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ABSTRACT
Linux eBPF allows a userspace application to execute code
inside the Linux kernel without modifying the kernel code
or inserting a kernel module. An in-kernel eBPF verifier pre-
verifies any untrusted eBPF bytecode before running it in
kernel context. Currently, users trust the verifier to block
malicious bytecode from being executed.

This paper studied the potential security issues from exist-
ing eBPF-related CVEs. Next, we present a generation-based
eBPF fuzzer that generates syntactically and semantically
valid eBPF programs to find bugs in the verifier component
of the Linux kernel eBPF subsystem. The fuzzer extends the
Linux Kernel Library (LKL) project to run multiple light-
weight Linux instances simultaneously, with inputs from the
automatically generated eBPF instruction sequences. Using
this fuzzer, we can outperform the bpf-fuzzer [10] from
the iovisor GitHub repository regarding fuzzing speed and
the success rate of passing the eBPF verifier (valid generated
code). We also found two existing ALU range-tracking bugs
that appeared in an older Linux kernel (v5.10).
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1 INTRODUCTION
The eBPF (extended Berkeley Packet Filter) has emerged
as one of the most exciting techniques in the Linux kernel.
Introduced in Linux kernel v3.18, eBPF has since gained
widespread popularity for enabling kernel state observability
and network and system behavior control. It has become
essential to modern network monitoring systems and control
infrastructure [14, 23].

eBPF allows programmers to safely execute Berkeley Packet
Filter (BPF) bytecode within the Linux kernel without insert-
ing a kernel module or modifying the kernel source code [23].
The eBPF kernel subsystem provides a system call to load
the userspace bytecode into the kernel and attach them to
eBPF probes [19]. Such probes are predefined hook points on
many kernel code paths, including network events, system
calls, function entry and exit, and kernel tracepoints [22].

To prevent malicious or buggy eBPF programs from crash-
ing the kernel or causing other security issues, an in-kernel
eBPF verifier performs a series of static checks on the eBPF
bytecode to ensure that it adheres to a set of safety rules,
such as pointer boundary safety, type safety, and no endless
loops [13]. The eBPF verifier plays a critical role in ensuring
the safety and security of the eBPF infrastructure within the
Linux kernel. Though the verifier is a security-critical com-
ponent of the eBPF runtime, like any software, it contains
vulnerabilities that could potentially affect the security of
the entire kernel. With these vulnerabilities, a program veri-
fied as valid by the verifier may still compromise the kernel,
leading to privilege escalation and denial of service attacks
(e.g., CVE-2016-4557 [3], CVE-2021-3490 [4]).

This paper systematically analyzes the potential attack
surface for the in-kernel eBPF subsystem. We first looked
at existing eBPF-related bugs and summarized them based
on their root causes. Next, we report a work-in-progress
lightweight eBPF fuzzer to identify security vulnerabilities
in the Linux kernel eBPF verifier component. The fuzzer au-
tomatically generates valid eBPF instructions to observe the
misbehavior of the verifier. Moreover, our fuzzer completely
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runs in userspace and can scale out the fuzzing process with
hundreds of threads on a single server machine.

With this fuzzer, we were able to identify two ALU range-
tracking bugs previously reported in the Linux kernel. We
instrumented the verifier, reaching 40 percent code coverage
which covers almost all of the functions related to the veri-
fier’s ALU-related code. With 32 parallel threads, the fuzzer
can generate and execute 300 eBPF programs per minute
which can stress the correctness of the verifier.

The rest of the paper is organized as follows: Section 2
provides background information on the eBPF subsystem.
Section 3 describes the design and implementation of the
eBPF fuzzer. The evaluation is presented in Section 4. We dis-
cuss possible optimizations in Section 5. We contrast related
work in Section 6 and conclude the paper in Section 7.

2 BACKGROUND AND MOTIVATION
2.1 Linux eBPF and Security
The Berkeley Packet Filter, or classic BPF, is a technology
available in specific operating systems to analyze network
traffic. BPF allows the userspace program to inject a filter
program that specifies the conditions to receive a packet.
This dramatically improves the performance as the kernel
drops the unwanted packets without forwarding them to the
userspace level. The recent Linux kernel introduced an ex-
tended Berkeley Packet Filter (eBPF). In addition to network
traffic filtering, it can be utilized for performance monitoring,
security enhancement, and debugging.

The eBPF programs can be written in high-level languages
(like C or Rust) or eBPF assembly format. Once the eBPF pro-
gram is compiled into eBPF bytecode, the bpf() system call
can be used to load the corresponding eBPF bytecode into the
Linux kernel [19]. An eBPF verifier verifies the correctness
before the kernel executes the program on selected events.
Linux eBPF provides ten 64-bit general-purpose registers and
a read-only frame pointer. The instruction set includes load
and store instructions and support for arithmetic operations
like addition, subtraction, multiplication, and bit operations
(e.g., AND, OR, and XOR). Another instruction class is the con-
ditional and unconditional JMP instructions for changing the
program’s control flow.
As mentioned earlier, eBPF program execution is event-

driven. An event can be a system call, function entry, exit,
perf event, kprobes, and uprobes. The input context to the
eBPF program varies based on the hook/event it is attached.
For example, when an eBPF program is attached to a system
call, the arguments of the system call will be passed as the
context. Similarly, for a kernel tracepoint, the data associated
with the tracepoint is passed as an input. Although an eBPF
program needs to be verified before being executed, exploits

are still reported that leverage vulnerabilities in the eBPF
subsystem to privilege escalation [17].
To understand security vulnerabilities in the Linux eBPF

subsystem, we manually examined Linux eBPF-related CVEs
in the past two years [5]. The vulnerabilities reported on
eBPF are categorized in Figure 1. Looking at existing eBPF-
related CVEs, we found that almost half of the vulnerabilities
reported are related to the eBPF verifier. The eBPF helper has
the second-highest number of the CVEs reported. However,
we found several bugs in other eBPF components can be
fixed within the eBPF verifier.

Others
22.2%

eBPF-Helper
16.7%

eBPF-JIT
5.6%

eBPF-Core
11.1%

eBPF-Verifier
44.4%

CVEs in Linux eBPF subsystem

Figure 1: Categories of vulnerabilities in Linux eBPF
subsystem.

We further investigated the characteristic of bugs in the
eBPF verifier and found that four of the eight vulnerabilities
are related to the ALU range tracking operations. The re-
maining CVEs are related to integer overflow and improper
input validation (some are listed in Table 1). The ALU range
tracking bugs are a class of bugs where the verifier incor-
rectly computes the possible range of the registers for each
instruction in the program. This will lead to the improper
assumption that certain pointer arithmetics are valid and
that the resulting memory access is inbound. For example,
the verifier with the vulnerabilities may assume the register
r2 value as 10, but the actual runtime value will be 25 or
any value other than 10. If the r2 register is used for pointer
arithmetic for cases like accessing a member of the map, the
access may go beyond the actual size of the map, which the
verifier is supposed to detect. But because of the ALU range
tracking vulnerabilities, the attacker could exploit this to
steal or modify sensitive information.

2.2 Kernel Fuzzing
Kernel fuzzers have been proven as a promising technique
for identifying software vulnerabilities [9]. The operating
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Table 1: CVEs related to eBPF verifier.

CVE ID Description Type
CVE-2021-4204 OOB in bpf_ringbuf_submit Improper Input Validation
CVE-2022-0264 check_mem_access :Internal memory locations returned to userspace Kernel Address Leakage
CVE-2022-23222 Pointer arithmetic via *_OR_NULL pointer types ALU Range Tracking error
CVE-2020-8835 Invalid range in __reg_bound_offset32 ALU Range Tracking error
CVE-2021-3490 ALU-32 bounds tracking for bitwise ops - AND, OR and XOR ALU Range Tracking error
CVE-2020-27194 scalar32_min_max_or mishandles bounds tracking during use of 64-bit values ALU Range Tracking error

system kernel bugs allow attackers to access a system with
full privileges. Fuzzing generally involves generating random
inputs to the target program or kernel and observing the
behavior of the systems with unconventional inputs. In our
proposed eBPF fuzzer, the system under test is the verifier
component of the eBPF run-time, and the input is an eBPF
bytecode.

Though well-established user-space fuzzers like AFL [26]
and AFL++ [8] are already available, they are unsuitable
for fuzzing the eBPF verifier. The verifier expects the eBPF
instructions to be syntactically and semantically valid. The
conventional fuzzers modify certain bits of the inputs for
each cycle and observe the program’s behavior through a
feedback mechanism like code coverage. Thus Fuzzer needs
to be aware of the eBPF instruction set and semantics to
generate the inputs that can pass the verifier.

3 A LIGHTWEIGHT LINUX EBPF FUZZER
We designed and implemented a lightweight Linux eBPF
fuzzer to identify security flaws in the Linux kernel eBPF
verifier (Figure 2). The key idea is to generate eBPF byte-
code programs that lead to logical violations in the eBPF
verifier. The fuzzer has two major components. The first is a
fuzzer manager responsible for launching multiple kernel-
eBPF instances that load and execute randomly generated
eBPF programs. The other major component is the eBPF pro-
gram generator that produces the random eBPF instructions,
which are semantically and syntactically valid, so the verifier
does not directly drop the test program.

Fuzzer-Thread 3
Fuzzer-Thread 2

Output 
ValidationLKL ThreadeBPF Instruction 

Generator

C source file

Fuzzer-Thread 1

Fuzzer Manager
Merge Coverage

Analyse Dmesg

Loader Template

eBPF Instructions

…

Figure 2: System overview of the lightweight Linux
eBPF Fuzzer.

3.1 Generate Random eBPF Instructions
The eBPF instruction set is similar to a RISC register machine.
The eBPF instruction set comprises eight classes of instruc-
tions, mainly in three categories – ALU, LOAD/STORE, and
(conditional) JMP. Each eBPF instruction has 64 bits in size.
For each instruction, the lower 8 bits are encoded for the
opcode (Figure 3). The opcode’s three least significant bits
(LSB) encode the instruction class. The destination register
and source register are encoded right after the opcode field.
Currently, eBPF supports up to 11 registers (r0-r10) to be
used for eBPF programs.

imm offset src_reg dst_reg opcode

32 Bits 16 Bits 4 Bits 4 Bits 8 Bits

R0
_______
R1

_______
.
.
.

________
R10

Registers

BPF_LD
BPF_LDX
BPF_ST
BPF_STX
BPF_ALU
BPF_JMP
BPF_JMP32
BPF_ALU64

Opcodes

_________
_________
_________
_________

.

.

.
_________
_________

Stack

511

0

Figure 3: eBPF instruction encoding [12].

For each fuzzing cycle, the fuzzer generates a random num-
ber (N) of instructions and randomly chooses one instruction
class for each instruction. The generated eBPF instructions
will then be inputted into the Linux eBPF instances to test
whether they can trigger a bug for the verifier. One main
challenge for the fuzzer is to generate random instructions
that can pass the verifier but are random enough to trigger
bugs in the verifier. To solve this problem, the fuzzer creates
syntactically valid instructions by enforcing the grammar
of the eBPF instruction set [12]. Each instruction generator
follows the rules for its instruction class so that randomly
generated instruction passes the compiler and eBPF verifier
without any error.

Another challenge is to generate a set of instructions that
is also semantically valid. For instance, an eBPF ALU instruc-
tion that does a division operation with 0 as a divisor has
correct syntax and can compile without failure. But the ver-
ifier would throw an error, as it is supposed to ensure the
program’s safety, mark it as an invalid program, and drop
the program before attaching it to a kernel event. Another
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example could be a load instruction that copies a value from
an uninitialized register to a destination register. This is an
invalid operation since loading from an uninitialized register
would lead to undefined behavior.

To solve this problem, our fuzzer randomly allocates reg-
isters for each instruction and generates the register values.
However, the fuzzer’s instruction generator scans the pro-
gram for uninitialized registers and initializes those regis-
ters after finishing the instructions generation. The instruc-
tion generator omits the instructions that can are consid-
ered invalid. For example, shift operations like BPF_RSH and
BPF_LSH cannot have negative shift values. The BPF_JMP
and xBPF_JMP32 instructions cannot have negative lengths
(i.e., back edge), and the destination should not go beyond
the last instruction. Another key aspect of the instruction
generator is the selection of register values. The registers
can have 32-bit and 64-bit values. We found that some imme-
diate values are more accessible to trigger ALU bugs, such
as 0x0, 0x1, 0x2, 0x4, 0x8, 0xf, 0xff, 0xffff, 0xffffffff.
Therefore, we prioritize these values as immediate values for
instructions and assign them to registers.
Lastly, suppose one randomly generated instructions se-

quence passes the eBPF program verification and increases
the code coverage for the eBPF subsystem. In that case, we
prioritize such a program into a seed pool and mutate reg-
ister values for the next fuzzing cycle. The generated eBPF
instructions are stored as a seed program and then converted
to a C program with macros for each eBPF instruction.

3.2 Efficiently Fuzzing the eBPF Verifier
Once eBPF programs are generated, we input them to live
kernel instances. Our fuzzer aims to launchmany lightweight
Linux kernel instances to run selected randomly generated
eBPF programs. Since we target finding bugs for the actual
Linux eBPF subsystem, one strategy is to launch Linux virtual
machines (VMs) and execute eBPF programs within the VM.
However, the cost of starting/stopping VMs is high. Instead,
we extended a lightweight and userspace Linux – Linux
Kernel Library (LKL) [15] – to execute randomly generated
eBPF programs (Figure 4).
The LKL project allows users to compile the kernel code

into an object file (i.e., a library) so that applications can
directly link with the kernel code. LKL is implemented as an
architecture port in the arch/lkl folder of the Linux source.
It can be used to execute the kernel code in the userspace. Our
eBPF fuzzer launches the bpf() syscall within LKL instances,
thus invoking the eBPF verifier as a userspace application.
This allows multiple verifier instances to be invoked as sep-
arate threads, thus increasing the throughput of the fuzzer.
As opposed to fuzzing userspace programs, one of the main
limitations of fuzzing kernel components is that, at a time,

only one set of inputs can be executed in a single system or a
virtual machine. For example, syzkaller, the state-of-the-art
kernel fuzzer, invokes virtual machines instance to test mul-
tiple kernels in parallel [9]. This requires a lot of computing
resources, even for testing a small part of the kernel.

Figure 4: Screenshot of the eBPF fuzzer execution.

Our eBPF fuzzer is enclosed in a loader program which in-
cludes the code for calling lkl_syscall(BPF_PROG_LOAD).
Next, the fuzzer manager binds our extended LKL instance
with a random eBPF program and runs it as an LKL thread.
Each LKL thread boots the kernel as a userspace application
and loads the generated eBPF program. The fuzzer also trig-
gers a socket event that, in turn, executes the verified eBPF
program. If the verifier passes it, a socket event is triggered
so that the kernel executes the loaded eBPF program. After
the execution, the fuzzer verifies the kernel logs and checks
if errors are reported.
Another benefit of testing the Linux eBPF subsystem in

userspace is we can easily apply various userspace sanitizers
to the target. For example, we can compile the LKL eBPF sub-
systemwith LLVM address sanitizer to enable memory safety
checks [16]. Moreover, we insert assertions for the eBPF ALU
logic code. For example, we add conditions to catch an in-
valid register state. Specifically, we store all registers’ legal
states (i.e., value ranges) right after the eBPF verification
phase. We use the register states calculated from the verifier
to validate the actual register state. This allows us to verify
whether actual register values are maliciously manipulated
and exploited by the eBPF runtime (e.g., a miscalculated case
by the verifier).

4 EVALUATION
We ran our early prototype of the LKL-based eBPF fuzzer
on a machine with an Intel Xeon D-1548 CPU of 16 cores
and 62 GB of memory. The fuzzer launches 32 parallel LKL
Linux instances and runs 300 eBPF programs per minute. We
tested our fuzzer in Linux kernel version 5.10.0.
Figure 5 shows the code coverage of the eBPF verifier

increases according to the time executed. After 30 minutes
of execution, our eBPF fuzzer can cover 40% of the verifier
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code and almost all ALU-related functions. Among the re-
maining unreached branches is code for BPF type format
(BTF) [11], BPF maps, and memory access validation func-
tions. They hold 10 percent each. The remaining 30% of
unreached branches are in pointer and argument validation.
This is due to the lack of additional checks in those code
regions in our current eBPF fuzzer.

Figure 5: Code coverage numbers are discovered in the
eBPF verifier (9730 branches in total) according to the
execution timeline.

Our current design allows more than 50 percent of auto-
matically generated eBPF programs to pass the verifier with-
out rejection. Compared to other open-source eBPF fuzzers
[10, 18], our fuzzer has much higher fuzzing throughput. For
example, the eBPF fuzzer from the iovisor project [10] can
only generate 4 valid eBPF programs out of 2000 generated
eBPF programs, rendering a high percentage of generated
eBPF programs fail to execute directly. The existing imple-
mentations lack generating valid programs that can pass the
verifier, in contrast to our grammar-aware eBPF program
generator. Moreover, our lightweight fuzzer implementation
allows multiple eBPF programs to be executed in parallel.
Our eBPF fuzzer can trigger two existing ALU range-

related bugs within the first 5 minutes. In particular, one
eBPF verifier vulnerability (CVE-2022-23222 [7]) is related
to OR_NULL pointer type, where pointer arithmetic is allowed
on NULL pointers. OR_NULL pointer is an intermediate pointer
type where a pointer could have a NULL value. In the run-
time, the pointer is checked to determine whether it is NULL.
The vulnerability allows an attacker to execute arithmetic
operations on the NULL pointer when the verifier sees it
is a valid operation otherwise. So the attacker can do arbi-
trary read/write on any out-of-bound memory. The second

vulnerability we found (CVE-2020-27194 [6]) is a result of
improper range tracking in the verifier that could be used to
run Out-of-Bound memory access. During the verification
process, the eBPF verifier tracks the possible range of the
register values and their states to identify OOB memory ac-
cess. The scalar32_min_max_or() function in the verifier
used the 64-bit registers instead of 32-bit to calculate the
minimum and maximum values.

5 DISCUSSION
Our eBPF fuzzer has some limitations and improvement
spaces. The current implementation concentrates only on
the ALU-related issues in the verifier. There are other sec-
tions in the verifier where this fuzzer can be extended to
test those sections. For example, the verifier must validate
instructions interacting with eBPF helper functions and map
data structures before executing them in the kernel. The
eBPF generator can be modified to generate those instruc-
tions with proper grammar, which will also increase the code
coverage in the verifier.

Our eBPF fuzzer is built on top of the Linux Kernel library
to execute eBPF programs. However, the LKL project is a
little outdated to the most recent Linux kernel. Therefore,
a few most recent eBPF helper functions do not work well
with even the latest LKL. Moreover, there are some eBPF
helper functions that LKL does not support well due to LKL’s
userspace property. Hence to extend the fuzzer for eBPF
helper functions, it is necessary to add support for these
helper functions in LKL. We leave it as future work.
The eBPF fuzzer can also be enhanced with additional

sanitizers that would identify dynamic memory errors in the
verifier. Address/memory sanitizers [16, 20] are commonly
used in kernel fuzzers, but they would not catch the issues
related to the correctness of the verifier. Nevertheless, these
sanitizers could identify potential memory safety vulnerabil-
ities in the verifier.

6 RELATEDWORK
Recently, kernel fuzzing has become a hot topic among secu-
rity researchers. Some fuzzers test the entire kernel through
system call interface [21] inputs, and other fuzzers concen-
trate on specific Linux kernel components like file systems
and device drivers [2, 24]. The eBPF fuzzer from the iovisor
project [10] is based on libFuzzer, which compiles the verifier
as a userspace application by replacing the kernel library
calls with userspace calls. The inputs to the verifier do not
follow any grammar of the eBPF instruction set and are ran-
domly generated bytecode. Thus most of the input is rejected
by the verifier. The fuzzer is based on the v4.3.0-rc3 kernel,
where the code size of the verifier is 2K lines.
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Another open-source fuzzer [18], generates random in-
structions by following the grammar of the eBPF instructions.
Each generated program runs in separate QEMU-based vir-
tual machines and does not enforce the semantic rules of the
eBPF programs. Thus throughput of the fuzzers is not high
since the virtual machines require higher computing power.
The main limitation would be ignoring the semantic rules,
which means the verifier will not pass generated programs.

There is another category of fuzzers where the fuzzing
target expects the inputs to follow a specific grammar like
compilers. P4Fuzz [1] is one example of a generation-based
fuzzer that creates P4 programs to find bugs in P4 compilers.
The test-case generators also successfully find bugs in the
compilers through differential testing. Csmith [25] is an open-
source test-case generator tool that can generate random
C programs which conform C99 standard. It can find many
previously unknown bugs in both commercial and open-
source compilers.

7 CONCLUSION
The Linux eBPF subsystem allows arbitrary userspace pro-
grams to be executed inside the Linux kernel. Given eBPF is
widely adopted for its flexibility and easy-to-use program-
mingmodel, it is necessary to harden the verifier to safeguard
the Linux kernel. The proposed LKL-based eBPF fuzzer can
be used to find the ALU ranging tracking errors with its
structured random instruction generator. The LKL-based
fuzzer instances allow high fuzzer throughput and can test
many eBPF instructions with limited hardware and time. We
evaluated the eBPF fuzzer using Linux kernel v5.10.0. The
evaluation results show that our eBPF fuzzer can cover 40%
of the verifier code in less than 30 minutes, with two existing
ALU bugs identified.
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