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Abstract

We consider the rate allocation problem for data aggregation in wireless sen-

sor networks with two objectives: 1) maximizing the minimum (Max-Min) life-

time of an aggregation cluster and 2) achieving fairness among all data sources.

The two objectives are generally correlated with each other and usually, they

cannot be maximized simultaneously. We adopt a lexicographic method to

solve this multi-objective programming problem. First, we recursively induce

the Max-Min lifetime for the aggregation cluster. Under the given Max-Min

lifetime, we then formulate the problem of maximizing fairness as a convex op-

timization problem, and derive the optimal rate allocation strategy by iterations.

We also present low-complexity algorithms that an aggregation cluster can use

to determine the Max-Min network lifetime and the fair rate allocation. Our

simulation results validate our analytical results and illustrate the effectiveness

of the approach.
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1. Introduction

Wireless sensor networks (WSNs) have recently received increased attention

for a broad array of applications such as surveillance, environment monitoring,

medical diagnostics, and industrial control. Data aggregation [1, 2] is a funda-

mental operation in sensor networks in which data packets generated at sensor

nodes are to be aggregated in local cluster heads or at a sink node. For example,

in target tracking applications [3], some nodes in the network generate physical

measurements of an intruding target after sensing its presence. The nodes may

then send sensed data via either one hop or multi-hops towards the cluster head

or the sink node.

The nature of data aggregation usually results in a tiered structure in sensor

networks. Early sensor network designs assume a flat network in which sensors

directly transmit their packets to the sink node. More recently, tiered sensor

networks [4] have been proposed for use in high data-rate applications (e.g.,

acoustic [5], imaging [6]). In tiered networks, the lower-tier consists of tiny

wireless sensors that transmit data to the closest upper-tier node (usually an

embedded 32-bit system with an 802.1x radio). In such networks, when an event

is sensed, a relatively large number of nodes might wish to transmit significant

volumes of data (either raw samples, or processed information) along one or

more trees towards base stations. Rate allocation plays an important role in

such situations.

Generally, one basic requirement on rate allocation in wireless sensor net-

works is to achieve energy efficiency [7], because most sensor nodes are battery-

powered and it is practically infeasible to recharge them. The limited size of

sensor nodes only allows for very limited energy storage in most applications

such as tracking. Although substantial improvements have been achieved in

chip design for energy conservation, energy-efficient battery designs still lag be-

hind. Thus, one of the fundamental challenges in sensor networks is their energy

efficient operation, and significant research efforts are focusing on this problem.

By controlling the data rates, the network lifetime can be maximized [8, 9] if
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we balance the energy consumption over all nodes in the network. For example,

nodes with high remaining energy can be allowed to transmit more data, while

those with low energy should transmit less. Without such balanced energy

consumption, some nodes may quickly exhaust their power, causing network

partitions or malfunctions.

Another requirement for many data aggregation applications is to achieve

fairness among source rates [10, 11]. Typically, applications can achieve better

performance when data gathered from different source nodes are identical in

terms of data rate. For instance, equal amount of data from some video sensor

nodes can help the cluster head build a whole-scene image or video. To achieve

fairness, it is important to have data rates among all source nodes as equal

as possible. This requirement can be met only if we are able to obtain a fair

amount of data from each of the sensors that are part of the network. This

leads to the fair rate allocation amongst all sources in the network. Hence, rate

allocation amongst sources need not only be efficient (i.e., maximize network

lifetime), but must also ensure fairness [12, 11, 13].

In this paper, we present the design of a distributed mechanism for fair and

energy-efficient rate allocation strategy in wireless sensor networks. In general,

the design of such a mechanism is complicated by the radio characteristics of

shared wireless channels (i.e., IEEE 802.15.4). As such, the channel arbitration

used by the MAC layer and the quality of paths determined by the routing

protocol can also impact the quality of any solution for the rate allocation

problem. For simplicity, we build our work upon the de facto standard MAC

layer (i.e.,CSMA) and routing layer (i.e., MintRoute [14]). We defer to future

work the examination of an optimal cross-layer design which jointly designs the

MAC layer, the routing layer, and a rate allocation scheme.

In most cases, an optimized rate allocation that simultaneously maximizes

the network lifetime and fairness is difficult as the two objectives are correlated

with each other. For maximizing the network lifetime, it is better to bias the

rate allocation for nodes with different remaining energy/transmission cost, as

this will balance the energy consumption. However, for maximizing fairness,
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it is better to average the data rate of all nodes as much as possible. There

is an inherent trade-off between biased rate allocation (lifetime maximization)

and even allocation (fairness) [15, 16]. Furthermore, the problem becomes more

difficult for arbitrary communication patterns [17]. As we show in this paper, we

can leverage the tree-based traffic pattern prevalent in wireless sensor networks

to obtain a distributed and fair rate allocation mechanism. Specifically, we make

the following contributions.

Our Contribution: We formulate the above problem as a multi-objective

programming problem and adopt a lexicographic method [18] to solve the prob-

lem. First, we recursively maximize the minimum (Max-Min) network lifetime

in a local aggregation tree. Under the given maximum lifetime, we then for-

mulate the problem of maximizing fairness as a convex optimization problem,

and derive the optimal rate allocation strategy, considering the impact of inter-

ferences. We also present a low-complexity algorithm to compute the Max-Min

network lifetime and the optimal rate allocation for fairness. Our simulation

studies illustrate the effectiveness of our algorithm in finding an optimal rate

allocation strategy. To the best of our knowledge, this is the first result on rate

allocation in sensor networks that simultaneously maximizes network lifetime

and fairness for data aggregation using a lexicographic method.

The rest of the paper is organized as follows: In Section 2, we overview the

related work on rate allocation for sensor networks. In Section 3, we describe

the network topology, transmission power model, and the notations that we use

in the paper. In Section 4, we consider the scenario of multi-frequency with full-

duplex for a node, and mathematically analyze the problem model and present

our lexicographic solution. We extend the same problem to the scenario of

multi-frequency with half-duplex in Section 5 and derive new solutions. We

report our simlation-based experimental results in Section 7, and conclude in

Section 8.
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2. Related Work

The problem of rate allocation and energy management in wireless sensor

networks have been extensively studied. For example, to maximize the network

lifetime, Bhardwaj et. al. present an upper bound on the network lifetime for

energy-efficient collaborative data gathering with optimal role assignments for

different nodes [19]. In [20], Sankar et. al. present a distributed algorithm at the

network layer to maximize the network lifetime. This algorithm can guarantee

bounded approximation error for flow routing.

Regarding the impact of rate allocation on the network lifetime, most works

study how to maximize the minimum (Max-Min) network lifetime for different

allocation strategies. For example, Xue et. al. [8] present a dual decomposi-

tion method and an approximation algorithm to determine the optimal network

lifetime for data aggregation, where each node has multiple routing paths to

the sink node. In [21], Hou et. al. study the Max-Min rate allocation among

all nodes with a system lifetime requirement. They use a linear programming

approach to solve the Max-Min lifetime problem and develop a polynomial-time

algorithm.

The problem of achieving fairness in rate allocation has also been well stud-

ied. For instance, in [22], the authors study how to achieve MAC-layer fairness

among one-hop flows within a neighborhood. In [7], the fair data collection prob-

lem is studied within the network utility maximization (NUM) [23] framework.

In [24], Chen et al. determine the maximum rate at which individual sensors can

produce data without causing congestion in the network and unfairness among

peer nodes.

Past works have also explored the trade-off between the Max-Min network

lifetime and fair rate allocation. In [16], Nama et. al. present a general cross-

layer framework that takes into account radio resource allocation, routing, and

rate allocation for achieving trade-offs between lifetime maximization and fair-

ness. The authors solve the tradeoff problem via a dual decomposition method.

In [15], a similar problem is addressed at the transport layer. The idea in this
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work is to construct a new optimization function by linearly adding up the two

objective functions (i.e., lifetime and the objective function representing fair-

ness) and deriving an optimal solution for maximizing the newly constructed

function.

The differences between our work and [16, 15] include the following. First,

we study the tradeoff problem in a cluster which has a tree-like network topol-

ogy that is more suitable for data aggregation. Second, we adopt a lexico-

graphic method in which we favor network lifetime maximization over fairness

(no such preferences exist in previous works). We do so, because network lifetime

is strongly correlated to energy consumption, which is the most performance-

critical aspect of sensor networks.

3. Network Topology and Preliminaries

3.1. Network Topology

We consider a static and symmetric multi-hop wireless sensor network G =

(V,E), where V = {0, 1, 2, · · · , N} is the set of sensor nodes and E is the set of

undirected edges. In this graph-theoretical model of wireless sensor networks,

we use the terms nodes and vertices interchangeably.

We assume that the network topology for data aggregation is a tree structure

(i.e., an aggregation tree) which is widely adopted by previous works [25, 26].

There are three types of sensor nodes in the network: source nodes, relay nodes,

and the sink node (or local cluster head). The source nodes are leaf nodes which

generate sensor data. The function of a source node is simple: once triggered

by an event, it starts to capture live information about the target, which is then

directly sent to the local cluster head within one hop or multiple hops. Only

source nodes can generate data in our system. A relay node does not generate

data. Its functions include: 1) receiving data from its children nodes which can

be relay nodes or source nodes, and 2) forwarding the received data to the next

hop toward the cluster head (i.e., the root node). The cluster head/sink node

is the aggregation end point.
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We assume high data rates (e.g., raw acoustic or image data sampling) gen-

erated by a relatively large number of nodes. This data can traverse multiple

hops before reaching the sink node or a local cluster head for data aggregation.

There are two scenarios of radio technology in our application scenario:

(1) Multi-frequency with Full-duplex (or multiple transceivers). In this case,

the radio interference is avoided by multiple frequencies and a node can trans-

mit and receive data simultaneously due to multiple transceivers or full duplex;

(2) Multi-frequency with Half-Duplex (or single transceiver). In this case, al-

though interference is avoided, a node cannot transmit and receive data simul-

taneously.

We do not assume any specific routing protocol. A single-path routing pro-

tocol (e.g., MintRoute [14]) can work underneath our proposed rate allocation

algorithms. We also assume reliable end-to-end data transmission by using any

existing reliable mechanism [27, 28].

Besides, we make additional assumptions as follows: (1) All sensor nodes

and the cluster head are time-synchronized; (2) Any sensor node has at most

one parent in the aggregation tree; (3) Each sensor node can measure its trans-

mission energy per byte and the remaining battery capacity; and (4) Within

each cluster, the source nodes can sense events (i.e., targets) and can transmit

the sensed data to the relay node simultaneously.

In the rest of the paper, for convenience, we will use the terms leaf node

and source node interchangeably, and the terms root node and cluster head

interchangeably.

3.2. Power Dissipation Model

A detailed power consumption model for each component in a wireless sensor

node can be found in [29]. The power consumption due to data communication

(i.e., receiving and transmitting) is the dominant factor of a sensor node’s overall

power consumption. Suppose there are N sensor nodes in a cluster. Each node

is denoted as ni(i ≤ N). We denote gi as the bit rate from node ni to its next
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hop node, and ci as the transmission power cost over the radio link. We denote,

wi = α + β · dm
i

where α is a distance-independent constant term, β is a coefficient term asso-

ciated with the distance-dependent term, di is the distance between the sensor

node ni and its next-hop node, and m is the path-loss index, with 2 ≤ m ≤ 4.

Typical values for these parameters are α = 50nJ/b and β = 0.0013pJ/b (for

m=4) [29]. The power dissipation at the transmitter, mostly being source nodes,

can be modeled as:

ps(i) = wi · gi. (1)

The power dissipation at a receiver, mostly being relay nodes or the sink

node, or the cluster head for receiving data, can be modeled as:

pr(i) = ρi · gi (2)

where the typical value for the parameter ρ is 50nJ/b [29].

For a relay node, the power dissipation consists of two parts: receiving power

and transmitting power. The power dissipation for a relay node can be modeled

as:

pt(i) = (wi + ρi) · gi. (3)

For convenience in presentation, we adopt an uniform denotation:

psk
(i) = csk

· gsk
(4)

for the power dissipation in sensor node nsk
. If the node is a source node,

csk
= wsk

. For a receiving node, csk
= ρsk

; for a relay node, csk
= wsk

+ ρsk
.

In our power consumption model, we omit the feed-back messages since

we assume multimedia applications over WSNs, like image reconstruction and

the feedback data (i.e. , acknowledgement message) rate is relatively small

comparing to the multimedia data rate from sensor nodes to the sink node.
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3.3. Notations

A sensor node is denoted as ni(i = 0, · · · , N) and the sink node as n0. The

set of all source nodes is denoted as S0 = {sk|nsk
∈ N} in which sk is the index

in [0, N ]. In addition, we define the set of source nodes rooted at node ni as Si,

and Si = {ni} if ni is a source node.

Outgoing rate from source node/relay node is defined as gsk
for node nsk

.

We also define an unified term csk
, which represents the energy requested for

transceiving one unit of data. Based on Equations 1, 2, and 3, for a source node,

csk
= wsk

; for a relay node, csk
= wsk

+ ρsk
; and for the cluster head c0 = ρ0.

The minimum system lifetime, denoted as Tmin, is defined as the operational

time of the local cluster until the first node in the cluster runs out of power.

We denote the initial remaining energy of a node nsk
as Esk

. The transmission

capacity over a radio channel is denoted as R.

For convenience, we summarize all notations in Table 3.3.

3.4. Bit Capacity

For convenience in presentation, we introduce the notion of “Bit Capacity,”

which is defined as the largest amount of data that can be transmitted through

one node before dissipating all of its remaining energy.

B2 = 4
2

43

0

1 B1=min{E1/c1, B2+B3}

=7

B3 = 5 B4 = 6

E1/c1 = 7

B0=min{E0/c0, B1+B4}

=13

E0/c0 = 20

E2/c2 = 4
E3/c3 = 5 E4/c4 = 6

Figure 1: Aggregation Topology and Bit Capacity

Formally, it is defined as follows:

Definition 1. Let Bi be the Bit Capacity of node ni, which is defined as:

Bi =





min{Ei

ci
,
∑

dk∈Di
Bdk

}, ni is relay node

Ei/ci, ni is leaf node

(5)
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Table 1: Notations

Notation Description

ni(i = 0, · · · , N) Sensor node. The sink node is defined as n0

S0 = {sk|nsk
∈ V } Set of source nodes which generate sensor data;

sk is the index of the source node nsk
among V

Si Set of source nodes rooted at node ni. If ni is a source

node, Si = {ni}
gsk

Outgoing rate from sensor node nsk
. For a leaf node, it

is the source data rate generated by source sensor nodes

csk
Power dissipation for sensor node nsk

. For a source

node, csk
= wsk

; for a receiving node csk
= ρsk

;

for a relay node, csk
= wsk

+ ρsk

Esk
Initial remaining energy of node nsk

Tmin Network lifetime, defined as the operational time of the

cluster until the first node runs out of power

R Radio channel capacity

where Di is the direct children set of node ni, and dk is the index number in

[1, N ].

For example, in Figure 1, for all nodes at the initial state, B0 = 20, B1 = 7

, B2 = 4, B3 = 5, and B4 = 6. After the first iteration, B1 = min{E1/c1, B2 +

B3} = 7 and B0 = min{E0/c0, B1 + B4} = 13. Thus, the Bit Capacity of the

cluster head is 13.

4. Multi-Frequency with Full-Duplex

We first consider a node with multi-frequency channel and full duplex (or

multi-transceiver), in which a node can transmit and receive data simultane-

ously.
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4.1. Problem Definition

Energy consumption constraints: For each sensor node ni in V , the energy

consumption for transmitting or receiving within the network lifetime (Tmin)

must not exceed its initial remaining energy. This means,

∀i ∈ [1, N ], Tmin · ci ·
∑

sk∈Si

gsk
≤ Ei. (6)

where
∑

sk∈Si
gsk

represents the data rate accumulated by all leaf nodes rooted

at ni. For the sink node/cluster head, which is the root node of the aggregation

tree, the constraint is:

Tmin · c0 ·R ≤ E0. (7)

Capacity constraints: To obtain the best performance, the accumulated rates

from all leaf nodes must not exceed the channel capacity, no matter whether

the nodes include the sink node or relay nodes. Thus, we have:

∀sk,
∑

sk∈S0

gsk
= R. (8)

Furthermore, all the rate flows must be nonnegative, and the union of all

children sets consists of the children set of the sink node/cluster head. That is:

∀i ∈ [1, N ], S0 = S1

⋃
S2...

⋃
SN , &, gi > 0. (9)

Problem Formulation: The fairness among data rates of all source nodes is

defined as the product of all source rates. When we maximize the product, it is

equivalent to maximizing the geometric mean so that we can achieve fairness.

Thus, we formulate the rate allocation problem with the objective of maximizing

both the minimum (Max-Min) network lifetime Tmin and the product of source

rates (fairness) as follows:

P1 : maximize : Tmin

∏
sk∈S0

gsk

subject to : Inequalities 6, 7, 8, 9

(10)

This is a non-linear multi-criteria programming problem. We solve the prob-

lem via a lexicographic method [18]. By this method, we first maximize one
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objective, Tmin, and obtain the solution space of rate vectors g for all source

nodes. Within this solution space, we then derive a rate vector g to maxi-

mize
∏

sk∈S0
gsk

, and thereby seek to ensure fairness under the given Max-Min

network lifetime (denoted as Tmm).

There are two reasons to select Tmin as the dominant objective. First, the

Max-Min network lifetime is strongly correlated to energy consumption, which

is one of the most performance-critical aspect of sensor networks. Secondly, if we

maximize
∏

sk∈S0
gk first, the only optimal solution will be determined due to

the convex feature of the objective function, which will make the lexicographic

method ineffective.

4.2. Max-Min Lifetime

Theorem 1. Suppose the Bit Capacity of the root node (n0) is B0. Then the

Max-Min network lifetime Tmm is:

Tmm =
B0

R
(11)

Proof. The proof is by induction. Suppose an aggregation tree has H layers.

Base case: When H = 1, Equation 20 is obviously true.

Inductive Hypothesis: Assume that Equation 20 holds when the aggre-

gation tree has m(> 1) layers. We now show that Equation 20 also holds when

the tree has m + 1 layers.

Inductive Step: For H = m+1, let the children set of root node n0 is D0.

Then, for each node dk ∈ D0, the subtree rooted at ndk
has at most m layers,

and its Max-Min lifetime is given by Tmin = Bdk

Rdk

, where Rdk
is the outgoing

data rate from node ndk
.

Thus, ∀dk ∈ D0, Tmin ·Rdk
≤ Bdk

. Therefore, we have Tmin ≤
∑

dk∈D0
Bdk∑

dk∈D0
Rdk

=
∑

dk∈D0
Bdk

R . Also, for the root node n0, its energy constraint is given by

Equation 6, or expressed as Tmin · R ≤ E0
c0

. Therefore, we can show that

max{Tmin} = 1
R ·min{E0

c0
,
∑

dk∈D0
Bdk

}, or Tmm = B0
R .

It is shown in Theorem 1 that the maximum lifetime only depends on the Bit

Capacity of the root node and the channel capacity.
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4.3. Fairness of Rate Allocation

Once we have obtained the Max-Min network lifetime for the aggregation

tree, the remaining objective is to maximize the product (or geometric mean)

of all the rates. This problem can be formulated as:

P : maximize :
∏

sk∈S0
gsk

subject to : ∀sk ∈ S0, Tmm · ∑
sk∈Si

gsk
≤ Bi

Tmm · ∑
sk∈S0

gsk
≤ B0

∀sk ∈ [1, N ], gsk
> 0

(12)

We can express the constraints as A · g ≤ C, where A is a matrix with

(K + 1)× |S0| dimensions and C is a vector with K + 1 items. This is a typical

convex optimization problem with linear constraints, and it can be solved by

optimization methods such as Dual Decomposition [30].

However, by analyzing the problem’s constraint structure, we adopt a low-

complexity solution. Our approach is to iteratively reduce the number of con-

straints under the convex objective function. To understand how to address the

optimization problem, we first consider the simple case in which the tree has

only 2 layers.

Proposition 1. Suppose the aggregation tree has only two layers, and its K

children are sorted as B1 ≤ B2 ≤ ... ≤ BK . Under the maximized cluster

lifetime Tmm, the optimal rate allocation for all leaf nodes is given by:

gj =





1
Tmm

·min{Bj ,
B0
K }, j = 1

1
Tmm

·min{Bj ,
B0−Tmm·

∑j−1
k=1 gk

K−j+1 }, 1 < j ≤ K

(13)

By Lagrange relaxation theory, it is not difficult to prove Proposition 1. In

most cases, an aggregation tree has more than two layers. Our objective is to

reduce the constraints in Equation 12 equivalently to a constraint structure for

a two-layer tree.

Proposition 2. Equation 12 can be equivalently reduced to the following prob-

lem which has the same constraint structure as that in a two-layered aggregation
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tree:
maximize :

∏
sk∈S0

gsk

subject to : ∀sk ∈ S0, Tmm · gsk
≤ B

′
sk

Tmm ·∑sk∈S0
gsk

≤ B0

∀sk ∈ [1, N ], gsk
> 0

(14)

where B
′
sk

is the Bit Capacity value of node nsk
after constraint reduction.

Proof. The proof is by induction. Suppose the aggregation tree has H layers.

Base case: H = 2. We can directly apply Proposition 1 without constraint

reduction.

Inductive hypothesis: Suppose that when H = m, the proposition holds.

Inductive Step: We need to show that when H = m + 1, the proposition

holds. Suppose the root node has a children set D0. For each node dk ∈ D0, if

ndk
is a relay node, suppose the set of leaf nodes rooted at ndk

is Sdk
. For the

subtree rooted at ndk
(with K

′
leaf nodes), since its layer is less than m, based

on the inductive hypothesis, the convex optimization problem can be reduced

to the following problem:

P
′′

: maximize
∏

sk∈Sdk
gsk

subjectto
∑

sk∈Sdk
gsk

≤ 1
Tm

·Bdk

∀sk ∈ Sdk
, gsk

≤ 1
Tm

·B′′
sk

(15)

where B
′′
sk

is Bit Capacity value of node nsk
after constraint reduction. Based

on Proposition 1, ∀j ∈ [1,K
′
], the optimal value of gj to maximize the fairness

in the subtree is:

gj =





1
Tm

·min{B′′
j ,

Bdk

K′ }, j = 1

1
Tm

·min{B′′
j ,

Bdk
−Tm·

∑j−1
k=1 gk

K′−j+1
}, 1 < j ≤ K

′
(16)

Let B
′
sk

= gj ∗Tm. Since ∀sk ∈ Sd0 , gsk
≤ gj , we have ∀sk ∈ Sdk

, gsk
≤ 1

Tm
·B′

sk
.

The other constraint for the root node is:
∑

sk∈S0

gsk
≤ 1

Tmm
· B0. Thus, the

proposition holds.

Once the constraints are equivalently reduced to that in Equation 14, the

final rate allocation vector is derived based on Proposition 1.
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We denote B
′
sk

for node nsk
in each iteration as GB

′
(sk), which is called the

Geometry Bit Capacity. We also denote GB(sk) as the Geometry Bit Ca-

pacity in the final iteration, which represents the optimal transmitted/received

bits for node nsk
in each intermediate iteration, to obtain the global fairness.

Then we have,

Proposition 3. By lexicographic method, to achieve fairness, the rate alloca-

tion strategy for all leaf nodes gsk
∈ S0 is as follows:

gj =
GB(sk)
Tmm

(17)

Proof. Suppose the aggregation tree has K leaf descendants. Also, suppose

that there are p iterations. In the (p−1)th iteration, the sorted set of Geometry

Bit Capacities for all leaf descendants is {GB(p−1)(j)}, where GB(p−1)(1)

< · · · < GB(p−1)(K).

In the final iteration, GB(sk) is expressed as:

GB(j) =





min{GB(n−1)(j), B0
K }, j = 1

min{GB(n−1)(j), B0−
∑j−1

k=1 GB(k)

K−j+1 }, 1 < j ≤ K

The constraint structure in the final constraint is the same as that in a two-layer

aggregation tree. Based on Proposition 2, this Proposition holds.

We now give an intuitive explanation via the following example. In Figure 2,

initially, B2 = 4 and B3 = 5. After one iteration, we reduce the layer of

the original tree by 1. The leaf node (node 2 and node 3) will get a new

Bit Capacity B
′
2 = 1

2 · 7 = 3.5, B
′
3 = 3.5 (based on Proposition 1) and node

4 will keep its current Bit Capacity. After reduction, the new tree has two

layers and we can apply Proposition 1 to get the final rates for all leaf nodes

as: r2 = 1
Tm

· min{3.5, 13
3 } = 3.5

Tm
, r3 = 1

Tm
· min{3.5, 13−3.5

2 } = 3.5
Tm

, and

r3 = 1
Tm

·min{6, 13−7
1 } = 6

Tm
. Tm is calculated as that in Equation 20.

Based on Propositions 1 and 2, we present algorithms to compute the max-

imum lifetime and the fair rate allocation. The algorithms contain both the

distributed part and the centralized part. The intermediate roots of different
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B2 = 42

4

3

0

1
B1=7

B3 = 5

B4 = 6

B0=13

B2 = 3.5

2 4
3

0

B3 =3.5 B4 = 6

B0=13

after reduction

Figure 2: Network Topology

subtrees will distributively calculate the Bit Capacity and the Fair Bit Bound

for their leaf children. But the final maximum lifetime and optimal rate vector

is calculated by the Cluster Head, in a centralized way.

Algorithm 1 shows the operation for all source nodes.

Algorithm 1: Operations in Leaf Node (Source Node) ni:
Initialization:1:

Ei = getInitialEnergy(ni);2:

ci = getPowDispPara(ni);3:

Bi = GB(i) = Ei
ci

;4:

Report {Bi, {GB(i)}} to its parent node;5:

On receiving allocated rate vector g = {gsk}6:

If sk = i, set gi = gsk .7:

The operations for the relay nodes and the root node (cluster head) are

described in Algorithm 2 and Algorithm 3, respectively. Relay nodes and the

root node need to first calculate the Bit Capacity for the leaf children (line 4 of

both algorithms). Di and D0 (in line 3 of both algorithms) is the children set of

ni. Sdk
is the source node in the subtree rooted at ndk

. Relay nodes must also

update the Geometry Bit Capacity for all leaf children. This is shown from

line 5 to line 10 of Algorithm 2. After obtaining the result of the computation,

they report the result to their parent nodes for further iterations. A relay node

also informs its children about the allocated rate vector from its parents.

The root node calculates the optimal rate vector after receiving information

from all the leaf nodes (i.e., source nodes). The node then multicasts the fair

rate allocation to all the leaf nodes (line 13 of Algorithm 3).
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Algorithm 2: Operations in Relay Node ni for full-duplex scenario:
Initialization:1:

Ei = getInitialEnergy(ni);2:

ci = getPowDispPara(ni);3:

Bi = GB(i) = Ei
ci

;4:

On Receiving Reports
{
Bdk

, {GB(sj)|nsj ∈ Si}
}
:5:

Bi = min{Bi,
∑

sk∈Si
Bsk};6:

Sort the members in
{
GB(sj)|nsj ∈ Si

}
;7:

{GB(j)} = Sorted set in which GBj−1 ≤ GBj ;8:
sum = 0;9:

for k = 1 to |Si| do10:

GB(k) = min{GB(k), Bi−sum
|Si| };11:

sum = sum + GB(k);12:

Report
{
Bi, {GB(sj)|nsj ∈ Si}

}
to the parent node;13:

On receiving allocated rate vector g:14:

Multicast the information to all subtrees;15:

4.4. Analysis of Algorithms

Theorem 2. Algorithms 2 and 3 have the time complexity of O(NlogN), and

the message complexity of Θ(N), where N is the number of nodes in the aggre-

gation tree.

Proof. The most computationally intensive part is for sorting all elements in

{GB(sj)}. Since there are at most N elements in {GB(sj)}, the time com-

plexity of this part is at least O(nlogn). The other computationally significant

component is for computing the rate for each node over the sorted set {GB(sj)};
this time complexity is O(N) according to Proposition 3. Thus, the total time

complexity is O(NlogN).

As for the message complexity, each node should send a message to its parent

to update information. The least number of messages is equal to the number of

edges in the aggregation tree (i.e., N edges). Thus, the total message complexity

is Θ(N).

Suppose the average one-hop round trip delay is RTT . Now, the lower bound

of the delay overhead is N ·RTT for a leaf node receiving the allocated rate.
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Algorithm 3: Operations in Root Node (Cluster Head) n0 for full-duplex
scenario

Initialization:1:

E0 = getInitialEnergy(n0);2:

c0 = getPowDispPara(n0);3:

Bi = GB(0) = E0
c0

;4:

On Receiving Reports
{
Bdk

, {GB(sj)|nsj ∈ S0}
}
:5:

B0 = min{B0,
∑

sk∈S Bsk};6:

Tmm = B0
R

;7:

Sort the members in
{{GB(sj)|nsj ∈ S0

}
;8:

{GB(j)} = Sorted set in which GBj−1 ≤ GBj ;9:
sum = 0;10:

for k = 1 to |S0| do11:

gk = 1
Tmm

·min{GB(k), B0−sum
|S0|−k+1

};12:

sum = sum + GB(k);13:

g = {gsk |sk ∈ S0};14:

Multicast g to its children;15:

5. Multi-Frequency with Half-Duplex

Now we consider the scenario where each sensor node has multi-frequency

channel with half-duplex transmission mode (i.e., single transceiver). The half-

duplex mode is more practical for most radios in wireless sensor networks (i.e.,

IEEE 802.15.4).

5.1. Problem Definition

For the half-duplex transmitting mode, a node usually cannot transmit and

receive data simultaneously. Thus, the incoming rates cannot exceed R/2 for a

relay node.

∀sk,
∑

sk∈Si

gsk
≤ R

2
, ni is a relay node. (18)

Except for this constraint, the energy consumption constraints and the ca-

pacity constraint for the root node are exactly the same as the inequalities given

in Equations 6, 7, 8, and 9 in Section 4.1. Thus, the problem can be formulated

as:
P2 : maximize : Tmin

∏
sk∈S0

gsk

subject to : Inequalities 6, 7, 8, 9 and 18

(19)
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The difference between the problem P2 and P1 is that P2 has an addi-

tional constraint (i.e., the inequality of Equation 18), which is caused by the

half-duplex transmission mode. Similar to the first scenario, we can solve the

problem by a lexicographic method [18], which is a typical approach for solving

multi-criteria programming problems. By this method, we first maximize the

minimum network lifetime Tmin, and then derive a rate vector g to maximize
∏

sk∈S0
gsk

under the given Max-Min lifetime. The rationale for adopting such

a lexicographic solution is similar to that given in Section 4.1.

5.2. Max-Min Lifetime

Suppose that the sink node (n0) has l direct children, each denoted as

n0,i(1 ≤ i ≤ l).

Theorem 3. Suppose the Bit Capacity of the root node n0 is B0 and the Bit

Capacity of each child n0,i of n0 is B0,i. Among all Bit Capacities of the direct

children which are relay nodes, let Bm denote the maximum Bit Capacity. Then

the maximum minimum (Max-Min) network lifetime Tmm is given by:

Tmm =
B0

min{R, R
2

Σ1≤i≤lB0,i

Bm
}

(20)

Proof. The rates for all children n0,i(1 ≤ i ≤ l) of the sink node should satisfy:

Tmin · g0,i ≤ B0,i. Adding them up, we have,

Tmin ·
∑

1≤i≤l

g0,i ≤
∑

1≤i≤l

B0,i (21)

For the relay node with Bm, due to half-duplex, gm = R/2. Thus Tmin ·R/2 ≤
Bm or

Tmin ≤ Bm

R/2
(22)

Combining the Inequality 21 with the Inequality 22, we get
∑

1≤i≤l

g0,i ≤ R
2

∑
1≤i≤l B0,i

Bm
.

Also, the sum of the rates from all children of the sink node should not exceed the

radio capacity, which means
∑

1≤i≤l

g0,i ≤ R. Thus,
∑

1≤i≤l

g0,i ≤ min{R, R
2

∑
1≤i≤l B0,i

Bm
}.

For the sink node, Tmin·
∑

1≤i≤l

g0,i ≤ B0. Thus, the Max-Min network lifetime

is Tmm = B0

min{R, R
2

Σ1≤i≤lB0,i
Bm

}
.
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When the sink node do not have children acting as relay nodes, the Max-Min

lifetime can be expressed as that in Theorem 1. This is because, the constraint

of the inequality in Equation 18 only exists for the relay node and the problem

is similar to that in Section 4.1 for this case.

An illustration can be made based on Figure 1. When we consider the half-

duplex communication, the Max-Min network lifetime in the aggregation tree

will become Tm = 13
min{R, 13

7
R
2 }

= 13
13
14 R

= 14
R .

5.3. Fairness of Rate Allocation

We define one-hop-subtree as a tree which is rooted at a child of the sink

node. Suppose that the sink node (n0) has l direct children, each denoted as

n0,i(1 ≤ i ≤ l). Let the sum of the Geometry Bit Capacity of all the leaf nodes

in a one-hop-subtree be denoted as
∑

sk∈Sn0,i
GB(sk). We have:

Theorem 4. To achieve fairness by the lexicographic method, the rate alloca-

tion strategy for all children n0,i(1 ≤ i ≤ l) of the sink node is as follows:

gj = min{R

2
,

∑
sk∈Sn0,i

GB(sk)

Tmm
} (23)

Proof. For the one-hop-subtree which is rooted at n0,i, the allocated rates

for n0,i can be expressed as
∑

sk∈Sn0,i
GB(sk)

Tmm
(based on Proposition 3). Also,

considering the constraint of half-duplex mode, the allocated rates for a re-

lay node should be less than R/2. Thus, the rate allocated to node n0,i is

min{R/2,

∑
sk∈Sn0,i

GB(sk)

Tmm
}.

Since there is only one one-hop-subtree with sum of data rates larger than

R/2, it is only necessary to check the one-hop-subtree with the largest sum of

Geometry Bit Capacity. If the root of that one-hop-subtree is a relay node (n0,i)

and the sum of its Geometry Bit Capacity satisfies
∑

sk∈Sn0,i
GB(sk) > B0

2 , then

its aggregate rate should be R/2. Otherwise, the rate allocation strategy should

follow that in Section 4.3.

Regarding the algorithms for computing Max-Min lifetime and fair rate al-

location, the operation for leaf nodes is the same as that in Section 4.3. But for
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relay nodes and the sink node, due to half-duplex, the operations are different,

as described in Algorithm 4 and Algorithm 5, respectively.

The relay nodes and the root node follow the similar procedure to obtain

the Bit Capacity and Geometry Bit Capacity as that in Section 4.3, which is

shown from line 5 to line 10 of Algorithm 2.

After obtaining the result of the computation, they report the result to their

parent nodes for further iteration. A relay node also relays the multicast rate

vector from its parents to its children. The root node calculates the optimal

rate vector after obtaining information from all the leaf nodes (i.e., the source

nodes), and then multicasts the fair rate allocation to all leaf nodes (line 13 of

Algorithm 3).

Algorithm 4: Operations in Relay Node ni for half-duplex case:
Initialization:1:

Ei = getInitialEnergy(ni);2:

ci = getPowDispPara(ni);3:

Bi = GB(i) = Ei
ci

;4:

On Receiving Reports
{
Bdk

, {GB(sj)|nsj ∈ Si}
}
:5:

Bi = min{Bi,
∑

sk∈Si
Bsk};6:

Sort the members in
{
GB(sj)|nsj ∈ Si

}
;7:

{GB(j)} = Sorted set in which GBj−1 ≤ GBj ;8:
sum = 0;9:

for k = 1 to |Si| do10:

GB(k) = min{GB(k), Bi−sum
|Si|−k+1

};11:

sum = sum + GB(k);12:

Report {Bi, {GB(sk)}} to its parent;13:

On receiving allocated rate vector g:14:

Select the value of gi from g;15:

if ni is the root of a one-hop-subtree and ni is a relay node then16:
sum = 0;17:

for k = 1 to |Si| do18:

gk = min{GB(k)/Tmm, gi−sum
|Si|−k+1

};19:

sum = sum + g(k);20:

Multicast g to all children;21:

Theorem 5. Complexity: Algorithms 4 and 5 have the time complexity of

O(NlogN), and the message complexity of Θ(N).

We skip the proof of this theorem since it is similar to the proof of Theorem 2.
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Algorithm 5: Operations in the Root Node (Cluster Head) n0 for half-
duplex mode:

Initialization:1:

Set value for Ei, ci and B0;2:

On Receiving Reports
{
Bdk

, {GB(sj)|nsj ∈ S0}
}
:3:

B0 = min{B0,
∑

sk∈S Bsk};4:

Bm = Maximum Bit Capacity of children which are also relay nodes;5:

Tmm = B0

min{R, R
2

ΣB0,k
Bm

}
;

6:

Sort the elements in
{{GB(sj)|sj ∈ Sdk

}|dk ∈ Di

}
;7:

{GB(j)} = Sorted set in which GBj−1 ≤ GBj ;8:
sum = 0;9:

for k = 1 to |S0| do10:

GBk = min{GB(k), B0−sum
|S0|−k+1

};11:

sum = sum + GB(k);12:

for i = 1 to l do13: ∑
sk∈Sn0,i

GB(sk) = Sum of Geometry Bit Capacity of all leaf descendants of
14:

n0,i;

gi = min{R/2,
GB(n0,i)

Tmm
};15:

Multicast g to all children;16:

6. Discussion

For real implementation, the proposed algorithms should work over routing

protocols which are based on the tree-topology. The algorithms do not decide

the routing path, but calculate the optimal rates along the pre-built paths. We

do not consider packet lost which is due to unreliable link conditions or interfer-

ence. However, such challenge can be addressed by reliable data transmission

mechanisms [27, 28] in MAC layer. Our algorithms do not discuss any specific

reliable transmission mechanism and assume the rate vector will be received at

the root node.

The proposed algorithms belong to proactive mechanism which means we

decide the optimal data rates before traffic happens. This is different from

traffic-aware rate control if we consider to shut down some flows and to admit

others. Although the latter problem is interesting and complicated, it belongs

to reactive mechanism which has also been studied in the literature.

We neglect the feed-back message in our problem modeling and algorithm

derivations. The potential applications of our work is multimedia applications

over WSNs, like image reconstruction, the feedback data (i.e. , acknowledge-
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ment message) rate is relatively small comparing to the image/audio/video data

from sensor nodes to the sink node, and we just simply omit this part in our

problem formulation. If we consider the feedback data (i.e. , ACK message), the

formulation will be largely different from the current modeling and algorithms

derivation. And we believe it deserves more efforts for a new research work.

Our works are based on the scenario of single sink node. However, it can

be easily extended to the scenarios of hierarchically clustered topologies and

multiple sink node, where the local cluster head or individual sink node calculate

the optimal rates with their own clusters respectively.

7. Experimental Results

We evaluated the effectiveness of our algorithms through simulation-based

experiments.

7.1. Experimental Settings

The settings of our experimental studies were as follows. We first generated

an aggregation tree with a topology as illustrated in Figure 3. All nodes were

distributed over a field of size 200mX200m. The remaining energy of each node

and the distance between two adjacent nodes were randomly generated.

1

2

3

4
5

9 1310 12 12

6 7
8

Figure 3: Experimental Topology

In our experiments, the distance between one node and its next hop node

was randomly generated between [15, 30](m). We also set α = 50nJ/b, β =

0.0013pJ/b/m4, and m = 4 for the power consumption model. The initial energy

reserve of each sensor node was defined using a normal distribution with mean
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and variance of (25J, 16J2). The shared channel capacity (IEEE 802.15.4) was

set to 128Kb/s. This experimental configuration is consistent with that in [8].

7.2. Solution Space

To illustrate our solution strategy for the multi-objective programming prob-

lem, we show the entire solution space for the Full-Duplex mode in Figure 4.

Each data point in the figure corresponds to one rate vector (for all source

nodes). The value of network lifetime and the product of all source data rates

were calculated for each vector.

We randomly generated 500 rate vectors for all nodes in Figure 3 and plot

the Max-Min network lifetime T and
∏

sk∈S0
gsk

for all vectors. The distribution

of the values of the two objectives are shown in Figure 4.
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Figure 4: Solution Space for All Rate Vectors

Since the space of the entire solutions is a trade-off between Max-Min net-

work lifetime and fairness, it is not always that a data point with Max-Min

network lifetime also has the best fairness. Also, a data point with the highest

value for fairness may not have the Max-Min lifetime. Thus, our goal is to

find the vector point (marked by red color) in the most upper-right corner of

Figure 4. This most upper-right point represents the rate vector with Max-Min

network lifetime and maximized fairness under the given Max-Min lifetime.
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7.3. Multiple Frequencies with Full-Duplex Mode

We show our rate allocation strategy in Figure 5 for the set of experiments

that were conducted for this case. The rates were calculated based on the

distributed algorithm in Section 4.3. By comparing with the Average Rate

Allocation strategy in which all source nodes have same data rates, we observe

that the rates in our strategy vary from node to node, since each node has a

different Bit Capacity.
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Figure 5: Data Rates for All Source Nodes
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Figure 6: Individual Lifetimes for All Source Nodes

Figure 6 shows the individual lifetime for all sensor nodes. Recall that the

network lifetime is defined as the smallest lifetime among all the nodes. From

the figure, we observe that our rate allocation strategy achieves longer network

lifetime than the average rate allocation strategy.
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Figure 7 shows the lifetime of the same cluster when we change the node

configuration with different remaining energy and transmission distance. The

remaining energy and transmission distance of each node in different experi-

ments has a normal distribution. We repeated the experiment 60 times, and

obtained the maximum network lifetime in each experiment, both for our rate

allocation strategy and the average rate allocation strategy.

From the figure, we observe that the maximum lifetime also has a normal

distribution. In addition, our rate allocation strategy always achieves better

performance than the average rate allocation strategy.
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Figure 7: Network Lifetime in Different Experiments

7.4. Multiple Frequencies with Half-Duplex Mode

For the scenario of a node adopting multiple frequencies with half-duplex

transmission mode (i.e., single transceiver), we simulated the Max-Min lifetime

and fair rate allocation strategy over the same network topology as shown in

Figure 3.

We show our rate allocation strategy in Figure 8. The rates were calcu-

lated based on the distributed algorithms in Section 5.3. We also compared

the performance with that of the average rate allocation strategy. Due to the

constraint of half-duplex transmission mode, the rate allocation for the aver-

age rate allocation strategy is different from that in the scenario of Full-Duplex

transmission mode. In Figure 8, nodes 9 13 should have rates of R/10, and
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nodes 6 8 should have rates of R/6, so that the aggregated rates in every relay

node do not exceed R/2.

We observe that the rates of our strategy vary from node to node and that

the biggest individual rate is less than that of Figure 5, due to the constraint of

Half-Duplex mode.
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Figure 8: Data Rates for All Source Nodes
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Figure 9: Individual Lifetimes for All Source Nodes

Figure 9 shows the individual lifetime for all sensor nodes. Recall that the

network lifetime is defined as the smallest lifetime among all sensor nodes. From

the figure, we observe that our rate allocation strategy achieves longer network

lifetime than the average rate allocation strategy in Half-Duplex mode. Also,

most of the nodes in Figure 9 achieved longer individual lifetimes when compared

with that of Figure 6. This is because, in Half-Duplex mode, the source rate
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was slightly lower than that in Full-Duplex mode.

We also measured the lifetime of the same cluster under different configura-

tions, as shown in Figure 10. We change the node configuration with different re-

maining energy and transmission distance with 60 times. The remaining energy

and transmission distance of each node in different experiments has a normal

distribution. The comparison was made between our rate allocation strategy

and the average rate allocation strategy. From the Figure 10, we observe that

the maximum lifetime also has a normal distribution and the proposed rate

allocation strategy outperforms average rate allocation strategy.
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Figure 10: Comparison on Network Lifetime in Different Experiments

8. Conclusions

In this paper, we studied how to maximize the minimum (Max-Min) network

lifetime and to achieve fairness with rate allocation for data aggregation appli-

cations in wireless sensor networks. Since the two objectives are generally corre-

lated with each other and they usually cannot be maximized simultaneously, we

adopt a lexicographic method to solve this multi-objective programming prob-

lem. Our method first determines the solution space of lifetime maximization,

and then derives the optimal rate allocation strategy for ensuring fairness un-

der that solution space. Two scenarios were considered: multi-frequency with

full-duplex and multi-frequency with half-duplex. We also presented distributed
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algorithms to compute the maximum lifetime and the optimal rate vector for

ensuring fairness for the two cases. The simulation results illustrated the effec-

tiveness of the approach.

Several directions exist for further study, including rate allocation with

multi-target tracking and multi-path routing for lifetime maximization and en-

suring fairness.
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