fully Shared) memory
model demonstrates the best performance, closely matching
that of the Vanilla case, as it effectively eliminates remote

Stramash: A Fused-Kernel Design OS for Cache-Coherent, Heterogeneous-ISA Platforms ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands

Figure 9.NPB benchmark results

memory access and messaging overheads. In order to explore
the reason why the performance varies between different
applications, we break down the overhead of eachNPB bench-
mark, focusing on three main components: the messaging
cost (MSG), the memory access overhead (Local or Remote),
and the instructions execution time (INST).
Message Passing Overheads. Based on the Popcorn Linux
results, the major difference between the twomodels (SHM
andTCP) arises frommessage passing overhead, as we added
extra network latency to simulate the TCP/IP networking.
Intuitively, we think messaging overhead would affect the
performance significantly. Several benchmarks generate a
huge amount of inter-kernel messages as shown in Table 3,
for example, MG and IS. However, from the experimental
results, the cost of messaging is not a significant factor. Es-
pecially from the experimental results, which demonstrate
that message passing overhead can be dramatically reduced
by utilizing shared memory that has faster interconnection
speed (SHM).We also notice that the results of SHM running
on 3 different memory models have similar results because
SHM always replicates the page; the remote memory access
overhead isminimal. Since Stramash-Linux also benefits from
the faster inter-connection speed, therefore, we use (SHM)
as our only baseline in the following experiments.
Read vsWrite Intensive Behaviour. An interesting case is
observed where Stramash Linuxwith Shared and Separated
memorymodels exhibits weak performance, especially in the
CG benchmark, whereas in the IS benchmark, it performs
well in all cases. We found that the CG (Conjugate Gradient)
benchmark is primarily read-intensive. This involves numer-
ous sparse matrix-vector multiplications; 98.34% of memory
instructions are load instructions [1]. Instead, the IS (Integer
Sort) benchmark is more write-intensive. It tests the perfor-
mance of integer sorting algorithms, whichwouldmodify the
sequence of keys during the procedure stage [6].
9.2.2 Cross-ISAmigration: Cache Size Sensibility. In
previous experiments, each QEMU instance has 4MB of L3
cache.To further compareStramashLinuxandPopcornLinux,
we increased each QEMU instance’s total L3 cache size to 32
MB, similar to recently released multi-core processors [61].
Theresults forCGandISareshowninFigure10.ForCG,which
is predominantly read-intensive with fewer writes (and thus

Figure 10. IS vs CG, different Cache size result

fewer invalidations), a larger L3 cache reduces the cache miss
rate and overall memory accesses, significantly reducing exe-
cution time for Stramash Linux with Shared and Separated
memorymodels.With a smaller cache, when a read operation
loads anewcache line into a full cache, anevictionoccurs even
without invalidation. In Stramash-Linux, this could involve
loading data from remotememory. In contrast, Popcorn Linux
(SHM) always replicates the page, and the load is always from
local memory, so its performance is less affected by changes
in cache size. As a result, the performance of Popcorn-Linux
(SHM) in the CG benchmark remains stable regardless of
cache size. With a larger cache, reducing remote memory ac-
cesses, Stramash-Linux experiences a performance improve-
ment. Its slowdown compared to SHM decreases from 34%
with a 4MB L3 cache to below 1% with a 32MB L3 cache.

For the IS workload, which is write-intensive, the L3 cache
faces a high invalidation rate even with an increased cache
size, keeping the high cache miss rate. However, in Popcorn-
Linux (SHM), a larger cache size reduces cache evictions due
to the LRU policy. This leads to fewer write-backs as multi-
ple writes can accumulate in the cache before being written
back to memory. Each write-back to replicated pages can trig-
ger the DSM consistency policy if a remote node is reading
those pages, adding overhead. Therefore, reducing the repli-
cation of DSM pages and reducing write-backs improves the
performance of Popcorn-Linux (SHM) on the IS benchmark.
Meanwhile, because the ISworkload’s cachemiss rate remains
high, Stramash-Linux continues to access remotememory fre-
quently, resulting in relatively stable performance despite the
increased cache size. Thus, the Stramash-Linux improvement
over SHM decreases from 2.1× to 1.6×with the larger L3.

9.2.3 Cross-ISAmigration: Page replication. Popcorn-
LinuxusesDSMtomaintainaconsistentaddress spaceamongst
kernels. Replicating pages necessitates messaging to inform
the shared page owner of any updates; thus, the software-
based memory consistency policy requires extra memory
capacity.Although the copy-on-write (COW)policymaymiti-
gate somemessaging, significant overheads persist. Stramash-
Linux eliminates the need for page replication and ensures

ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands Tong Xing et al.

that updates are immediately visible to both kernels. Table 3
shows the count of replicated pages during runtime threadmi-
gration. In the current version of Stramash, replicated pages
still exist because it only allows remote kernel allocation at
the PTE level. If the upper layer of the page table is missing,
the original kernel will handle the fault to reduce complexity.

9.2.4 Microbenchmarks: Memory Access Cost. We de-
veloped amemory-boundmicrobenchmark to investigate the
memoryaccessoverheadwhen theDSMprotocol is enabled to
maintain page coherence. The results are shown in Figure 11
(lower is better). In this study, we highlight the performance
impact of cross-ISA memory access. We allocate 10 MB of
data in either the local or remote kernel instance and con-
duct sequential memory access operations on the allocated
memory. We measured five different memory access activi-
ties: The origin kernel accesses the origin kernel’s memory,
serving as our baseline (Vanilla); the remote kernel accesses
the origin kernel’s memory (Remote access Origin); remote
accesses origin, but the remote kernel has previously accessed
the memory and thus has the latest version of the memory
content (Remote access Origin No Cold). Origin access Re-
mote case and Origin access Remote No Cold case are similar
to the previous cases except with opposite access directions.
Results. Popcorn-Linux Messaging over Shared Memory
(SHM) has less than 1% of REMOTE overhead in the break-
down, and the performance is the samewhen running on Sep-
arated and Fully Shared. Therefore, Stramash-Linux with
the same Sharedmemory model outperforms SHM by up to
2.5×, and up to 4.5× in the Fully Sharedmemorymodel. The
most interesting part is the No Cold case. In Popcorn-Linux,
thefirstmemoryaccess requires theDSMprotocol to replicate
the page and keep the local page content up-to-date. However,
during continued warm access (read or write), the local pages
are already updated, resulting in no DSM overhead, and per-
formance is close to the vanilla case since all memory access
is local. In contrast, Stramash-Linux with the Shared or Sep-
aratedmemory model performs weaker because of remote
memory access overheads; since there is no page replication,
it needs to load the data again if the previously accessed data
has been evicted from the cache, and in the worst case, the
data are loaded from the remotememorywith extra overhead.
Takeaway. In future architectures, where shared data reside
in a remote memory pool, replicating data into local memory
can potentially outperform direct remote access. However,
any write operation to shared data invalidates all local repli-
cas, thus introducing a trade-off between replication-based
and direct-access approaches.

9.2.5 Microbenchmarks: Software vs Hardware Con-
sistency. Software Distributed Shared Memory (DSM) is no-
torious for its overheads, especially as systems scale [16].
Overheads stem from the expensive maintenance of coher-
encewhendata, often inpagesize, is replicatedacrossmultiple

Figure 11.Memory Access Analysis (RaO: Remote
Access Origin, OaR: Origin Access Remote, NC: No
Cold accessVanilla*: Vanilla experiment runs on
Shared memory model, SHM performs same on
all three memory model

Figure 12. Page Access with cacheline granularity,
from 1 cacheline size (64 Bytes) to 64 Cacheline
size (4096 Byte), SHM performs same on all three
memory model

nodes, which requires inter-node communication that is ex-
pensive. However, none have studied its performance when
nodes are tightly connected like in Sharedmodel. In contrast,
Hardware-based Cache Coherence, such as that supported by
CXL 3.0, enables data transfers at cacheline granularity. To
quantify the performance differences between software and
hardware coherence, we conducted experiments by access-
ing data ranging from a single cacheline (64 bytes) up to 64
cachelines (4096 bytes) – one page.
Results. As shown in Figure 12, when accessing just one
cacheline, DSM incurs an overhead exceeding 300× com-
pared to hardware coherence approaches, due to the unnec-
essary replication of entire pages. Even when accessing all
data within a page, hardware coherence can still achieve ap-
proximately 2× faster performance than DSM.
Takeaway. These results underscore the inefficiencies of
softwareDSM,particularly in scenarioswhere data access pat-
terns are fine-grained and dispersed. Nevertheless, software-
based consistency may still offer advantages in cases where
sequential access dominates.

9.2.6 Microbenchmarks: Futex Lock. In Popcorn-Linux,
all Futex instances are created andmanaged by the origin ker-
nel, while Stramash-Linux allows the remote kernel to handle
the Futex operation itself. We set up an experiment to demon-
strate the performance improvement of Stramash-Linux in

Stramash: A Fused-Kernel Design OS for Cache-Coherent, Heterogeneous-ISA Platforms ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands

handling Futex operations, with and without Futex optimiza-
tions, to eliminate the impact of all other factors. The Futex
microbenchmark: The origin kernel continuously locks the
Futex,while the remote kernel continuously unlocks the same
Futex, performing a simple addition in each loop. A higher
loop count indicates more Futex operations. Figure 13 shows
the execution time results of the experiments, comparing the
Stramash Futex-optimized case to the regular case.
In the Futex-Optimization case, which proves to be the

best, only one cross-ISA IPI is needed to wake up the waiting
thread,whereas theoriginal solution requires a full Futexman-
agement protocol, including multiple requests and response
messages to handle each Futex operation.

9.2.7 GlobalMemoryAllocator Overheads. We present
the overheads introduced by our allocator, including the time
required for offlining and onlining memory slices. We set up
Stramash-QEMUwith 4GB of dynamically shared memory
between two kernels; each slice is 256MB for a total of 16
slices.We recorded the average time to offline or online a slice
on both the Arm and x86. Table 4 illustrates the overheads
introduced by our allocator,measured inmilliseconds,mainly
due to the page isolation process.

9.2.8 Network-serving Application. In this experiment,
we use the Redis-server [52] as an example of a network-
serving application. We modified the Redis-server to migrate
between heterogeneous-ISA CPUs. Because we cannot mi-
grateaprocess/thread that reads/writes toasocket–aPopcorn-
Linux limitation, our modified Redis-server migrates to the
remote kernel during the processing of the time_event. We
do not enable the Stramash-QEMUCache plugin because: (a)
the simulation has a different timemodel compared with real-
time; (b) the simulation is slow enough to make connections
time out. Thus, results demonstrate the functional validation
of Stramash-Linux when applied to real-world applications.
On the host machine, the TCP/IP based messaging layer

is connected through a Linux network bridge, which con-
nects the QEMU tap device. The Redis benchmark runs with
10K requests with fixed payload sizes of 1024 bytes. Due to
the different timebase of client and server, we measure pro-
cessing time for each round of requests inside our modified
Redis-server. The normalised results are shown in Figure 14,
with the TCP/IP-based message layer (POPCORN-TCP) set as
the baseline; higher is better. Experiment show that the SHM-
based message layer (POPCORN-SHM) can gain around 4−10×
speedup compared to the baseline. With Stramash-Linux en-
abled, the speedup can be even greater, up to 12×. Again, these
results are indicative and for functional validation only.
10 Conclusion

With research in academia showing the potential benefits
of heterogeneous-ISA platforms – including cache coherent
ones, and emerging cache coherent interconnects over pe-
ripheral buses to connect heterogeneous-ISA processors on

Figure 13. Futex experiment results

Figure 14. Redis speedup

the same platform, it is fundamental to investigate what op-
erating system software on such platforms should look like.
In this paper, we propose a new Operating System design tar-
geting such emerging platforms, the fused-kernel OS, which
is a multiple-kernel OS that exploits cache-coherent shared
memory for inter-kernel coordination. We implemented a
prototype fused-kernel OS based on Linux supporting Arm
and x86 ISAs, named Stramash-Linux.
Because the real hardware of the platforms we targeted is

not commercially available yet, we built a hardware simulator
based on QEMU and Cache-plugin for memory-accurate sim-
ulation. We called this Stramash-QEMU.We used Stramash-
QEMU to compare Stramash-Linux versus the state-of-the-
art multiple-kernel OS for heterogeneous hardware, Popcorn
Linux, on 3 different hardware models. We discovered that
Stramash-Linux enables the best application performance in
most cases, but performance improvements depend on an ap-
plication’s access pattern and the hardware model. Amongst
other results, our simulated CXL 3.0 hardware model shows
thatusingDSMwithPopcorn-Linuxmay result inbetter appli-
cation performance than directly accessing remote memory
with Stramash-Linux, for at least NPB CG.
Acknowledgments

Wethanktheanonymousreviewersandourshepherd,Gerd
Zellweger, for their suggestions and feedback that helped im-
prove this paper. This work is supported in part by the US Of-
fice of Naval Research (ONR) under grants N00014-19-1-2493,
N00014-22-1-2672, and N00014-21-1-2523, the US Naval Sur-
faceWarfare Center Dahlgren Division under grant N00174-
20-1-0009, and the UKRI EPSRC under grant EP/V028154/1.
Any opinions, findings, and conclusions expressed in this ma-
terial are those of the authors and do not necessarily reflect
the views of these agencies.

ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands Tong Xing et al.

References
[1] GheithAAbandah. 1997. CharacterizingShared-memoryApplications:

A Case Study of NAS Parallel Benchmarks. Citeseer.
[2] Gustavo Alonso, Timothy Roscoe, David Cock, Mohsen Ewaida, Kaan

Kara, Dario Korolija, David Sidler, and Zeke Wang. 2020. Tackling
Hardware/Software Co-design from a Database Perspective. In
Conference on Innovative Data Systems Research (CIDR 2020).

[3] AMD. 2024. AMD Infinity Fabric™ Link. https://www.
amd.com/content/dam/amd/en/documents/instinct-tech-
docs/other/56978.pdf.

[4] AMD. 2024. AMD Unveils Their Embedded+ Architecture, Ryzen
Embedded with Versal Together. https://www.anandtech.com/show/
21254/amd-unveils-their-embedded-architecture-ryzen-embedded-
with-versal-together.

[5] ARM. 2024. Introduction to Large System Extensions. https://learn.
arm.com/learning-paths/servers-and-cloud-computing/lse/intro/.

[6] D. Bailey. 2024. NAS Parallel Benchmarks, RNR-94-007 (PDF-425KB)
for IS, EP, CG, MG, FT, BT, SP, LU. https://www.nas.nasa.gov/assets/
nas/pdf/techreports/1994/rnr-94-007.pdf.

[7] Jonathan Balkind, Katie Lim, Michael Schaffner, Fei Gao, Grigory
Chirkov, Ang Li, Alexey Lavrov, Tri M. Nguyen, Yaosheng Fu,
Florian Zaruba, and et al. 2020. BYOC: A “Bring Your Own Core”
Framework for Heterogeneous-ISA Research. In Proceedings of the
Twenty-Fifth International Conference on Architectural Support
for Programming Languages and Operating Systems (Lausanne,
Switzerland) (ASPLOS ’20). Association for Computing Machinery,
New York, NY, USA, 699–714. https://doi.org/10.1145/3373376.3378479

[8] Jonathan Balkind, Michael McKeown, Yaosheng Fu, Tri Nguyen, Yanqi
Zhou, Alexey Lavrov, Mohammad Shahrad, Adi Fuchs, Samuel Payne,
Xiaohua Liang, MatthewMatl, and DavidWentzlaff. 2016. OpenPiton:
An Open SourceManycore Research Framework. In Proceedings of the
Twenty-First International Conference on Architectural Support for
Programming Languages and Operating Systems (Atlanta, Georgia,
USA) (ASPLOS ’16). Association for Computing Machinery, New York,
NY, USA, 217–232. https://doi.org/10.1145/2872362.2872414

[9] Antonio Barbalace, Anthony Iliopoulos, Holm Rauchfuss, and Goetz
Brasche. 2017. It’s Time to Think About an Operating System for Near
Data Processing Architectures. In Proceedings of the 16th Workshop
on Hot Topics in Operating Systems. ACM, 56–61.

[10] Antonio Barbalace, Mohamed L. Karaoui, WeiWang, Tong Xing, Pierre
Olivier, and Binoy Ravindran. 2020. Edge Computing: The Case for
Heterogeneous-ISA Container Migration (VEE ’20).

[11] Antonio Barbalace, Robert Lyerly, Christopher Jelesnianski, Anthony
Carno, Ho-Ren Chuang, Vincent Legout, and Binoy Ravindran.
2017. Breaking the Boundaries in Heterogeneous-ISA Datacenters.
In Proceedings of the Twenty-Second International Conference on
Architectural Support for Programming Languages and Operating
Systems (Xi’an, China) (ASPLOS ’17). ACM, New York, NY, USA,
645–659. https://doi.org/10.1145/3037697.3037738

[12] Antonio Barbalace, Pierre Olivier, and Binoy Ravindran. 2019.
Rethinking Communication in Multiple-kernel OSes for New Shared
Memory Interconnects. In Proceedings of the 10th Workshop on
Programming Languages and Operating Systems (Huntsville, ON,
Canada) (PLOS ’19). Association for Computing Machinery, New York,
NY, USA, 45–52. https://doi.org/10.1145/3365137.3365399

[13] Antonio Barbalace, Marina Sadini, Saif Ansary, Christopher Jeles-
nianski, Akshay Ravichandran, Cagil Kendir, Alastair Murray, and
Binoy Ravindran. 2015. Popcorn: Bridging the Programmability Gap in
heterogeneous-ISA Platforms. In Proceedings of the Tenth European
Conference on Computer Systems (EuroSys ’15). 29:1–29:16.

[14] Elena Gabriela Barrantes, David H. Ackley, Stephanie Forrest, Trek S.
Palmer, Darko Stefanovic, and Dino Dai Zovi. 2003. Randomized
Instruction Set Emulation to Disrupt Binary Code Injection Attacks.
In Proceedings of the 10th ACM Conference on Computer and
Communications Security (Washington D.C., USA) (CCS ’03). ACM,

New York, NY, USA, 281–289. https://doi.org/10.1145/948109.948147
[15] Andrew Baumann, Paul Barham, Pierre-Evariste Dagand, Tim Harris,

Rebecca Isaacs, Simon Peter, Timothy Roscoe, Adrian Schüpbach, and
Akhilesh Singhania. 2009. The Multikernel: A New OS Architecture
for Scalable Multicore Systems. In Proceedings of the ACM SIGOPS
22nd Symposium on Operating Systems Principles (Big Sky, Montana,
USA) (SOSP ’09). Association for Computing Machinery, New York,
NY, USA, 29–44. https://doi.org/10.1145/1629575.1629579

[16] Andrew Baumann, Paul Barham, Pierre-Evariste Dagand, Tim Harris,
Rebecca Isaacs, Simon Peter, Timothy Roscoe, Adrian Schüpbach, and
Akhilesh Singhania. 2009. TheMultikernel: A NewOS Architecture for
Scalable Multicore Systems. In Proceedings of the ACM SIGOPS 22Nd
Symposium on Operating Systems Principles (SOSP ’09). 29–44.

[17] Sharath K. Bhat, Ajithchandra Saya, Hemedra K. Rawat, Anto-
nio Barbalace, and Binoy Ravindran. 2015. Harnessing Energy
Efficiency of heterogeneous-ISA Platforms. In Proceedings of
the Workshop on Power-Aware Computing and Systems (Mon-
terey, California) (HotPower ’15). ACM, New York, NY, USA, 6–10.
https://doi.org/10.1145/2818613.2818747

[18] Broadcom. 2018 (accessed June 30, 2020). Stingray PS225.
[19] Broadwell. 2024. Intel Broadwell. https://www.7-cpu.com/cpu/

Broadwell.html.
[20] CCIXConsortium. 2017. Cache Coherent Interconnect for Accelerators

(CCIX). http://www.ccixconsortium.com/.
[21] Shenghsun Cho, Han Chen, Sergey Madaminov, Michael Ferdman, and

Peter Milder. 2020. Flick: Fast and Lightweight ISA-Crossing Call for
Heterogeneous-ISA Environments. In 2020 ACM/IEEE 47th Annual
International Symposium on Computer Architecture (ISCA). 187–198.
https://doi.org/10.1109/ISCA45697.2020.00026

[22] Ho-Ren Chuang, Karim Manaouil, Tong Xing, Antonio Barbalace,
Pierre Olivier, Balvansh Heerekar, and Binoy Ravindran. 2023.
Aggregate VM: Why Reduce or Evict VM’s Resources When You
Can Borrow Them From Other Nodes?. In Proceedings of the
Eighteenth European Conference on Computer Systems (Rome, Italy)
(EuroSys ’23). Association for Computing Machinery, New York, NY,
USA, 469–487. https://doi.org/10.1145/3552326.3587452

[23] Compute Express Link Consortium, Inc. 2022. Compute Express
Link (CXL) Specification (3.0 ed.). https://www.computeexpresslink.
org/download-the-specification Available: Compute Express Link
Consortium, https://www.computeexpresslink.org/download-the-
specification.

[24] Emilio G. Cota, Paolo Bonzini, Alex Bennée, and Luca P. Carloni. 2017.
Cross-ISA machine emulation for multicores. In Proceedings of the
2017 International Symposium on Code Generation and Optimization
(Austin, USA) (CGO ’17). IEEE Press, 210–220.

[25] CXL Consortium. 2022. CXL Specification. https:
//www.computeexpresslink.org/download-the-specification.

[26] Matthew DeVuyst, Ashish Venkat, and Dean M. Tullsen. 2012.
Execution Migration in a heterogeneous-ISA Chip Multiprocessor.
In Proceedings of the Seventeenth International Conference on
Architectural Support for Programming Languages and Operating
Systems (London, England, UK) (ASPLOS XVII). ACM, New York, NY,
USA, 261–272. https://doi.org/10.1145/2150976.2151004

[27] Paul J. Drongowski. 2024. ARMCortex-A72 execution and load/store.
http://sandsoftwaresound.net/arm-cortex-a72-execution-and-load-
store/.

[28] Yaosheng Fu and David Wentzlaff. 2014. PriME: A parallel and dis-
tributed simulator for thousand-core chips. In 2014 IEEE International
Symposium on Performance Analysis of Systems and Software
(ISPASS). 116–125. https://doi.org/10.1109/ISPASS.2014.6844467

[29] Yaosheng Fu and David Wentzlaff. 2014. PriME: A parallel and dis-
tributed simulator for thousand-core chips. In 2014 IEEE International
Symposium on Performance Analysis of Systems and Software
(ISPASS). 116–125. https://doi.org/10.1109/ISPASS.2014.6844467

https://www.amd.com/content/dam/amd/en/documents/instinct-tech-docs/other/56978.pdf
https://www.amd.com/content/dam/amd/en/documents/instinct-tech-docs/other/56978.pdf
https://www.amd.com/content/dam/amd/en/documents/instinct-tech-docs/other/56978.pdf
https://www.anandtech.com/show/21254/amd-unveils-their-embedded-architecture-ryzen-embedded-with-versal-together
https://www.anandtech.com/show/21254/amd-unveils-their-embedded-architecture-ryzen-embedded-with-versal-together
https://www.anandtech.com/show/21254/amd-unveils-their-embedded-architecture-ryzen-embedded-with-versal-together
https://learn.arm.com/learning-paths/servers-and-cloud-computing/lse/intro/
https://learn.arm.com/learning-paths/servers-and-cloud-computing/lse/intro/
https://www.nas.nasa.gov/assets/nas/pdf/techreports/1994/rnr-94-007.pdf
https://www.nas.nasa.gov/assets/nas/pdf/techreports/1994/rnr-94-007.pdf
https://doi.org/10.1145/3373376.3378479
https://doi.org/10.1145/2872362.2872414
https://doi.org/10.1145/3037697.3037738
https://doi.org/10.1145/3365137.3365399
https://doi.org/10.1145/948109.948147
https://doi.org/10.1145/1629575.1629579
https://doi.org/10.1145/2818613.2818747
https://www.7-cpu.com/cpu/Broadwell.html
https://www.7-cpu.com/cpu/Broadwell.html
http://www.ccixconsortium.com/
https://doi.org/10.1109/ISCA45697.2020.00026
https://doi.org/10.1145/3552326.3587452
https://www.computeexpresslink.org/download-the-specification
https://www.computeexpresslink.org/download-the-specification
https://www.computeexpresslink.org/download-the-specification
https://www.computeexpresslink.org/download-the-specification
https://www.computeexpresslink.org/download-the-specification
https://www.computeexpresslink.org/download-the-specification
https://doi.org/10.1145/2150976.2151004
http://sandsoftwaresound.net/arm-cortex-a72-execution-and-load-store/
http://sandsoftwaresound.net/arm-cortex-a72-execution-and-load-store/
https://doi.org/10.1109/ISPASS.2014.6844467
https://doi.org/10.1109/ISPASS.2014.6844467

Stramash: A Fused-Kernel Design OS for Cache-Coherent, Heterogeneous-ISA Platforms ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands

[30] Gal Beniamini, Project Zero. 2024. OverTheAir: ExploitingBroadcom’s
Wi-Fi Stack (Part 1). https://googleprojectzero.blogspot.com/2017/04/
over-air-exploiting-broadcoms-wi-fi_4.html.

[31] Joachim Gehweiler and Michael Thies. 2010. Thread migration and
checkpointing in java. Heinz Nixdorf Institute, Tech. Rep. tr-ri-10 315
(2010).

[32] JohanDeGelas. 2024. Assessing Cavium’s ThunderX2: The Arm Server
Dream Realized At Last. https://www.anandtech.com/show/12694/
assessing-cavium-thunderx2-arm-server-reality.

[33] GEM5. 2024. Ruby:MESI Three Level. https://www.gem5.org/
documentation/general_docs/ruby/.

[34] Intel. 2009. An Introduction to the Intel QuickPath Interconnect.
[35] D. Katz, A. Barbalace, S. Ansary, A. Ravichandran, and B. Ravindran.

2015. Thread Migration in a Replicated-Kernel OS. In 2015 IEEE
35th International Conference on Distributed Computing Systems.
278–287.

[36] Katie Lim, Jonathan Balkind, and David Wentzlaff. 2019. Jux-
taPiton: Enabling Heterogeneous-ISA Research with RISC-V and
SPARC FPGA Soft-cores. In Proceedings of the 2019 ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays
(Seaside, CA, USA) (FPGA ’19). ACM, New York, NY, USA, 184–184.
https://doi.org/10.1145/3289602.3293958

[37] Felix Xiaozhu Lin, ZhenWang, and Lin Zhong. 2014. K2: AMobile Op-
erating System forHeterogeneous CoherenceDomains. In Proceedings
of the 19th International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS ’14).
285–300.

[38] Felix Xiaozhu Lin, Zhen Wang, and Lin Zhong. 2015. K2: A Mo-
bile Operating System for Heterogeneous Coherence Domains.
ACM Trans. Comput. Syst. 33, 2, Article 4 (June 2015), 27 pages.
https://doi.org/10.1145/2699676

[39] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser,
Geoff Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazel-
wood. 2005. Pin: Building Customized Program Analysis Tools with
Dynamic Instrumentation. In Proceedings of the 2005 ACM SIGPLAN
Conference on Programming Language Design and Implementation
(Chicago, IL, USA) (PLDI ’05). Association for Computing Machinery,
New York, NY, USA, 190–200. https://doi.org/10.1145/1065010.1065034

[40] Daniel Lustig, Caroline Trippel, Michael Pellauer, and Margaret
Martonosi. 2015. ArMOR: Defending against memory consistency
model mismatches in heterogeneous architectures. In 2015 ACM/IEEE
42nd Annual International Symposium on Computer Architecture
(ISCA). 388–400. https://doi.org/10.1145/2749469.2750378

[41] Rob Lyerly. 2024. Compiler Support for Application Migration in
Heterogeneous-ISA Platforms. https://eurosys2015.labri.fr/posters/
p46.pdf.

[42] Rob Lyerly. 2024. Popcorn Linux: A Compiler and Runtime for
State Transformation Between Heterogeneous-ISA Architectures.
https://www.ssrg.ece.vt.edu/theses/PhdProposal_Lyerly.pdf.

[43] Robert Lyerly, Antonio Barbalace, Christopher Jelesnianski, Vincent
Legout, Anthony Carno, and Binoy Ravindran. [n. d.]. Operating
System Process and Thread Migration in Heterogeneous Platforms.

[44] Nikolaos Mavrogeorgis, Christos Vasiladiotis, Pei Mu, Amir Khordadi,
Björn Franke, and Antonio Barbalace. 2024. UNIFICO: Thread
Migration in Heterogeneous-ISA CPUs without State Transformation.
In Proceedings of the 33rd ACM SIGPLAN International Conference
on Compiler Construction (Edinburgh, United Kingdom) (CC 2024).
Association for Computing Machinery, New York, NY, USA, 86–99.
https://doi.org/10.1145/3640537.3641565

[45] Mellanox Technologies. 2017. BlueField Multicore System on
Chip. http://www.mellanox.com/related-docs/npu-multicore-

processors/PB_Bluefield_SoC.pdf. Online, accessed 01/05/2019.
[46] NASA Advanced Supercomputing Division. 2024. NAS Parallel

Benchmarks. https://tinyurl.com/y47k95cc.
[47] Edmund B Nightingale, Orion Hodson, Ross McIlroy, Chris Hawblitzel,

and Galen Hunt. 2009. Helios: heterogeneous multiprocessing with
satellite kernels. In Proceedings of the ACM SIGOPS 22nd symposium
on Operating systems principles. ACM, 221–234.

[48] OpenCAPI Consortium. 2017. Welcome to OpenCAPI Consortium.
http://opencapi.org/.

[49] Popcorn Project. 2024. Popcorn-compiler. https://github.com/ssrg-
vt/popcorn-compiler.

[50] Popcorn Project. 2024. ssrg-vt/popcorn-kernel. https://github.com/
ssrg-vt/popcorn-kernel/blob/main/include/popcorn/pcn_kmsg.h.

[51] QEMU. 2024. Cache Modelling TCG Plugin. https://www.qemu.org/
2021/08/19/tcg-cache-modelling-plugin/.

[52] redislab. 2017. redis – open source data object store. http://redis.io.
[53] Marina Sadini, Antonio Barbalace, Binoy Ravindran, and Francesco

Quaglia. [n. d.]. A Page Coherency Protocol for Popcorn Replicated-
kernel Operating System. ([n. d.]).

[54] D. Sharma. 2023. Compute Express Link (CXL): Enabling Het-
erogeneous Data-Centric Computing With Heterogeneous
Memory Hierarchy. IEEE Micro 43, 02 (mar 2023), 99–109.
https://doi.org/10.1109/MM.2022.3228561

[55] K. Sinha, V. P. Kemerlis, and S. Sethumadhavan. 2017. Reviv-
ing instruction set randomization. In 2017 IEEE International
Symposium on Hardware Oriented Security and Trust (HOST). 21–28.
https://doi.org/10.1109/HST.2017.7951732

[56] Sophgo. 2024. Dual-Core artificial intelligent processor SG200X.
https://en.sophgo.com/sophon-u/product/introduce/sg200x.html.

[57] Texas Instruments. 2014. OMAP4430 Multimedia Device Sil-
icon Revision 2.x Version AP Technical Reference Manual.
https://www.ti.com/lit/pdf/swpu231?keyMatch=OMAP4430.

[58] Sudha Udanapalli Thiagarajan, Charles Congdon, Sumedh Naik, and
LocQNguyen. 2013. IntelXeonPhiCoprocessorDEVELOPER’SQUICK
START GUIDE, Version 1.5. https://www.intel.com/content/dam/
develop/external/us/en/documents/intel-xeon-phi-coprocessor-
quick-start-developers-guide.pdf, Online, accessed 01/01/2025.

[59] Ashish Venkat, Sriskanda Shamasunder, Hovav Shacham, and Dean M.
Tullsen. 2016. HIPStR: Heterogeneous-ISA Program State Relocation.
In Proceedings of the Twenty-First International Conference on
Architectural Support for Programming Languages and Operating
Systems (Atlanta, Georgia, USA) (ASPLOS ’16). ACM, New York, NY,
USA, 727–741. https://doi.org/10.1145/2872362.2872408

[60] Ashish Venkat and DeanM. Tullsen. 2014. Harnessing ISA Diversity:
Design of a heterogeneous-ISA Chip Multiprocessor. In Proceeding of
the 41stAnnual International SymposiumonComputerArchitecuture
(Minneapolis, Minnesota, USA) (ISCA ’14). IEEE Press, Piscataway, NJ,
USA, 121–132. http://dl.acm.org/citation.cfm?id=2665671.2665692

[61] Wikichip. 2024. Cascade Lake - Microarchitectures - Intel.
https://en.wikichip.org/wiki/intel/microarchitectures/cascade_lake.

[62] Tong Xing, Antonio Barbalace, Pierre Olivier, Mohamed L. Karaoui,
Wei Wang, and Binoy Ravindran. 2022. H-Container: Enabling
Heterogeneous-ISA Container Migration in Edge Computing. 39, 1–4,
Article 5 (July 2022), 36 pages. https://doi.org/10.1145/3524452

[63] Tong Xing, Hesam Tajbakhsh, Israat Haque, Michio Honda, and
Antonio Barbalace. 2022. Towards portable end-to-end network
performance characterization of SmartNICs. In Proceedings of the
13th ACM SIGOPS Asia-Pacific Workshop on Systems (Virtual Event,
Singapore) (APSys ’22). Association for Computing Machinery, New
York, NY, USA, 46–52. https://doi.org/10.1145/3546591.3547528

https://googleprojectzero.blogspot.com/2017/04/over-air-exploiting-broadcoms-wi-fi_4.html
https://googleprojectzero.blogspot.com/2017/04/over-air-exploiting-broadcoms-wi-fi_4.html
https://www.anandtech.com/show/12694/assessing-cavium-thunderx2-arm-server-reality
https://www.anandtech.com/show/12694/assessing-cavium-thunderx2-arm-server-reality
https://www.gem5.org/documentation/general_docs/ruby/
https://www.gem5.org/documentation/general_docs/ruby/
https://doi.org/10.1145/3289602.3293958
https://doi.org/10.1145/2699676
https://doi.org/10.1145/1065010.1065034
https://doi.org/10.1145/2749469.2750378
https://eurosys2015.labri.fr/posters/p46.pdf
https://eurosys2015.labri.fr/posters/p46.pdf
https://www.ssrg.ece.vt.edu/theses/PhdProposal_Lyerly.pdf
https://doi.org/10.1145/3640537.3641565
http://www.mellanox.com/related-docs/npu-multicore-processors/PB_Bluefield_SoC.pdf
http://www.mellanox.com/related-docs/npu-multicore-processors/PB_Bluefield_SoC.pdf
https://tinyurl.com/y47k95cc
http://opencapi.org/
https://github.com/ssrg-vt/popcorn-compiler
https://github.com/ssrg-vt/popcorn-compiler
https://github.com/ssrg-vt/popcorn-kernel/blob/main/include/popcorn/pcn_kmsg.h
https://github.com/ssrg-vt/popcorn-kernel/blob/main/include/popcorn/pcn_kmsg.h
https://www.qemu.org/2021/08/19/tcg-cache-modelling-plugin/
https://www.qemu.org/2021/08/19/tcg-cache-modelling-plugin/
http://redis.io
https://doi.org/10.1109/MM.2022.3228561
https://doi.org/10.1109/HST.2017.7951732
https://en.sophgo.com/sophon-u/product/introduce/sg200x.html
https://www.ti.com/lit/pdf/swpu231?keyMatch=OMAP4430
https://www.intel.com/content/dam/develop/external/us/en/documents/intel-xeon-phi-coprocessor-quick-start-developers-guide.pdf
https://www.intel.com/content/dam/develop/external/us/en/documents/intel-xeon-phi-coprocessor-quick-start-developers-guide.pdf
https://www.intel.com/content/dam/develop/external/us/en/documents/intel-xeon-phi-coprocessor-quick-start-developers-guide.pdf
https://doi.org/10.1145/2872362.2872408
http://dl.acm.org/citation.cfm?id=2665671.2665692
https://en.wikichip.org/wiki/intel/microarchitectures/cascade_lake
https://doi.org/10.1145/3524452
https://doi.org/10.1145/3546591.3547528

ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands Tong Xing et al.

A Artifact Appendix
A.1 Abstract

The provided artifact contains:
• Source code for Stramash Linux kernels (and a Modified Pop-
corn Linux kernel).

• Stramash QEMU (based on QEMU 8.0).
• A collection of helper scripts to automate building and run-
ning experiments.

The Stramash simulator can run on any server with sufficient
resources. TheNPB benchmarksmust be compiledwith the Popcorn
compiler, though we also provide pre-compiled binaries and kernel
images used in our experiments. A Docker environment is included
to ease the build process.
A.2 Artifact Check-List (Meta-Information)

• Program:QEMU, Linux Kernel, Docker
• Compilation:GCC,PopcornCompiler,Cross-compile toolchain
• Binary:Modified NPB benchmark suite
• Run-Time Environment: Linux
• Disk Space Required: ∼10GB
• Publicly Available: YES
• Code Licenses (if publicly available):MIT
• WorkflowAutomation: Shell scripts

A.3 Description
Stramash consists of three main software components:
1. Stramash QEMU simulator
2. Stramash Linux kernel (plus a modified Popcorn

Linux kernel),
3. Helper scripts to automate building and running ex-

periments.
A.3.1 How to Access The artifact is publicly available at:

• https://github.com/systems-nuts/Stramash-AE
• https://doi.org/10.5281/zenodo.14847090

A.4 Installation
1. Set the root directory of Stramash

• cd Stramash-AE
• STRAMASH_ROOT=$(pwd)

2. Build the Docker image for compilation (Optional if
you can natively build on Ubuntu 22.06)

• cd $STRAMASH_ROOT/docker
• sudo docker build -t stramash_env .
• sudo docker run -dit –privileged –name
stramash_container –mount type=bind,source=
"$(STRAMASH_ROOT)", target="$(STRAMASH_ROOT)"
stramash_env

• sudo docker exec -it -w "$(STRAMASH_ROOT)"
stramash_container /bin/bash

3. Build the kernel (optional), file system, and QEMU
• (Inside the Docker container)
• ./build_fs.sh
• ./build_kernel.sh (Optional.We provide a pre-built
kernel image and module.)

• ./build_qemu.sh
• exit the Docker container once done.

4. Set up the kernel and file system
• If you compiled the kernel, run:
– sudo ./set_up.sh

• Otherwise, if you are using the pre-compiled kernel
image, run:
– chmod +x setup_no_kernel_compile.sh
– sudo ./setup_no_kernel_compile.sh

5. Start Stramash
• sudo ./start.sh (This will start three pairs of Stra-
mash machines.)

6.RunNPBBenchmarks (Nowwedo everything inQEMU)
• After start.sh, three pairs of QEMU instances (each
pair in a separatetmuxwindow) are launched. Each pair
corresponds to a specific memory model:
1. Stramash Shardmodel
2. Stramash Separatedmodel
3. SHMmodel

• In each tmux window, the left console is x86 and the
right console is ARM (you can verify by running uname
-a).

• To use Stramash, both kernels need the corresponding
module inserted. For x86, insert themodule first (it may
be slower to load); then wait a few seconds and insert
on ARM:
– First twoStramashQEMUpairs (Shard/Separated):
∗ insmod stramash_msg_shm.ko

– SHMQEMUpair:
∗ insmod shm_msg_shm.ko

• Running NPB: (inside each pairs)
– For each benchmark, where $BIN is one of {cg, is, ft,
mg}.

– ./NPB_AE/$BIN; cat /proc/cache_sync_switch;
cat /proc/popcorn_icount_switch

– Note that each benchmark may take multiple hours
on a single core, depending on your hardware. We
modifed thecounter forhelp turnoffthePluginModel.

A.5 Evaluate (Figure 9: NPB Benchmark Results)
We evaluate the following runtime formula in our exper-

iments:
• Final Runtime = (x86 Runtime) + (ARM Runtime).

STRAMASH results. For Fully Sharedmemory, there is no
“remote” access.We can approximate it by subtracting remote
accesses computed in the feedback from the Separated (or
Shard) model, however, for the experiments with large cache
need, because Fully Sharedwe consider shared L3 cache, it
can be configed at the stramash-qemu/contrib/plugins/cache-
sim-feedback.c at L2328 and L2350, and recompile the QEMU.
– https://github.com/systems-nuts/Stramash-AE/blob/main/
stramash-qemu/contrib/plugins/cache-sim-feedback.c

https://github.com/systems-nuts/Stramash-AE
https://doi.org/10.5281/zenodo.14847090
https://github.com/systems-nuts/Stramash-AE/blob/main/stramash-qemu/contrib/plugins/cache-sim-feedback.c
https://github.com/systems-nuts/Stramash-AE/blob/main/stramash-qemu/contrib/plugins/cache-sim-feedback.c

Stramash: A Fused-Kernel Design OS for Cache-Coherent, Heterogeneous-ISA Platforms ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands

Fully Shared Runtime = Final Runtime -
Remote Memory Hits x 0.455

Here, the factor 0.455 is the ratio of
remote vs. local memory overhead derived from:

Link: https://github.com/systems-nuts/Stramash-AE/blob/
main/stramash-qemu/contrib/plugins/cache-sim-feedback.
c#L215
#define Local_mem_overhead 360
#define Remote_mem_overhead 660
660 / 360 = 1.83 -> remote is 1.83× the cost of local;
the difference ratio (remote-local)/remote = 0.455

POPCORN-SHM results. For the SHMmodel, only accesses
to the message ring buffer are considered remote. By default,
the launched SHMmachine is set to the Shared model. For
SHMFully Shared, similarly subtract remote memory hits
multiplied by 0.455. For SHM Separated, you only subtract
the remote hits on armside–Because in theSeparatedmodel,
the x86 access to the shared memory ring is local, while it is
exposed to the arm through simulated CXL, so we consider
arm access to be remote access.
Example output
x86:
L1 Cache Hit Rate: 93.64%
L2 Cache Hit Rate: 56.06%
L3 Cache Hit Rate: 79.82%
L1 Cache Hits: 5127379213
L2 Cache Hits: 175113042

L3 Cache Hits: 261230203
L1 Cache Accesses: 5475752586
L2 Cache Accesses: 348373373
L3 Cache Accesses: 327260331
IPI: 17
Local Memory Hits: 59366
>>> Remote Memory Hits: 65970762 <<<
Remote Shared Memory Hits: 321312
Number of Instructions: 8601072931
Number of mem_access: 5471616305
>>> Runtime: 91254395261 <<<
Arm:
L1 Cache Hit Rate: 93.77%
L2 Cache Hit Rate: 49.65%
L3 Cache Hit Rate: 78.28%
L1 Cache Hits: 5819027543
L2 Cache Hits: 187330951
L3 Cache Hits: 273466584
L1 Cache Accesses: 6205724879
L2 Cache Accesses: 386697336
L3 Cache Accesses: 349366385
IPI: 10
Local Memory Hits: 37555
>>> Remote Memory Hits: 75862246 <<<
Remote Shared Memory Hits: 342424
Number of Instructions: 10133480114
Number of mem_access: 6201636747
>>> Runtime: 97501520205 <<<

https://github.com/systems-nuts/Stramash-AE/blob/main/stramash-qemu/contrib/plugins/cache-sim-feedback.c#L215
https://github.com/systems-nuts/Stramash-AE/blob/main/stramash-qemu/contrib/plugins/cache-sim-feedback.c#L215
https://github.com/systems-nuts/Stramash-AE/blob/main/stramash-qemu/contrib/plugins/cache-sim-feedback.c#L215

	Abstract
	1 Introduction
	2 Background & Related Work
	3 Hardware Model
	4 Design Principles
	5 Fused-kernel Operating Systems Design
	6 Stramash-Linux Implementation
	6.1 Booting Kernels
	6.2 Message-passing Communication
	6.3 Global Memory Allocator
	6.4 Fused Virtual Address Space
	6.5 Cross-ISA locking
	6.6 Fused Namespace

	7 Stramash Hardware Simulator
	7.1 Pervasive Cache-coherent Shared Memory
	7.2 Inter-ISA Interrupts
	7.3 Stramash Timebase
	7.4 IO Devices

	8 Experimental Methodology
	8.1 Stramash-QEMU Setup
	8.2 OSes Setup
	8.3 Benchmarks

	9 Evaluation
	9.1 Stramash-QEMU Validation
	9.2 Stramash-Linux Evaluation

	10 Conclusion
	Acknowledgments
	References
	A Artifact Appendix
	A.1 Abstract
	A.2 Artifact Check-List (Meta-Information)
	A.3 Description
	A.4 Installation
	A.5 Evaluate (Figure 9: NPB Benchmark Results)

