
On Extending TM Primitives using Low Level Semantics

Mohamed M. Saad, Roberto Palmieri, Ahmed Hassan, and Binoy Ravindran
{msaad, robertop, hassan84, binoy}@vt.edu

ECE Dept., Virginia Tech, Blacksburg, VA 24061, US

Abstract
Transactional memory has recently emerged as an optimistic con-
currency control technique that isolates concurrent executions at
the level of reads and writes, and therefore provides an easy pro-
gramming interface. However, such an isolation could be conser-
vative from the application level perspective. In this work, we pro-
pose an extension to the classical TM primitives (read and write) to
infer more semantics from the program code while maintaining the
same level of abstraction at the programmers side. Practically, our
proposed extension can be implemented either as a complete com-
piler pass, which maximizes programmability and allows backward
compatibility, or as an extension to TM APIs to be exploited by
expert programmers. We deployed this extension on two state-of-
the-art STM algorithms and showed a speedup up to 4⇥ better on
different applications.

Categories and Subject Descriptors D.1.3 [Software]: Concur-
rent Programming; H.2.4 [Systems]: Transaction processing

Keywords Transactional Memory, Low Level Semantics

1. Introduction
Transactional Memory (TM) is a programming abstraction for ac-
cessing shared memory data without exposing any lock interface to
the application so that implementation difficulties and drawbacks
like deadlock, livelock, or priority inversion are prevented. With
TM, programmers organize blocks of code that access shared mem-
ory addresses as atomic sections (or transactions), in which reads
and writes appear to take effect instantaneously. As a common pat-
tern, each transaction maintains its own read-set and write-set to
detect conflicts with other concurrent transactions. When that hap-
pens, a contention manager [31] resolves the conflict by aborting
all but one of the transactions and allowing the remaining one to
proceed to commit, yielding (the illusion of) atomicity. TM was
originally proposed in hardware (called HTM [19]), later in soft-
ware (called STM [32]), and subsequently in a hardware/software
combination (called HybridTM [20]).

In order for a TM implementation to be generic, conflicts are
usually detected at the level of memory addresses. The TM abstrac-
tion can be expressed using four instructions: TM BEGIN, TM END,
TM READ, and TM WRITE. The first two identify the transaction

[Copyright notice will appear here once ’preprint’ option is removed.]

boundaries while the last two define the barriers for every mem-
ory read and write that occurs within those boundaries. TM algo-
rithms differ in the way those instructions are implemented. Al-
though some frameworks may add other features (such as allowing
external aborts, non-transactional reads and writes, or irrevocable
operations), the above four instructions are used to form the body
of most TM solutions.

Despite TM’s high programmability and generality, its perfor-
mance is still not as good as (or better than) optimized manual im-
plementations of synchronization. To overcome that, researchers
investigated various approaches with different design choices. Re-
garding STM, they mostly varied the internal granularity of lock-
ing and/or validation of accessed memory addresses. Examples of
those solutions include coarse-grained mutual exclusion of com-
mit phases, as used in NOrec [8]; compact bloom filters [4] to
track accesses, as used in RingSTM [33]; and fine-grained own-
ership records, as used in TL2 [11]. For HTM, given that current
HTM processors are classified as “best effort” because transactions
are not guaranteed to progress in HTM (even if they are executed
alone without any actual concurrency), an efficient software “fall-
back” path is needed (i.e., hybrid TM) when hardware transactions
repeatedly fail [12]. Recent literature proposes many compelling
solutions that make the fallback path fast under different condi-
tions [6, 7, 12, 23, 28].

The key commonality of all the aforementioned approaches is
that they do not challenge the main objective of TM itself, which is
providing generality at the application level. This is also the reason
why those smart and advanced solutions still retain some of the
fundamental inefficiency of TM. On the other hand, providing high
performance in multi-threaded applications before the advent of
TM (i.e., when thread synchronization was manually done using
fine-grained locks and/or lock-free designs) closely depended upon
the specific application semantics. For example, identifying the
critical sections and the best number of locks to use are design
choices that can be made only after deeply knowing the semantics
of the application itself (i.e., what the application does).

A related question that arises in this regard is: Is there some
room for including semantics in TM frameworks without sacrific-
ing their generality? If the answer is “yes”, which is what we claim
and assess in this paper, then we will finally be able to overcome
one of the main obstacles that has existed alongside TM since its
early stages and accordingly boost its performance. Recent liter-
ature provides a few semantic-based concurrency controls, which
will be detailed in Section 2. However, they either solve specific
application patterns [30], break the generality of TM [13, 18], or
are orthogonal and not integrable with TM [16, 17].

Motivated by the above question, we propose TM extensions
that include semantics into existing and well-known TM frame-
works while preserving the same generality as the original TM pro-
posal. To accomplish this goal, we first aim at identifying which
semantics can be included without impacting the generality of the
TM abstraction (we name these semantics as TM-friendly); then we

show how to modify TM algorithms to allow such semantic-based
operations.

By TM-friendly semantics, we mean semantic optimizations
that can be potentially decoupled from the application layer. Specif-
ically, this paper focuses on optimizations on conditional oper-
ators (e.g., >, <, 6=), bitwise operators (e.g., &, |), and incre-
ments/decrements (e.g., ++, ��), which are commonly used in
legacy applications. In practice, those semantics can be integrated
into TM frameworks in two different ways, both of them having a
minimal effect on TM programmability. The first way is to imple-
ment them entirely as compiler passes, thus providing backwards-
compatibility with existing applications. Alternatively, they can be
implemented as new TM interfaces that are translated by the TM
framework (or the compiler), which gives conscious programmers
an opportunity to better exploit the new interfaces while developing
concurrent applications. For the purpose of this paper, we imple-
mented them as TM interfaces, and we leave full integration with
compilers as a future work. More details about those semantics are
presented in Section 3.

To develop TM-friendly semantics into existing state-of-the-
art STM (and HTM algorithms), we start by classifying them ac-
cording to the technique used for validating execution. STM al-
gorithms can be roughly classified as either version-based, where
each memory location keeps a version number that is used to iden-
tify memory changes, or value-based, where the content of each
location is itself leveraged to detect memory modifications. For
value-based algorithms, we propose semantic-validation as a gen-
eralization of value-based validation, allowing TM frameworks to
define a specific validator for the semantic-based instructions. For
version-based approaches, we propose a methodology for adapting
them to allow a hybrid (i.e., version/semantic) validation mecha-
nism. In practice, in Section 4.1, we show how to modify NOrec
(as an example of the former) and TL2 (as an example of the latter)
to include semantics.

Modifying HTM-based algorithms is harder because compilers
do not have full control over transaction execution given that it
happens entirely in hardware and current hardware gives very lim-
ited control over HTM transactions [5, 27]. To circumvent that, we
propose (in Section 4.2) the design of two orthogonal approaches
that enable semantics; namely, injecting semantics into the software
fallback path and modifying the order of instructions in TM blocks
at compilation time to allow semantic enhancements. The details of
these approaches are left as future work.

We implemented our semantic-enabled TM algorithms and in-
tegrated them into RSTM [21] framework. Integration with com-
pilers (e.g., GCC, LLVM) is kept as future work. In Section 5,
we evaluated those algorithms on the following applications: Bank,
a benchmark that simulates a multithreaded application where the
threads mostly perform money transfers; LRU-Cache, a benchmark
that simulates a software cache with a least-recently-used replace-
ment policy; a hash-table benchmark; and the STAMP [25] bench-
mark suite. Results are very promising: enabling semantics for both
NOrec and TL2 lead to a throughput improvement of up to 4⇥.

2. Related Work
Not surprisingly, the trials to include semantics in TM started in
literature as early as TM itself. In fact, the potential objective
of the first TM proposal, as it can be easily inferred from the
title of the first TM paper [19], was providing an architectural
support for lock-free data structures. However, since the first and
all the subsequent approaches were general because they aimed at
improving programmability, their performance could not compete
with handcrafted (i.e., very optimized) fine-grained and lock-free
designs.

In the last decade, before the advent of commodity HTM pro-
cessors, STM dominated the literature, and involving semantics to
improve performance was an important topic, which has been ad-
dressed by approaches such as open nested transactions [26], elastic
transactions [13], and early release [18]. The main downside of all
those attempts is that they move the entire burden of providing opti-
mizations to the programmer, and propose a modified framework to
accept those programmer modifications. Since TM has been mainly
proposed to make concurrency control as much transparent as pos-
sible from the programmers standpoint, the practical adoption of
the above approaches remained limited. Flexibility deteriorated fur-
ther after the release of processors with HTM support because the
approaches proposed for STM could not work anymore given the
limited APIs and control provided by HTM. The innovations pre-
sented in this paper overcome those issues by providing solutions
that preserve the generality of TM, do not give up optimizations
and semantics, and cope with the current state-of-the-art of TM in
both software and hardware.

Another recent research direction focused on developing col-
lections of transactional blocks (essentially data structures) that
perform better than the corresponding “naive” TM-based coun-
terparts (i.e., when the sequential specification of a data structure
is made concurrent using TM). Methodologies like transactional
boosting [16, 17], consistency oblivious programming [1, 2], se-
mantic locking [14], and partitioned transactions [35] are examples
of that direction. Despite the promising results, those approaches
remain isolated from TM as a synchronization abstraction and ap-
pear as standalone components that are not integrable with generic
(and existing) TM frameworks.

Involving compilers in TM’s concurrency control is currently
becoming mandatory given the enhanced GCC release [34], which
includes TM support. However, to the best of our knowledge, very
few works addressed the issue of detecting TM-friendly seman-
tics at compilation time similar to what we propose in this paper.
Among them, one recent approach proposes a new read-modify-
write instruction to handle some programming patterns in TM [30].
However, those approaches still address specific execution patterns
and do not generalize the problem like what we attempt to do in
this paper, which rather pushes more in the direction of abstract-
ing the problem and providing a comprehensive solution to inject
semantics into existing TM frameworks.

3. TM-Friendly API
In this section we overview the proposed semantics that can be
injected into TM frameworks without hampering the generality of
TM itself. Then, in the following section, we show our proposed
design on how to inject such semantics in practice.

As sketched before, TM defines two language/library constructs
for reading (TM READ) and writing (TM WRITE) memory addresses.
These constructs enforce a conservative conflict detection between
concurrent transactions (recall that two transactions conflict if they
access the same address and one access is a write).

As an exemplifying example, Algorithm 1 illustrates a code
snippet that produces conflicting transactions. When T1 executes
its first line, existing TM algorithms save the value of x and y lo-
cally. Starting from this point, for the TM algorithm to preserve
consistency, any concurrent change in x and y forces T1 to abort.
This abort can be triggered during the validation of T1’s next read
(e.g., in NOrec), when T1 tries to commit (e.g., in TL2), or imme-
diately (e.g., in Intel HTM processors). In that specific example,
since T2 writes to x and y and commits before T1 reaches its com-
mit phase, most TM implementations force T1 to abort. However,
at the semantic level T1 has no real issue and can safely commit
since the boolean result of the conditional expression still holds,

2 2016/2/3

Algorithm 1 Two transaction conflicting at the memory level but
not at the semantic level.

Initially x = y = 5

TM BEGIN(T1)
if x > 0 k y > 0 then

// Do some reads and writes ...

end if
TM END

TM BEGIN(T2)
x++
y- -
TM END

which means that the conflict triggered by the TM framework is a
“false conflict” at the semantic level.

TM GT(address, value | address) tx greater than
TM GTE(address, value | address) tx greater than or equals
TM LT(address, value | address) tx less than
TM LTE(address, value | address) tx less than or equals
TM EQ(address, value | address) tx equals
TM NEQ(address, value | address) tx not equals
TM INC(address, {+/-}value) tx increment/decrement
TM AND(address, value | address) tx bitwise and
TM OR(address, value | address) tx bitwise or

Table 1: Extended TM Constructs.

Examples like the above motivated us to design extensions to
the traditional transactional constructs that enrich the TM program-
ming model. Those constructs are classified according to their se-
mantic level and are summarized in Table 1. The first category
includes conditional operators, which take two operands and re-
turn a boolean state of the conditional expression. The operands
in this category can be two addresses or an address and a value.
At the memory level, a traditional execution of those constructs
inside transactions implies calling one or two TM READ constructs
(depending on the operands). Alternatively, using our constructs,
we consider the whole expression as one semantic operation and
the safety of the enclosing transaction is preserved by only vali-
dating that the return value of the condition remains the same un-
til the transaction commits. The second category includes incre-
ment/decrement operations, which take an address and an offset. A
traditional handling of those operations, unlike the first category,
include both TM READ and TM WRITE. Consequently, as we show in
detail in Section 4, handling those operations semantically should
consider the write operation and its possible propagation to the
next operations in the transaction. The third category includes bit-
wise operations. Currently, we optimize only bitwise operations in-
side conditional expressions. For example, in the conditional state-
ment if(x & 1 == 0), instead of reading x transactionally using
TM READ, we read x non-transactionally, apply the bitwise opera-
tion, and check whether the condition is true or false. Accord-
ingly, this category is handled similarly to the first category in our
framework. As a future work, we plan to include bitwise operations
in assignment statements as well (e.g., x |= 1), which requires a
different handler that considers the writing part of the operation.

Summarizing, using our new constructs, a transaction is able to
capture application semantics more by treating comparison opera-
tors, bitwise operations, and increments (or decrements) differently.
Including those semantic operations in TM frameworks is appeal-
ing for two reasons. First, they are commonly used in applications,
as we show in later examples. Second, including them in TM frame-
works can be done entirely at compilation time, where the compiler
can detect and/or translate those “semantic operators”. As a result,

A D C ZY

H(x)

Xset
state fullfull full full full fulldel free

W

Figure 1: Probing a hash table with open addressing

programmers are not required to make significant changes to their
code, which does not affect generality of TM by any means.

An interesting feature of the semantic operations listed in Ta-
ble 1 is that they compose. For example, the scenario shown in
Algorithm 1 can be further enhanced if we consider the whole con-
ditional expression (i.e., TM READ(x) > 0 || TM READ(y) > 0)
as one semantic read operation in order to avoid further false con-
flicts. In this example, if the condition was initially true and then
a concurrent transaction modifies only one variable (i.e., either x
or y) to be negative in that expression, considering the clause as a
whole avoids aborting T1 given the OR operator. This enhancement
can also be entirely accomplished by the framework without any
need to modify the application.

3.1 TM-friendly semantics in action
Now we show examples from real benchmarks and applications
that can be enhanced by our semantic-based TM proposal. These
examples are clearly not exhaustive, but they are representative of
programming patterns that are used in concurrent programming.

Hashtable with Open Addressing. Operations in such a hash ta-
ble usually start by probing the table in order to find a matching
index for a given hash value. Figure 1 depicts an example of this
probing. This function can be enhanced by our approach because
it consists of a chain of conditional expressions that check specific
semantics and do not impose certain values of state or set (e.g., it
may only require the checked cells to be not free and either flagged
as removed or having a different value from the hashed one). On
the other hand, when using the classical read/write TM constructs,
many concurrent changes to the accessed cells (e.g., deleting ‘D’
and inserting ‘B’ instead) will abort the probing transaction. Con-
sidering semantics through our proposed extensions avoids such
aborts. Algorithm 2 depicts pseudocode of the probing method and
how we modify it.

Queues. Any efficient concurrent queue implementation should
let an enqueue operation execute concurrently with a dequeue
operation if the queue is not empty. However, this case is not al-
lowed using traditional TM constructs because the dequeue oper-
ation compares the head with the tail in order to detect the special
case of an empty queue. Algorithm 3 shows how we re-enable this
level of concurrency in an array-based queue using our constructs.

Algorithm 3 Using the semantic constructs to enhance dequeue
operation.

TM BEGIN
. Using our constructs: If (TM EQ(head, tail))

if TM READ(head) != TM READ(tail) then
return false;

end if
item = array[TM READ(head) % array size];

. Using our constructs: TM INC(head, 1);
TM WRITE(head, TM READ(head) + 1)
return true;
TM END

Vacation. This application is one of the STAMP [25] bench-
mark applications that simulates a travel reservation system. The
workload consists of clients’ reservations; each client uses a coarse-
grained transaction to execute its session. Vacation has two main
operation profiles: making a reservation and updating offers (e.g.,
price changes). Although the reservation profile checks the com-
mon attributes of the offer (e.g., the number of free slots and the

3 2016/2/3

Algorithm 2 Using the semantic constructs to enhance hash table probing.
TM BEGIN

. Using our constructs: while (TM EQ(state[index], DELETED) || (TM NEQ(state[index], EMPTY) && TM NEQ(set[index], value))
while TM READ(state[index]) == DELETED || (TM READ(state[index]) != EMPTY && TM READ(set[index]) != value) do

index = (index + probe)
end while

. Using our constructs: TM EQ(state[index], EMPTY) ? -1 : index;
return TM READ(state[index]) == EMPTY ? -1 : index;
TM END

range of price), most of those checks are semantic and do not seek
specific values. Using the classical (more conservative) TM model,
any update on offers will conflict with all concurrent reservations
because of those conditional statements. Using our proposed TM,
as depicted in Algorithm 4, the reservation will not abort as long
as the outcomes of the comparison conditions hold (e.g., number
of free slots > 0 and price > max price). The key idea is
that a reservation does not care about the exact value of price or
the amount of available resources, it just cares about if the price is
in the right range and resources are still available. Moreover, more
concurrency is possible given that other transactions that update the
same resources are allowed.

Algorithm 4 Using the semantic constructs to enhance reservations
in Vacation benchmark.

TM BEGIN
for n = 0; n < ids.length; n++ do

res = tablePtr.find(ids[n]);
. Using our constructs: TM GT(res.numFree, 0)

if TM READ(res.numFree) > 0 then
. Using our constructs: TM GT(res.price, max price)

if TM READ(res.price) > max price then
max price = TM READ(res.price);
max id = id;

end if
end if

end for
reservation = tablePtr.find(max id);

. Using our constructs: TM INC(res.numFree, -1)
TM WRITE(res.numFree, TM READ(res.numFree) - 1));
TM END

Kmeans. Kmeans is another STAMP application that imple-
ments a clustering algorithm iterating over a set of points and
grouping them into clusters. The main transactional overhead is
in updating the cluster centers, which can be enhanced using our
TM INC operation, as shown in Algorithm 5.

Algorithm 5 Using the semantic constructs to enhance Kmeans
benchmark.

TM BEGIN
. Using our constructs: TM INC(*new centers len[index], 1);

TM WRITE(*new centers len[index], TM READ(*new centers len[index]) + 1);
for j = 0; j < nfeatures; j++ do

. Using our constructs: TM INC(new centers[index][j], feature[i][j]));
TM WRITE(new centers[index][j], TM READ(new centers[index][j]) + fea-

ture[i][j]));
end for
TM END

4. Design
The challenges of injecting semantics into STM algorithms and
HTM algorithms are very different. Concurrency controls in STM
are entirely performed and integrated into the software framework
itself. That allows any sort of modification to transactional ex-
ecution, including embedding our proposal of defining new se-
mantic constructs and calling them instead of classical ones (i.e.,
TM READ and TM WRITE). On the other hand, the current HTM

releases [5, 27] leverage hardware for detecting conflicting execu-
tions and give very limited chances for optimization to the TM
framework. For instance, they leave no control for modifying the
granularity of the speculation in HTM transactions; in other words,
every memory access within the boundaries of an HTM transac-
tion is monitored by the hardware itself (exploiting an enhanced
cache coherency protocol). As a result, executing HTM transac-
tions means preventing any straightforward solution for replacing
the basic TM READ/TM WRITE constructs with semantic calls
(as can be done for STM).

In this section, we first show how to inject semantics into STM
algorithms and then we propose designs to still exploit HTM and
semantics.

4.1 Software Transactional Memory
The first step towards injecting semantics into STM algorithms is
to find an abstract way to define those semantics. The semantic
operations listed in Table 1 can be seen as implementations of an
abstract method

value operation(operator, operand1, operand2)

where operation represents the abstract action (e.g., condi-
tional expression, increment statement) that replaces the normal
TM behavior when validating/updating the operands. We say that
operation is a read-only operation if the values of its (variable)
operands do not change after executing it; and an update operation
otherwise. For example:
- TM GTE(5,x) implements an abstract read-only method “boolean

operation(�, x, 5)”;
- TM INC(x, 1) implements an abstract update method “void op-

eration(++, x, 1)”.
The composition of those semantic operations (e.g., x > 0 || y
> 0) can also be generalized as an abstract method operation(x,y,
...), where the number of arguments depends on the number of
variables involved.

Based on this abstraction, it becomes possible to define a uni-
fied methodology to port all the proposed API extensions in STM
algorithms by showing how STM algorithms will handle both read-
only and update semantic operations. In this section, we show how
we ported the new extension to two state-of-art STM algorithms:
NOrec [8] and TL2 [11]1.

4.1.1 S-NOrec
NOrec is an STM algorithm that exploits value-based validation to
eliminate the need for fine-grained locks. In more detail, a trans-
action stores its read value as metadata in its read-set. The valida-
tion procedure, which is called before every read as well as at the
commit phase of a writing transaction, succeeds if all accessed ad-
dresses have the same values as what is saved in the read-set (an
optimization is made by first checking if the global timestamp has
not changed).

1 For brevity, the implementation described here does not cover the handling
of address-to-address extended comparison operations.

4 2016/2/3

Algorithm 6 S-NOrec
1: procedure VALIDATE(TRANSACTION TX)
2: time = global lock
3: if (time & 1) != 0 then go to 5 end if
4: for each (addr, operation, val) in reads do
5: if ! (addr OP val) then
6: Abort() . Abort will longjmp
7: end if
8: end for
9: if time != global lock then go to 5 end if

10: return time
11: end procedure

12: procedure READVALID(ADDRESS ADDR, TRANSACTION TX)
13: val = *addr
14: while snapshot != global lock do
15: snapshot = Validate(tx)
16: val = *addr
17: end while
18: return val
19: end procedure

20: procedure RAW(ADDRESS ADDR, TRANSACTION TX)
21: if writes[addr].type = INCREMENT then
22: val = ReadValid(addr, tx)
23: reads.append(address, val, EQUALS)
24: writes[addr] = (entry.value + val, WRITE)
25: end if
26: return writes[addr].value
27: end procedure

28: procedure START(TRANSACTION TX)
29: do
30: snapshot = global lock
31: while (snapshot & 1) 6= 0
32: end procedure

33: procedure COMPARE(ADDRESS ADDR, OPERATION OP, VALUE OPERAND,
TRANSACTION TX)

34: if writes[addr] then
35: return RAW(addr, tx) OP operand
36: end if
37: val = ReadValid(addr, tx)
38: result = (val OP operand)
39: reads.append(addr, operand, result ? OP : Inverse(OP))
40: return result
41: end procedure

42: procedure READ(ADDRESS ADDR, TRANSACTION TX)
43: if writes[addr] then
44: return RAW(addr, tx)
45: end if
46: val = ReadValid(addr, tx)
47: reads.append(addr, val, EQUALS)
48: return val
49: end procedure

50: procedure INCREMENT(ADDRESS ADDR, VALUE DELTA, TRANSACTION TX)
51: if writes[addr] then
52: writes[addr] = (entry.value + delta, entry.type)
53: else
54: writes[addr] = (delta, INCREMENT)
55: end if
56: end procedure

57: procedure WRITE(ADDRESS ADDR, VALUE VALUE, TRANSACTION TX)
58: writes[addr] = (value, WRITE)
59: end procedure

We extend NOrec to support our constructs as shown in Algo-
rithm 6 (we call the new algorithm S-NOrec). For read-only seman-
tic operations (which are the conditional expressions and bitwise
operations in Table 1), we execute them using a special compare
operation (lines 33-41). The main difference between read and
compare is that read appends the normal address/value pair to the
read-set (line 47), while compare saves the conditional expression
(or its inverse if the condition is false) in the read-set (line 39). To
simplify the validate procedure, we consider read as a semantic

TX EQ operation. Consequently, the validate procedure (lines 1-
11) becomes a generalization of the original NOrec algorithm that
uses a semantic validation instead of the original value-based one.

Supporting update semantic operations (increment/decrement
operations in Table 1) requires storing the delta (i.e., incremented
or decremented value), and applying it at the commit time relative
to the current value stored at the address at commit time. In our
implementation, we support the increment/decrement operations by
overloading the write-set with these values. In particular, a flag is
added to each write-set entry to indicate whether it stores a standard
write or an increment.

To preserve consistency, S-NOrec handles the cases where a
single variable is read/written by two different operations in the
same transaction as follows:
- If an increment is preceded by a write or another increment,

the new delta is accumulated over the entry’s value without
changing the entry’s flag (line 52).

- If a write is preceded by an increment or another write, it
just overwrites the value and changes the flag to indicate a write
operation (line 58).

- Both compare and read check first for read-after-write hazards
(lines 35 and 44) and return any written values from the write-
buffer. If the write-set entry is an increment, it is promoted to
traditional read and write operations (see lines 22-24). During the
promotion, S-NOrec performs a read-set validation to ensure the
consistency of the recently-observed snapshot.

Although, to the best of our knowledge, S-NOrec is the first
STM algorithm that supports compare operations, a recent ap-
proach discusses supporting some patterns similar to our proposed
update operations [30]2. Nevertheless, S-NOrec still provides two
additional innovations. First, it generalizes the problem of handling
semantic operations in STM algorithms instead of focusing on a
certain pattern. Second, it maintains the same privatization and pub-
lication properties [24] of the original NOrec algorithm, since it
still uses the global timestamp at commit time. In fact, there is no
considerable overhead of S-NOrec over NOrec in both memory and
processing, as it only adds the read-set operation type and the write-
set flag to distinguish between writes and increments.

4.1.2 S-TL2
TL2 relies on a shared global timestamp and a shared lock-table
of versioned locks. The global timestamp is used to determine the
earliest snapshot seen by the transaction. Versioned locks are used
to lock addresses at commit time and to distinguish different ad-
dress versions. Unlike NOrec, the read-set stores only the accessed
addresses (not their values), so in order to support semantic opera-
tions we need to add a compare-set to the transaction metadata. The
compare-set stores the address, the operation type, and the com-
pared value (the operand), similar to the read-set of S-NOrec.

Algorithm 7 depicts the extended version of TL2 algorithm
(called S-TL2). TL2 defines the start version of a transaction as
the lowest version accessible by it, and it is set at the transaction
start using the global timestamp (line 2). However, in S-TL2 this
version can be advanced during the transaction execution. Specif-
ically, if the transaction did not issue any read operation, S-TL2
exploits the values stored in the compare-set by revalidating them
and extending the start version if they are still valid. This al-
lows the transaction to tolerate more concurrent updates, because
validation before the first read operation will be only semantic.
After the first read operation, it is no longer possible to advance
the start version and the transaction must preserve the snapshot
identified by that version.

2 It is worth noting that the other patterns discussed in [30] can be added to
our framework in a similar way to increment/decrement.

5 2016/2/3

Algorithm 7 S-TL2
1: procedure START(TRANSACTION TX)
2: tx.start version = global lock
3: end procedure

4: procedure VALIDATECOMPARESET(TRANSACTION TX)
5: time = global lock
6: for each (addr, operation, val) in tx.compares do
7: current = *addr
8: lock = getLock(addr)
9: if lock.version start version then . Unchange since last snapshot

10: continue . Skip validation
11: end if
12: if lock.writer 6= tx then
13: repeat until lock.writer = � . Wait for concurrent write
14: end if
15: if ! (current OP val) then
16: Abort() . Abort will longjmp
17: end if
18: end for
19: if time != global lock then go to 5 end if . Concurrent commit
20: return time
21: end procedure

22: procedure COMPARE(ADDRESS ADDR, OPERATION OP, VALUE OPERAND,
TRANSACTION TX)

23: if writes[addr] then
24: return RAW(addr, tx)
25: end if
26: lock = getLock(addr)
27: L1 = lock.version
28: if lock.writer then . Concurrent write
29: if tx.reads.isEmpty() then . No reads yet
30: go to 26 . Wait for concurrent writes
31: else
32: Abort()
33: end if
34: end if
35: val = *addr
36: L2 = lock.version
37: if tx.reads.isEmpty() then . No reads yet
38: if L1 6= L2 then . Version got changed meanwhile
39: go to 26 . Retry read
40: end if
41: else if L1 > start version _ L1 != L2 then . Concurrent write
42: Abort()
43: end if
44: result = (val OP operand) . Execute the semanitc opeartion
45: compares.append(addr, operand, result ? OP : Inverse(OP))
46: if tx.reads.isEmpty() ^ L1 > start version then . Newer than snapshot
47: start version = ValidateCompareSet() . Try to extend snapshot
48: end if
49: return result
50: end procedure

51: procedure READ(ADDRESS ADDR, TRANSACTION TX)
52: if writes[addr] then
53: return RAW(addr, tx)
54: end if
55: lock = getLock(addr)
56: L1 = lock.version
57: if lock.writer then . Concurrent write
58: Abort()
59: end if
60: val = *addr
61: L2 = lock.version
62: if L1 > start version _ L1 != L2 then
63: Abort()
64: end if
65: reads.append(addr)
66: return val
67: end procedure

More in detail, to preserve the transaction’s consistency after
its first read operation, each read or compare operation must
check the start version (lines 41 and 62) to ensure opacity [15]
– an important TM correctness property. However, the compare
procedure tries to maximize the gain of having no read operations

yet. In this case, the transaction can afford concurrent changes to
accessed objects (lines 13, 30 and 39). However, this makes the
algorithm subject to live-lock, so we employ a timeout mechanism
to avoid that (not shown in the pseudo-code). At the end of the
compare operation, the transaction appends the address, operation,
and value to its compare-set, and it may perform a compare-set
validation if the compared address is newer than the observed
snapshot (line 46).

The write-set handlers (increment, write and raw) are similar
to Algorithm 6, so we did not show them in Algorithm 7. The com-
mit procedure (also not shown in Algorithm 7) is similar to TL2:
the transaction acquires locks over its write-set; then it validates
both its read set and its compare-set; and finally it publishes the
write-set values to the main memory and releases the locks. The
only difference is that the compare-set is validated semantically
(call validateCompareSet), while the read set is validated as
usual by checking the versions of the addresses against the trans-
action’s start version. To optimize the semantic validation, the
start version is checked first. If the lock version of an entry is
less than the transaction start version, there is no need to semanti-
cally validate it (line 10).

S-TL2 requires adding a compare-set and a write-set flag in
addition to the orignal meta-data of TL2. Another overhead over
TL2 is that the compare procedure is more complex than read
and may involve calling validateCompareSet, whose execution
time-complexity is O(N) (where N is the size of the compare-
set). However, as we show later in Section 5, those overheads are
dominated in most cases by the performance gain due to avoiding
false conflicts at semantic level.

4.2 Proposed Extensions for HTM
Although injecting semantics in HTM algorithms is harder than
for STM, we propose a scheme that enables it. In particular, we
propose two approaches, which can be adopted separately:
- Injecting semantics in the software fallback path of HTM trans-

action, similar to how we injected them in pure STM algorithms;
- Reordering instructions at compilation time to minimize false

conflicts (i.e., conflicts at the memory level that do not impact
application semantics).

Regarding the first approach, we investigated the possible alter-
natives for implementing the software fallback path published in
literature so far. Interestingly, we found that most of them are com-
pliant with our former proposals on STM. For example, NOrec has
been considered in literature [7, 23, 28] as one of the best STM
candidates to integrate with HTM transactions because it has only
one global lock as shared metadata, which minimizes the overhead
of monitoring the metadata inside HTM transactions (recall any
speculation on the metadata affects the number of cache lines oc-
cupied and may generate false conflicts). Among those proposals,
RH-NOrec [23] is known to be one of the best-performing HTM
algorithms. The main idea of RH-NOrec is to execute transactions
in one of three modes: fast-path, in which a transaction is entirely
executed in HTM; slow-path, in which the body of a transaction is
executed in software similar to NOrec and the commit phase is ex-
ecuted using a small HTM transaction; and slow-slow-path, which
is NOrec itself. These three modes are made consistent by speculat-
ing the global lock in the HTM transactions. We propose injecting
semantics in the slow-path and the slow-slow-path of RH-NOrec in
a similar way to what we did for NOrec.

The second approach for injecting semantics into HTM algo-
rithms is to involve the compiler. Compilation-time solutions do
not require modifying the execution pattern of HTM transactions
at runtime (which is impossible in current HTM models), provid-
ing a good way of overcoming the limitations of HTM APIs.

6 2016/2/3

Hashtable Bank LRU Vacation Kmeans Labyrinth Yada SSCA2 Genome Intruder

ba
se

se
m

an
tic

ba
se

se
m

an
tic

ba
se

se
m

an
tic

ba
se

se
m

an
tic

ba
se

se
m

an
tic

ba
se

se
m

an
tic

ba
se

se
m

an
tic

ba
se

se
m

an
tic

ba
se

se
m

an
tic

ba
se

se
m

an
tic

Read 3440 0 22.5 0.05 173 12 14704 13714 25 0 176 4 142 135 2 1 84 84 28.5 28.5
Write 6.2 6.2 12.7 0 19.7 19.7 28.5 12 25 0 173 173 21.4 21.4 2 1 3 3 2.6 2.6
Compare - 3440 - 10 - 161 - 989.5 - 0 - 172 - 7 - 0 - 0.06 - 0
Increment - 0 - 12.7 - 0.03 - 16.7 - 25 - 0 - 0 - 1 - 0.01 - 0
Prompot - 0 - 0.05 - 0.01 - 15.7 - 0 - 0 - 0 - 0 - 0 - 0

Table 2: Average Number of Operations per Transaction.

The order of executing reads/writes inside transactions is one
of the main reasons for raising/avoiding conflicts at runtime. For
example, if the conflicting reads/writes are shifted by the compiler
to the end of the transaction, the probability of raising a conflict
at runtime is minimized [9, 30]. We propose a further optimization
on the compilation-level semantic operations defined in Table 1 by
reordering them at compilation time (if possible). As a preliminary
example, the increment/decrement operations can be delayed to the
end of the transaction if the incremented/decremented variables
are not read later in the transaction. Also, conditional branches
can be “optimistically” calculated before a transaction starts, re-
sulting in a deterministic branch selection inside that transaction,
and then the optimistic branch selection can be revalidated at the
end of the transaction, to preserve serializability [3]. The proposed
compilation-time optimizations are valid for both STM and HTM,
although HTM benefits more from that because of its limited APIs.

We mainly plan to investigate the different correctness guar-
antees that can be provided by altering operations at compila-
tion time, such as opacity [15], serializability [3], and publica-
tion/privatization safety [22, 24]. Regarding the former examples,
the optimistic brach selection clearly breaks opacity, generating
issues like those related to the lazy subscription of the global
lock as discussed in [10]. Also, shifting increments/decrements
may break publication-safety in some cases, as discussed in [30].
Making an investigation on the theoretical and practical possibili-
ties/impossibilities in that direction is one of the objectives of our
future work.

5. Evaluation
We conducted our experiments on an AMD machine equipped
with 2 Opteron 6168 CPUs, each with 12-core running at 1.9
GHz. The total memory available is 12 GB and the cache sizes
are 128 KB for the L1, 512 KB for the L2, and 12 MB for the
L3. We reported the throughput for micro benchmarks and the
application execution time for STAMP by varying the number of
threads executing concurrently (the datapoint at 1 thread shows the
performance of the single-threaded transactional execution).

Table 2 shows the average number of the different type of
operations (measured at runtime) for each of the benchmarks. This
gives an intuition about the amount of modifications we made for
each benchmark by applying our semantic constructs relative to the
transactions size.

5.1 Micro Benchmark
In our first set of experiments we considered three micro bench-
marks: Hashtable with Open Addressing, Bank, and Least Recently
Used (LRU) Cache. In each experiment, 0.5-5 million transactions
were executed and both throughput and abort rate were calculated
for both NOrec and TL2, with and without our semantic extensions.

Hashtable with Open Addressing. The workload in this experi-
ment was a collection of set and get operations, where each trans-
action performed 10 set/get operations. Both S-NOrec and S-TL2
exploited our semantic extensions in the probing procedure, as de-
picted in Algorithm 2. As a result, as shown in Table 2, all read

TL2 S-TL2 NOrec S-NOrec

 0

 20

 40

 60

 80

 100

 120

 140

1 2 4 6 8 10 12 14 16 18 20 22 24

Th
ro

ug
hp

ut
 (k

 T
x/

Se
c)

Threads

(a) Hashtable-Throughput

2 4 6 8 10 12 14 16 18 20 22 24
 10

 100

 1000

 10000

Ab
or

ts
 %

Threads

(b) Hashtable-Aborts

 100
 200
 300
 400
 500
 600
 700
 800
 900

 1000
 1100

1 2 4 6 8 10 12 14 16 18 20 22 24

Th
ro

ug
hp

ut
 (k

 T
x/

Se
c)

Threads

(c) Bank-Throughput

2 4 6 8 10 12 14 16 18 20 22 24
 1

 10

 100

 1000

Ab
or

ts
 %

Threads

(d) Bank-Aborts

 100

 150

 200

 250

 300

 350

 400

 450

1 2 4 6 8 10 12 14 16 18 20 22 24

Th
ro

ug
hp

ut
 (k

 T
x/

Se
c)

Threads

(e) LRU Cache-Throughput

2 4 6 8 10 12 14 16 18 20 22 24
 0.1

 1

 10

 100

 1000

 10000

Ab
or

ts
 %

Threads

(f) LRU Cache-Aborts
Figure 2: Micro Benchmarks.

operations were transformed into semantic compare operations.
This reduced aborts by one order of magnitude (Figure 2b), which
directly raised the throughput (3.5⇥ speedup) in both algorithms
(Figure 2a).

Bank. Each transaction performs multiple transfers (at most 10)
between accounts with an overdraft check (i.e., skip the transfer
if account balance is insufficient). In the semantic version of the
benchmark, the reads/writes were transformed into compare and
increment operations. As shown in Figure 2c, exploiting seman-
tics helps S-NOrec to outperform NOrec at low-contention (1-8
threads). However, when contention increases, both NOrec and S-
NOrec degrade and perform similarly. This is mainly because the
probability of having true conflicts increases, and transactions start
to abort even if they are semantically validated. In TL2, concur-
rent commits are allowed so it scales better than NOrec. Similarly,
S-TL2 benefits from the underlying semantics and performs 20%
better than TL2, and incurs 2.5⇥ fewer aborts.

LRU Cache. This benchmark simulates an m ⇥ n cache im-
plementation with least-frequently-used replacement policy. The
cache uses m cache lines, and each line contains n buckets. Each
bucket stores both the data and the hit frequency. Each transaction
either sets or looks up multiple entries in the cache. Table 2 shows
that 93% of the read operations were transformed into compare
operations. Accordingly, as shown in Figures 2e and 2f, S-NOrec
reduced the aborts by two order of magnitude and achieved up to

7 2016/2/3

2⇥ speedup. S-TL2 was not improved much (only 25% speedup).
The reason is that the non-transformed reads in S-TL2 prevented
it from advancing its snapshot; thus, any compare operations had
to preserve the snapshot identified by the start version and the
overall behavior became similar to TL2.

5.2 STAMP
STAMP [25] is a suite of applications designed for evaluating in-
memory concurrency controls. Figure 3 shows both execution time
and abort rate in some of the STAMP benchmarks. We did not show
the results of three applications (Genome, Intruder, and SSCA2)
because we found that the semantic operations per transaction were
very limited (see Table 2) and hence there was no difference in
either abort rate or throughput. We also excluded Bayes because
of its nondeterministic behavior. Since the performance saturated
at a high number of threads in all tested applications, we show the
results only up to 12 threads.

Kmeans is a clustering algorithm that iterates over a set of points
and associate them to clusters. The main computation is in finding
the nearest point, while shared data updates occur at the end of
each iteration. As illustrated in Algorithm 5, updating the centroid
is changed by transforming all writes into increments. S-NOrec
and S-TL2 achieve 25%-40% speedup (Figure 3a). However, at
a high number of threads both NOrec and S-NOrec saturate and
start to degrade in performance, which indicates a high contention
workload due to the coarse-grained locking. Consequently, starting
from 8 threads, S-NOrec slightly performs worse than NOrec (see
Figure 3a), because it adds an overhead that is not exploited to
reduce the abort rate (see Figure 3b).

Vacation is a travel reservation system using an in-memory
database. The workload consists of client reservations. This appli-
cation emulated an OLTP workload. The reservation procedure was
optimized as in Algorithm 4; however, only 7% of the reads were
transformed into compares. This is because most of the read opera-
tions are part of the internal red-black tree operations. Additionally,
almost all the increment operations were promoted to read and
write operations because of an additional sanity check performed
by the transaction. Although these two factors limited the gain of
using the benchmark semantics, both S-NOrec and S-TL2 consis-
tently outperformed the original algorithms. An exception to that
was the single thread execution of S-TL2 because of the overhead
of maintaining the semantic metadata (see Section 4.1.2).

Labyrinth is a multi-path maze solver. The maze is repre-
sented as a three-dimensional uniform grid, and each thread tries to
connect input pairs by a path of adjacent maze points. Upon find-
ing a path, it is highlighted at a shared output grid. Different checks
along the routing path (e.g., isEmpty, isGarbage) were transformed
into semantic compare operations, which allowed S-TL2 to out-
perform TL2 by 20%-50% speedup, and to reduce the aborts by 2⇥
(see Figures 3e & 3f). Both S-NOrect and NOrec perform similarly,
which indicates that transactions that fail in NORec’s value-based
validation also fail in the semantic validation of S-NOrec. In [29],
an optimized version of Labyrinth was proposed. The optimized
version moved some non-transactional operations (memory copy)
outside the transaction, which in effect reduces the transaction size.
Figures 3g & 3h shows the performance in this new version. Al-
though S-TL2 still achieves a reduction in abort rate, the returned
gain in performance became insignificant because most of the work
became outside transactions.

Yada is a mesh triangulation benchmark implementing Rup-
pert’s algorithm. Threads iterate over the mesh and try to produce
a smoother one by identifying triangles whose minimum angle is
below some threshold. NOrec’s behavior is similar to Labyrinth.
Interestingly, although S-TL2 reduced the number of aborts by 3⇥,
throughput was not affected (Figures 3i & 3j). Our measurements

TL2 S-TL2 NOrec S-NOrec

 1
 2
 3
 4
 5
 6
 7
 8
 9

 10
 11
 12

1 2 4 6 8 10 12

Ti
m

e
(S

ec
)

Threads

(a) Kmeans-Throughput

2 4 6 8 10 12
 0.1

 1

 10

 100

 1000

Ab
or

ts
 %

Threads

(b) Kmeans-Aborts

 10

 15

 20

 25

 30

 35

 40

1 2 4 6 8 10 12

Ti
m

e
(S

ec
)

Threads

(c) Vacation-Throughput

2 4 6 8 10 12
 1

 10

 100

 1000

 10000

Ab
or

ts
 %

Threads

(d) Vacation-Aborts

 0

 20

 40

 60

 80

 100

 120

 140

1 2 4 6 8 10 12
Ti

m
e

(S
ec

)

Threads

(e) Labyrinth v1-Throughput

2 4 6 8 10 12
 1

 10

 100

Ab
or

ts
 %

Threads

(f) Labyrinth v1-Aborts

 0

 20

 40

 60

 80

 100

 120

 140

1 2 4 6 8 10 12

Ti
m

e
(S

ec
)

Threads

(g) Labyrinth v2-Throughput

2 4 6 8 10 12
 1

 10

 100

Ab
or

ts
 %

Threads

(h) Labyrinth v2-Aborts

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

1 2 4 6 8 10 12

Ti
m

e
(S

ec
)

Threads

(i) Yada-Throughput

2 4 6 8 10 12
 1

 10

 100

 1000

Ab
or

ts
 %

Threads

(j) Yada-Aborts
Figure 3: STAMP Benchmarks

revealed that the reason for this behavior is in the aborted trans-
actions. Although resolving the semantic conflicts of transactions
in S-TL2 allowed them to proceed with execution, true conflicts
caused most of them to abort later. Therefore, the length of the
aborted transactions in S-TL2 became longer than TL2 without
real benefit from that (since transactions eventually aborted in both
cases). This is similar to what happened in Bank.

6. Conclusions and Future Work
In this paper, we show that generality of TM is not always con-
tradicting with applications semantics. We did so by identifying
TM-friendly semantics and proposing an approach to inject them in
the current TM algorithms and frameworks. Our experimental re-
sults on two different semantic-enabled STM algorithms depicted
a promising improvement over the base algorithms. We plan to ex-
tend this line of research by investigating more on providing full
compiler support, including HTM algorithms, and supporting more
complex semantic patterns.

8 2016/2/3

7. Acknowledgments
This work is partially supported by Air Force Office of Scientific
Research (AFOSR) under grant FA9550-14-1-0187.

References
[1] Y. Afek, H. Avni, and N. Shavit. Towards consistency oblivious

programming. In OPODIS, pages 65–79, 2011.
[2] H. Avni and B. C. Kuszmaul. Improving HTM scaling with

consistency-oblivious programming. In 9th Workshop on Trans-
actional Computing, TRANSACT ’14, 2014. Available: http://
transact2014.cse.lehigh.edu/.

[3] P. A. Bernstein and N. Goodman. Serializability theory for replicated
databases. J. Comput. Syst. Sci., 31(3):355–374, 1985.

[4] B. H. Bloom. Space/time trade-offs in hash coding with allowable
errors. Commun. ACM, 13(7):422–426, July 1970.

[5] H. W. Cain, M. M. Michael, B. Frey, C. May, D. Williams, and
H. Le. Robust architectural support for transactional memory in the
power architecture. In Proceedings of the 40th Annual International
Symposium on Computer Architecture, ISCA ’13, pages 225–236,
New York, NY, USA, 2013. ACM.

[6] I. Calciu, T. Shpeisman, G. Pokam, and M. Herlihy. Improved single
global lock fallback for best-effort hardware transactional memory. In
9th Workshop on Transactional Computing, TRANSACT ’14, 2014.
Available: http://transact2014.cse.lehigh.edu/.

[7] L. Dalessandro, F. Carouge, S. White, Y. Lev, M. Moir, M. L. Scott,
and M. F. Spear. Hybrid NOrec: A case study in the effectiveness
of best effort hardware transactional memory. In Proceedings of the
Sixteenth International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, ASPLOS XVI, pages
39–52, New York, NY, USA, 2011. ACM.

[8] L. Dalessandro, M. F. Spear, and M. L. Scott. NOrec: Streamlining
STM by abolishing ownership records. In Proceedings of the 15th
ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, PPoPP ’10, pages 67–78, New York, NY, USA, 2010.
ACM.

[9] A. Dhoke, R. Palmieri, and B. Ravindran. An automated framework
for decomposing memory transactions to exploit partial rollback. In
2015 IEEE International Parallel and Distributed Processing Sympo-
sium, IPDPS 2015, Hyderabad, India, May 25-29, 2015, pages 249–
258, 2015.

[10] D. Dice, T. L. Harris, A. Kogan, Y. Lev, and M. Moir. Pitfalls of lazy
subscription. In WTTM, 2014.

[11] D. Dice, O. Shalev, and N. Shavit. Transactional locking II. In Pro-
ceedings of the 20th International Conference on Distributed Com-
puting, DISC’06, pages 194–208, Berlin, Heidelberg, 2006. Springer-
Verlag.

[12] N. Diegues and P. Romano. Self-tuning Intel transactional synchro-
nization extensions. In 11th International Conference on Autonomic
Computing, ICAC ’14. USENIX Association, 2014.

[13] P. Felber, V. Gramoli, and R. Guerraoui. Elastic transactions. In
Distributed Computing, 23rd International Symposium, DISC 2009,
Elche, Spain, September 23-25, 2009. Proceedings, pages 93–107,
2009.

[14] G. Golan-Gueta, G. Ramalingam, M. Sagiv, and E. Yahav. Automatic
scalable atomicity via semantic locking. In Proceedings of the 20th
ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, PPoPP 2015, San Francisco, CA, USA, February 7-11,
2015, pages 31–41, 2015.

[15] R. Guerraoui and M. Kapalka. On the correctness of transactional
memory. In Proceedings of the 13th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, PPoPP ’08, pages
175–184, New York, NY, USA, 2008. ACM.

[16] A. Hassan, R. Palmieri, and B. Ravindran. Optimistic transactional
boosting. In ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming, PPoPP ’14, Orlando, FL, USA, February
15-19, 2014, pages 387–388, 2014.

[17] M. Herlihy and E. Koskinen. Transactional boosting: A methodology
for highly-concurrent transactional objects. In Proceedings of the 13th
ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, PPoPP ’08, pages 207–216, New York, NY, USA,
2008. ACM.

[18] M. Herlihy, V. Luchangco, M. Moir, and W. N. Scherer III. Soft-
ware transactional memory for dynamic-sized data structures. In Pro-
ceedings of the twenty-second annual symposium on Principles of dis-
tributed computing, pages 92–101. ACM, 2003.

[19] M. Herlihy and J. E. B. Moss. Transactional memory: Architectural
support for lock-free data structures. In Proceedings of the 20th
Annual International Symposium on Computer Architecture, ISCA
’93, pages 289–300, New York, NY, USA, 1993. ACM.

[20] S. Lie. Hardware support for unbounded transactional memory. Mas-
ter’s thesis, MIT, 2004. Available at: http://dspace.mit.edu/
handle/1721.1/28440.

[21] V. Marathe, M. Spear, C. Heriot, A. Acharya, D. Eisenstat,
W. Scherer III, and M. Scott. Lowering the overhead of nonblock-
ing software transactional memory. In Workshop on Languages, Com-
pilers, and Hardware Support for Transactional Computing (TRANS-
ACT), 2006.

[22] V. J. Marathe, M. F. Spear, and M. L. Scott. Scalable techniques
for transparent privatization in software transactional memory. In
2008 International Conference on Parallel Processing, ICPP 2008,
September 8-12, 2008, Portland, Oregon, USA, pages 67–74, 2008.

[23] A. Matveev and N. Shavit. Reduced hardware NOrec. In 9th ACM
SIGPLAN Workshop on Transactional Computing, TRANSACT ’14,
2014. Available: http://transact2014.cse.lehigh.edu/.

[24] V. Menon, S. Balensiefer, T. Shpeisman, A. Adl-Tabatabai, R. L.
Hudson, B. Saha, and A. Welc. Practical weak-atomicity semantics
for java stm. In SPAA 2008: Proceedings of the 20th Annual ACM
Symposium on Parallelism in Algorithms and Architectures, Munich,
Germany, June 14-16, 2008, pages 314–325, 2008.

[25] C. C. Minh, J. Chung, C. Kozyrakis, and K. Olukotun. STAMP: Stan-
ford transactional applications for multi-processing. In IEEE Interna-
tional Symposium on Workload Characterization, IISWC., pages 35–
46, 2008.

[26] Y. Ni, V. Menon, A. Adl-Tabatabai, A. L. Hosking, R. L. Hudson,
J. E. B. Moss, B. Saha, and T. Shpeisman. Open nesting in soft-
ware transactional memory. In Proceedings of the 12th ACM SIG-
PLAN Symposium on Principles and Practice of Parallel Program-
ming, PPOPP 2007, San Jose, California, USA, March 14-17, 2007,
pages 68–78, 2007.

[27] J. Reinders. Transactional synchronization in Haswell.
http://software.intel.com/en-us/blogs/2012/02/07/
transactional-synchronization-in-haswell/, 2013.

[28] T. Riegel, P. Marlier, M. Nowack, P. Felber, and C. Fetzer. Optimizing
hybrid transactional memory: The importance of nonspeculative oper-
ations. In Proceedings of the Twenty-third Annual ACM Symposium on
Parallelism in Algorithms and Architectures, SPAA ’11, pages 53–64,
New York, NY, USA, 2011. ACM.

[29] W. Ruan, Y. Liu, and M. Spear. Stamp need not be considered harm-
ful. In Ninth ACM SIGPLAN Workshop on Transactional Computing,
2014.

[30] W. Ruan, Y. Liu, and M. F. Spear. Transactional read-modify-write
without aborts. TACO, 11(4):63:1–63:24, 2014.

[31] W. N. Scherer III and M. L. Scott. Contention management in dy-
namic software transactional memory. In PODC ’04: Proceedings of
Workshop on Concurrency and Synchronization in Java Programs.,
NL, Canada, 2004. ACM.

[32] N. Shavit and D. Touitou. Software transactional memory. In Pro-
ceedings of the Fourteenth Annual ACM Symposium on Principles of
Distributed Computing, PODC ’95, pages 204–213, New York, NY,
USA, 1995. ACM.

[33] M. F. Spear, M. M. Michael, and C. von Praun. RingSTM: scalable
transactions with a single atomic instruction. In Proceedings of the

9 2016/2/3

ACM Annual Symposium on Parallelism in Algorithms and Architec-
tures, SPAA ’08, pages 275–284, New York, NY, USA, 2008. ACM.

[34] Transactional Memory Specification Drafting Group. Draft specifica-
tion of transactional language constructs for C++, version 1.1, Febru-
ary 2012. Available http://www.open-std.org/jtc1/sc22/
wg21/docs/papers/2013/n3725.pdf.

[35] L. Xiang and M. L. Scott. Software partitioning of hardware trans-
actions. In Proceedings of the 20th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, PPoPP 2015, San
Francisco, CA, USA, February 7-11, 2015, pages 76–86, 2015.

10 2016/2/3

