
RTQG: Real-Time Quorum-based Gossip Protocol for Unreliable Networks

Bo Zhang, Kai Han, Binoy Ravindran
ECE Dept., Virginia Tech

Blacksburg, VA 24061, USA
{alexzbzb,khan05,binoy}@vt.edu

E. D. Jensen
The MITRE Corporation

Bedford, MA 01730, USA
jensen@mitre.org

Abstract

We consider scheduling real-time tasks in the presence of
message loss and Byzantine node failures in unreliable net-
works. We present scheduling algorithms called RTQG and
RTQG-B. The algorithms use quorum-based gossip commu-
nication strategies for dynamically and dependably discov-
ering eligible nodes. Compared with its predecessors,our
protocol exhibits better performance. RTQG utilizes quo-
rum systems to limit the range of each gossip round. Using
the intersection property of quorum systems, RTQG has ad-
vantages in message propagation and robustness to Byzan-
tine node failures. Our simulation studies verify our analyt-
ical results.

1. Introduction

We consider distributed threads in real-time systems as
sequences of tasks. Each task is requested by its current
head node, and executed on the next head node. After the
successful execution the next head node becomes the cur-
rent head node. For an individual task, the source node
tries to discover a proper destination node in the network
to execute the task it requests. The destination node needs
to execute the task and send back its acknowledgement in
the given deadline. During this process, some communi-
cation protocol is utilized to make the task executed suc-
cessfully. Several algorithms have been presented for this
problem. For example, RTG-L [5] provides assurances on
thread time constraint satisfaction in large-scale unreliable
networks. At its core, RTG-L contains a gossip protocol.
Our work builds upon RTG-L. The most important differ-
ence is that our work introduces quorum system for mes-
sage communication. Generally, the source node first gos-
sips message in its closest quorum, and then some elements
in this quorum continues gossip the message, until the des-
tination node is discovered. Due to the intersection prop-
erty of quorum system, the node can have the knowledge of
the whole system by accessing any one quorum. Moreover,

we design Byzantine quorum system to deal with Byzantine
failures in networks, which were not considered in RTG-L.

Given a universe U of elements, a quorum system Q =
{Q1, ..., Qm} on U is a family of subsets of U such that any
two quorums Qi and Qj have a non-empty intersection. [1]
Quorum systems are widely used in distributed systems for
achieving mutual exclusion, consistent data replication, and
dissemination of information. In typical quorum-based al-
gorithms, each client accesses the system by accessing all
the elements in some quorum Qi belonging to Q. The in-
tersection property ensures that any Qi would suffice to op-
erate on behalf of the system.

Since the accesses of one quorum by clients (which are
themselves nodes in the network) have to be implemented
by messages sent along the network, the performance of
quorum-based systems now crucially depends on the delays
introduced by these accesses. [4] In fact, we would like the
logical quorums Qi ∈ Q to be mapped to closely clustered
physical nodes in the network so that we do not incur large
delays in trying to reach far-flung parts of the network. We
call it Quorum Deployment Problem. [3] In this paper, we
design a quorum placement algorithm to map the nodes in
network in a quorum system.

We also consider the arbitrary (Byzantine) failures of
nodes. We introduce Byzantine quorum systems to deal
with this situation. We design communication protocol for
this system and compare it with the original one.

The rest of the paper is organized as following: In Sec-
tion 2, we discuss models and algorithm objectives, Sec-
tion 3 illustrates our quorum-based gossip protocols. Al-
gorithms are analyzed in Section 4. In Section 5 we report
our simulation studies. We conclude the paper and identify
future work in Section 6.

2. Models and Algorithm Objectives

2.1. Objectives

We design algorithms to meet the following goals:

1. The quorum placement algorithm, combined with
the communication protocol, can schedule task with
probabilistic termination-time satisfactions in the presence
of message losses and node/link failures.

2. The designed quorum system and communication
protocol can deal with Byzantine failures of nodes.

3. We seek to minimize communication delays during
the message communication.

4. We try to reduce the message overhead during the
scheduling process as much as possible.

3 Algorithms

3.1 Building Quorum System

We want to determine a map f : U → V (which we call
a placement of the quorum Q on the nodes of G). Under
such placement we design a communication protocol for a
single task execution in the network.

We describe the protocol by first introducing the defini-
tion of delay.

Definition 1. Delay: We define the delay between nodes
as the Round Trip Time (RTT) from one node to the other.
Hence, the quorum accessing delay from a node v = f(u)
to a quorum Q belonging to Q is the maximum RTT from v
to all elements of the quorum Q. Hence we model the delay
as the RTT of v to the farthest-away element of Q:

δf (v,Q) = max
u∈Q

[τ(v, f(u)] (1)

Then we introduce the definition of Grid quorum system.
[7]

Definition 2. Grid quorum system: On a universe U of k2

elements, the k2 elements are laid out on a k by k square
grid M, and each quorum Q from Q is formed by taking all
the elements from some row and some column of M. Hence
each quorum has 2k-1 elements, and there are k2 quorums
in Q.

We use Algorithm 1 to map N := k2 nodes into a k × k
square grid M . Let τ1 ≥ τ2 ≥ ... ≥ τk2 be RTTs which
indicate delays from the source node vm to these k2 nodes
in decreasing order. We use vm to denote the source node
in G. Thus we have τk2 = 0.

Figure 1. Grid quorum system:the closest
quorum of source node shaded

Algorithm 1: Quorum Placement Algorithm for
Quorum-based Gossip Protocol

for each i ∈ [1, k − 1] do1
if i is odd then2

Place ith k − 1 RTTs on the ith row of M , from M(i,1)3
to M(i,k−1)(left to right);

else4
Place ith k − 1 RTTs on the ith row of M , from5
M(i,k−1) to M(i,1)(right to left);

for each i ∈ [1, k − 1] do6
Place τ((k−1)2+i) on M(i,k);7

for each i ∈ [1, k − 1] do8
Place τ(k2−i) on M(k,i);9

Place τk2 on M(k,k);10

3.2 RTQG: Real Time Quorum-Based
Gossip Protocol

In our gossip protocol, we make a slight modification to
definitions in [6] to make them compatible with our quorum
based gossip. We make following definitions:

Definition 3. Gossip round ri: denotes the rth gossip time
interval in ith row-sharing quorum (defined later), at the
beginning of which nodes send out messages.

Definition 4. Ii
r: Denotes the number of newly informed

nodes in ith row-sharing quorum during gossip round ri.

Definition 5. U i
r: Denotes the number of uninformed nodes

in ith row-sharing quorum at the end of gossip round ri.

Definition 6. F i
r : The number of messages a node sends

out in ith row-sharing quorum at the beginning of gossip
round r.

Definition 7. M i
r: The number of messages issued in ith

row-sharing quorum during gossip round ri.

Algorithm 2: Gossip Protocol
On gossiping a message msg;1
msg.r + +;2
/*randomly selects msg.f targets*/3
for each i ∈ [1, ..., msg.f] do4

SEND (targeti, msg);5

Using the same argument in [6], we show the relation-
ship between M i

r and F i
r . Note the number of nodes is re-

duced to
√

N .

M i
r = F i

r ∗ Ii
r−1 = (

√
N − 1) ∗ ln(U i

r−1/U i
r) (2)

Here, F i
r can be adjusted by application users.

Similarly, Round Message Density in row-sharing quo-
rum i at round ri (RMDi

r) is computed as following:

RMDi
r =

M i
r√
N

(3)

Randomly selecting gossip targets in one quorum makes
messages uniformly distributed in the quorums and finally
in the network. Thus, the likelihood of network congestion
is reduced.

Definition 8. Closest Quorum: Given a quorum system Q
over U and a client i, the closest quorum for this node is
defined as the quorum Qi

c ∈ Q to which the client has the
minimal access delay.

Definition 9. Row-sharing Coterie: Given above assump-
tions and a specific quorum Qi, the row-sharing coterie Qi

r

is composed of quorums which share the same row of Qi,
but have different columns. We call quorums in this coterie
row-sharing quorums of Qi. So |Qi

r| = k − 1. Specifi-
cally, for each row element j in Qi, the corresponding row-
sharing quorum is denoted as Qij

r , and |Qij
r | = k − 1 ;

for each column element j’ (except the intersect one) in Qi,
|Qij′

r | = ∅.

Algorithm 3: RTQG on Source Node vm

Build msg ;1
GOSSIP(msg) in Qm

c ;2
/*the source node gossips message in its closest quorum*/3
WAIT(d);4
/* wait till a designated deadline*/5
if msg.accept == TRUE then6

ABORT(holding section);7

When the message loss ratio is high, the source node uti-
lizes quorum based gossip protocol (RTQG) to determine

Figure 2. Grid quorum system: the clos-
est quorum and two row-sharing quorums of
source node shaded

the destination node. The informed destination node also
uses RTQG to send back its acknowledgement. Descrip-
tion of the protocol on source node, destination node and
intermediate nodes are shown in Algorithm 3, 4 and 5, re-
spectively.

Algorithm 4: RTQG on Destination Node vn

Upon receiving a message msg;1
msg.accept = TRUE;2
msg.r = 1;3
GOSSIP(msg) in Qmn

r ;4
/*the destination node sends back its acknowledgement by gossiping5
in its row-sharing quorum of source node’s closest quorum*/
EXECUTE();6

We use quorum based gossip protocol to discover the
destination node. The protocol can be divided into two
phases:

1. Closest Quorum Gossip Phase: the source node vm

selects its closest quorum Qm
c as the gossip range to send

message msg. After this step each node in Qm
c has the

message msg.

2. Row-sharing Coterie Gossip Phase: each node i
mapped to the row elements in quorum Qm

c gossips the
message msg in its row-sharing quorum Qmi

r .

After sending out a query message to determine the des-
tination node, the source node waits for a reply till a certain
deadline d. If it does not receive any reply after this dead-
line, it will regard that the task cannot be finished, abort the

Algorithm 5: RTQG on Intermediate Node vj

Upon receiving a message msg;1
if msg is a query message then2

if no reply yet then3

GOSSIP(msg) in Qmj
r ;4

else5

GOSSIP(msg) in Qmj
r ;6

task section. For intermediate nodes, if a query message has
been replied, they will not gossip it any more.

3.3 RTQG for Byzantine Node Failures

In unreliable wireless networks, nodes can have arbitrary
(Byzantine) failures. Specifically, if one node is fully con-
trolled by a traitor or an adversary, it can perform destruc-
tive behavior to disrupt the system. The main idea of Byzan-
tine Quorum System is to design a quorum system in which
every two quorums have sufficient number of intersected
elements to guarantee the majority vote when quorums are
accessed by clients. For example, if B is the set of arbi-
trary faulty nodes, and |B| = f , we have to design every
pair of quorums intersect in at least 2f + 1 elements, and
thus in f + 1 correct ones. If a read operation accepts only
a value returned by at least f+1 servers, then any accepted
value was returned by at least one correct server. More gen-
erally, the designed quorum system requirements enable a
client to obtain the correct answer from the service despite
the Byzantine failure of any fail-prone set.

We use the Grid Byzantine quorum system definition
from [8].

Definition 10. Grid Byzantine quorum system: Suppose
that the universe of servers is of size n = k2 for some inte-
ger k and that B = {B ⊆ U : |B| = f, 3f + 1 ≤ √

N}.
Denote the rows and columns of the grid by Ri and Ci, re-
spectively, where 1 ≤ i ≤ √

N . Then, the quorum system Is
a masking quorum system for B.As shown in following:

Q = {Cj ∪
⋃

i∈I

Ri : I, j ⊆ 1, ,
√

N, |I| = 2f + 1} (4)

Hence, under the placement of Algorithm 1, we can form
a masking quorum system for arbitrary f node failures. In
this system, the source node first sends message to its clos-
est quorum by gossip. Then each row element of this quo-
rum gossips the message to its row-sharing quorum. In our
Byzantine quorum systems, there are 2f + 1 elements in
each row-sharing quorum to start first round gossip. We use
Algorithm 3 for RTQG on sources node and make modifi-
cations to algorithms on destination node and intermediate
nodes to deal with at most 2f + 1 Byzantine nodes.

Algorithm 6: RTQG-B on Destination Node vn

Upon receiving a message msg;1
READ(query.msg) in Qn

c ;2
/* Query its closest quorum to authenticate msg*/3
WAIT(d);4
/*wait until a designated deadline*/5
if query.accept == FALSE then6

STOP;7

else8
msg.accept = TRUE;9
msg.r = 1;10
GOSSIP (msg) in Qmn

r ;11
/* the destination node sends back its acknowledgement by12
gossiping in its row-sharing quorum of source node’s closest
quorum*/
EXECUTE();13

In our revised algorithm, after receiving gossiping mes-
sage from source node’s closest quorum, the intermediate
nodes first send queries to its closest quorum to ask whether
this message is authenticated. Due to the masking property,
the node can judge whether this message is authenticated or
infected based on the data it read from its closest quorum.
Actually at least f + 1 servers will return correct values. If
the message is authenticated, the node continues gossiping
this message; otherwise the message will be discarded. The
descriptions of revised RTQG (RTQG-B: RTQG for Byzan-
tine systems) on destination node and intermediate node are
shown in Algorithm 6 and 7, respectively.

Figure 3. Byzantine Grid quorum system:
one quorum shaded

Intuitively, RTQG-B will incur more message overhead
in the gossip round due to the cost of message authentica-
tion. We will discuss this issue detailed in our algorithm
analysis.

Algorithm 7: RTQG-B on Intermediate Node vj

Upon receiving a message msg;1

READ(query.msg) in Qj
c;2

/* Query its closest quorum to authenticate msg */3
WAIT(d);4
/*wait until a designated deadline*/5
if query.accept == FALSE then6

STOP;7

else8
if msg is a query message then9

if no reply yet then10

GOSSIP(msg) in Qmj
r ;11

else12

GOSSIP(msg) in Qmj
r ;13

4 Algorithm Analysis

4.1 Delay Analysis

To successfully execute the task in a designated dead-
line, we need to design algorithms in which quorum access
delays are minimized. [2] There are two kinds of quo-
rum access delays, and both of them can occur on arbitrary
nodes.In the global view, we focus on the average delay of
all nodes in network.

4.1.1 Delay from nodes to their closest quorums

Lemma 1. Given a network G = (V,E), a quorum place-
ment algorithm f : U → V and the corresponding quorum
system Q, we have δf (vi, Q) ≤ δf (vi, v0)+ δf (v0, Q). The
equality occurs when v0 is on the shortest path from v to Q.

Proof. We can use intersection property of quorum system
to prove this Lemma. Note we define the quorum access
delay as the largest RTT from a node to the each element
in the quorum. Hence if we need this node first visit v0 be-
fore accessing the quorum, the delay will certainly increase
unless v0 is on the shortest path from it to the quorum.

Theorem 2. Consider any placement f : U → V of a
quorum system Q on the network G. The average access
cost from nodes in G to its closest quorum in Q is bounded
by delays from nodes to a given node v0 and access delay
from v0 to its closest quorum.

Proof. We derive the following relationship from Lemma
1:

δf (vi, Q
i
c) ≤ δf (vi, v0) + δf (v0, Q

0
c) (5)

Note the closest quorum for two nodes can be different.
Due to the intersection property of quorum system, we can
derive the above equation.

Then we take the average:

Avgvi∈V [δ(vi, Q
i
c)] ≤ Avgvi∈V [δf (vi, v0) + δf (v0, Q

0
c)]
(6)

Then we have:

Avgvi∈V [δ(vi, Q
i
c)] ≤

n∑

i=1

(τi/n) + δf (v0, Q
0
c) (7)

We use τ1 ≥ τ2 ≥ ... ≥ τn to denote RTTs from v0

to other nodes in decreasing order. If one node in the net-
work has the knowledge of its RTTs to all other nodes in
the same network and its closest quorum access time, we
can calculate the upper bounds of Avgvi∈V [δ(vi, Q

i
c)].

Corollary 3. For any Grid quorum placement algorithm,
we have δ(v0, Q

0
c) ≥ τ(k−1)2+1

Proof. Note that the quorum size in Grid quorum system is
2k−1. Thus the optimal situation for v0 to access its closest
quorum is that quorum contains all 2k − 1 closest nodes of
v0. In this way,

min
Q∈Q

δ(v0, Q) = τ(k−1)2+1 (8)

(Delay from v0 to the farthest node in its 2k − 1 closest
nodes).

Thus, we have

Corollary 4. Algorithm 1 is optimal in minimizing
Avgvi∈V [δ(vi, Q

i
c)]

Proof. Note that in Algorithm 1, the closest quorum of v0

is the quorum containing the rightmost column and lowest
row which are 2k − 1 closest nodes of v0.

4.1.2 Delay from nodes to their row-sharing quorums

We design the quorum based gossip algorithm, in which
the total delay in one quorum is the sum of delays of each
gossip round. Thus, we use average access delay from one
node to its row-sharing quorum (which defines its gossiping
range) to evaluate the delay in one row-sharing quorum.

Use the same method as Theorem 2’s Proof, we have

Avg[δ(vi, Q
0i
r \ Q0

c)] ≤ Avg[δ(vi, v0)] + τ(i−1)2+1 (9)

Theorem 5. In Algorithm 1, given a node v0, the access de-
lays from row elements of Q0

c to their row-sharing quorums
are optimal arranged so that they are as close as possible.

Proof. From above equations, we discover that the time
bounds for each gossip round of row-sharing quorum are
different due to the different access delay for each row-
sharing gossip. However, if we want to make gossip quo-
rums propagation speeds as close as possible, we need to
place nodes in the row-sharing quorum to meet this crite-
rion. If we make closest k − 1 nodes of v0 the gossip node,
delays from these nodes to its row-sharing quorum are ap-
proximate those from v0 as much as possible.

Now we have k − 1 gossiping quorums, in which the
durations of gossip rounds depends on delays from v0 to
farthest-away nodes of those quorums. Hence, to make
these durations as close as possible, we need to place far-
thest k − 1 nodes separately in these quorums.

4.2 Overhead Analysis

We analyze message overhead for both RTQG and
RTQG-B, and then we make comparison between them.

Lemma 6. The number of messages issued during all gos-
sip rounds in one quorum is Θ(

√
N log N)

Proof. From equation (2), we have

R∑

r=1

M i
r = (

√
N − 1) ∗

R∑

r=1

ln(U i
r−1/U i

r) (10)

The number of issued messages during all gossip rounds
in one quorum is Θ(

√
N log N).

Corollary 7. The number of messages issued during all
gossip rounds in RTQG is Θ(N log N)

Proof. In RTQG, there are
√

N gossiping quorums. From
Lemma 2 we have

√
N∑

i=1

R∑

r=1

M i
r =

√
N ∗

R∑

r=1

M i
r = Θ(N log N) (11)

However, in RTQG-B, which is designed for Byzan-
tine quorum systems, more message overhead will be intro-
duced into system. At each step the node gossiping message
to its target nodes, it needs to access its closest quorum first
to authenticate that message.

Corollary 8. The number of messages issued during all
gossip rounds in RTQG-B is Θ(N3/2 log N)

Proof. In RTQG-B, the gossiping nodes need to query its
closest quorum to decide whether this message is health or
infected. Hence, we have

R∑

r=1

M i
r = (

√
N−1)∗

R∑

r=1

ln(U i
r−1/U i

r)∗
√

N = Θ(N log N)

(12)
There are

√
N gossiping quorums. So we have

√
N∑

i=1

R∑

r=1

M i
r =

√
N ∗

R∑

r=1

M i
r = Θ(N3/2 log N) (13)

Hence, in Byzantine quorum systems, more message
overhead will be introduced due to the cost of message au-
thentication. In our quorum based gossip algorithm, after
the finish of gossiping in source node’s closest quorum, the
row elements of this informed quorum need to decide num-
ber of rounds it gossips in the row-sharing quorum. Hence,
we arrange the closest node of source node gossiping to
the row-sharing quorum which has the largest gossip round
delay. And under this arrangement, the closest

√
N − 1

nodes of source node are arranged corresponding to quo-
rums which have farthest-away

√
N − 1 nodes of source

node. Then we have:

Theorem 9. If all nodes in the system are underloaded, the
probability for a task d to successfully complete its execu-
tion Psd is determined by giving the expected number of
informed nodes during gossip periods.

Proof. Let pi
1 and pi

2 be the number of rounds needed for a
row element i to execute task d and receive a decision. Then
we have:

psi
=

IT
pi
1
∗ IT

pi
2

N
(14)

Where pi
1 ≥ 0 and pi

2 ≥ 0, and IT
pi
1

and IT
pi
2

are total num-
ber of nodes during the current and next gossiping period,
respectively.

Since there are
√

N gossiping quorums, hence

Psd =

√
N∏

i=1

psi
(15)

5 Experimental Studies

In this section, we present simulation studies to evaluate
RTQG and RTQG-B’s performance under networks with or
without Byzantine node failures.

We evaluate the overall performance of the RTQG and
RTQG-B algorithm in a 900-node unreliable system. Thus,
a 30 × 30 Grid quorum system is built for quorum based
gossip protocol. We use RTG-L as our baseline, which we
introduced in this paper before. Tasks in the simulation en-
vironment are invoked and executed between arbitrary two
nodes in a 900-node system. During the execution, if a
source node cannot timely receive a reply from the desti-
nation node, it will abort the task section and announce the
failure for the task. Thus, a task is successfully finished if
its source node finds its destination node on time. The des-
ignated time interval for a remote invocation is represented
by the number of rounds. Success Ratio (SR) is the proba-
bility of task successfully executed over the total number of
rounds.

0 1 2 3 4 5 6 7 8
0

10

20

30

40

50

60

70

80

90

100

Number of Rounds

S
uc

ce
ss

 R
at

io
 (

%
)

RTG−L
RTQG

Figure 4. Condition of Message Losses

Figure 4 depicts the SR of RTG-L and RTQG under mes-
sage losses. We set the message loss ratio as 30%. From this
figure we observe that RTQG performs better than RTG-
L. It is mainly because in RTQG, the gossiping area is re-
stricted into one quorum. Thus, the gossip protocol will
visit all 2

√
N−1 nodes in one quorum in fewer rounds, and

elements visited will start gossip process in its row-sharing
quorum immediately. Because each gossip quorum is as-
signed to cover the network with most intersect with each
other, the number of uninformed nodes in each quorum is
minimized to

√
N . The probability of the informed nodes

being visited repeatedly was also reduced. Thus, although
RTG-L will achieve the same success ratio as RTQG finally,
RTQG exhibits better performance when executed gossip
rounds are not sufficient to cover all nodes in network.

Figure 5 depicts the SR of RTG-L and RTQG under node

0 1 2 3 4 5 6 7 8
0

10

20

30

40

50

60

70

80

90

100

Number of Rounds

S
uc

ce
ss

 R
at

io
 (

%
)

RTG−L
RTQG

Figure 5. Condition of Node Failures

failures. Note here node failures mean benign failures, e.g.
fail nodes do not exhibit Byzantine failures. We set the node
failure ratio as 30%. From the figure we discover that both
gossip protocols are robust to benign node failures. Again,
RTQG performs better than RTG-L because of the same rea-
sons in Figure 4. However, the difference between two pro-
tocols is smaller than Figure 1 shows. This observation sug-
gests that under same node failure ratio, the performance of
RTQG was more affected than that of RTG-L.

The main advantage of quorum based protocol is its per-
formance under Byzantine node failures circumstance. We
also do experiments to validate the theoretical result. In
these experiments we compare RTQG-B with RTG-L. And
we let one node exhibit Byzantine failure contacted in first
round and 2nd round, respectively. After the node receives
a message from a health node, it sends out a malicious mes-
sage instead. If the health node receives the malicious mes-
sage before it sending a true message, it will consider it as
a true message and gossip this message to other nodes. We
call this process "infect" and the corresponding nodes "in-
fected nodes". Obviously, the earlier the Byzantine node is
communicated, the more health nodes are infected.

Figure 6 and Figure 7 depict the SR of RTQG-B and
RTG-L under Byzantine node failures, when the Byzan-
tine node is contacted in first round and second round, re-
spectively. In Figure 6, we observe that RTQG-B performs
dramatically better than RTG-L. However, in figure 7 the
performance discrepancy is much smaller. We also find
even RTQG-B cannot guarantee the same performance as
RTQG in network without Byzantine failures. This is be-
cause in RTQG-B, the system is immunized to Byzantine
failures based on the successful message deployment in the
first quorum (the closest quorum of source node). If the
Byzantine nodes are contacted in early rounds, there are
several nodes in the closest quorum of source node infected.
Hence, if these nodes are assigned as the gossip nodes to its

0 2 4 6 8 10
0

10

20

30

40

50

60

70

80

90

Number of Rounds

S
uc

ce
ss

 R
at

io
 (

%
)

RTG−L
RTQG−B

Figure 6. Condition of Byzantine Node Fail-
ures: one Byzantine node in 1st Round

row-sharing quorum, as it will not send true message, and
elements won’t get message from other elements, which
make several quorums will not be informed. Under this
scenario, the probability of task successfully executed is re-
duced. Fortunately, due to the limited size of one quorum,
the number of infected nodes won’t be large. Moreover,
RTQG-B can deal with any Byzantine failures occurred in
the row-sharing quorums by just letting informed nodes ac-
cess its closest quorum to validate the authenticity of the
message.

0 2 4 6 8 10
0

10

20

30

40

50

60

70

80

90

100

Number of Rounds

S
uc

ce
ss

 R
at

io
 (

%
)

RTG−L
RTQG−B

Figure 7. Condition of Byzantine Node Fail-
ures: one Byzantine node in 2nd Round

6 Conclusions and Future Work

In this paper, we first design a quorum placement al-
gorithm to map nodes of networks to elements in quorum

systems. Based on this placement algorithm, we propose a
quorum based gossip protocol called RTQG for scheduling
a single task in unreliable networks. Using the intersection
property of quorum systems, we design RTQG-B algorithm
to deal with Byzantine node failures in networks. Compared
with RTG-L algorithm, our algorithm indicates improve-
ments in success ratio for a single task execution. Moreover,
RTQG-B algorithm can improve the performance dramati-
cally under Byzantine node failures. Our simulation studies
validate the algorithm’s effectiveness.

Future work can focus on extending our work for
scheduling distributable threads. The quorum placement al-
gorithm needs to be executed only once before the com-
munication process starting. For consecutive tasks in dis-
tributable threads, it will be more challenging to design a
protocol to generate quorum system dynamically without
introducing much more message overheads. Our work can
be also extended to more flexible network environments,
such as partitioned networks or wireless ad hoc networks.
Utilizing quorum systems method in these networks is in-
teresting and challenging.

References

[1] Y. Amir and A. Wool. Optimal availability quorum systems:
theory and practice. Inform. Process. Lett., 65(5):223–228,
1998.

[2] A. Fu. Delay-optimal quorum consensus for distributed sys-
tems. IEEE Transactions on Parallel and Distributed Systems,
8(1):59–69.

[3] S. Gilbert and G. Malewicz. The quorum deployment prob-
lem. In Proceedings of 8th International Conference on Prin-
ciples of Distributed Systems (OPODIS), 2004.

[4] A. Gupta, B. M. Maggs, F. Oprea, and M. K. Reiter. Quorum
placement in networks to minimize access delays. In Pro-
ceedings of 24th Annual ACM Symposium on Principles of
Distributed Computing (PODC), pages 87–96.

[5] K. Han, B. Ravindran, and E.D.Jensen. Rtg-l: Dependably
scheduling real-time distributable threads in large-scale, un-
reliable networks. In Proceedings of IEEE Pacific Rim In-
ternational Symposium on Dependable Computing (PRDC),
2007.

[6] K. Han, B. Ravindran, and E.D.Jensen. Rtmg: Scheduling
real-time dstributable threads in large-scale, unreliable net-
works with low message overhead. In Proceeding of the 13th
International Conference on Parallel and Distributed Systems
(ICPADS), 2007.

[7] A. Kumar, M. Rabinovich, and R.K.Sinha. A performance
study of general grid structures for replicated data. In Pro-
ceeding of the 13th International Conference on Distributed
Computing Systems, pages 178–185, 1993.

[8] D. Makhi and M. Reiter. Byzantine quorum system. Dis-
tributed Computing, 11(4):203–213, Octobers 1998.

