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Abstract—A virtual cluster (VC) consists of multiple virtual
machines (VMs) running on different physical hosts, intercon-
nected by a virtual network. A fault-tolerant protocol and
mechanism are essential to the VC’s availability and usability. We
present Virtual Predict Checkpointing (or VPC), a lightweight,
globally consistent checkpointing mechanism, which checkpoints
the VC for immediate restoration after VM failures. By pre-
dicting the checkpoint-caused page faults during each check-
pointing interval, VPC further reduces the solo VM downtime
than traditional incremental checkpointing approaches. Besides,
VPC uses a globally consistent checkpointing algorithm, which
preserves the global consistency of the VMs’ execution and
communication states, and only saves the updated memory pages
during each checkpointing interval to reduce the entire VC
downtime. Our implementation reveals that, compared with past
VC checkpointing/migration solutions including VNsnap, VPC
reduces the solo VM downtime by as much as 45%, under the
NPB benchmark, and reduces the entire VC downtime by as
much as 50%, under the NPB distributed program. Additionally,
VPC incurs a memory overhead of no more than 9%. In all cases,
VPC’s performance overhead is less than 16%.

I. INTRODUCTION

High availability (HA) is increasingly becoming important
in today’s clusters and data centers. HA refers to an entire
cluster or data center and its associated implementation being
continuously operational for a long period of time. Whole-
server replication is a conventional method to increase HA
— once a primary server fails, the running applications are
migrated and resumed on the backup server. However, there
are several limitations that make this method unattractive for
deployment: it needs specialized hardware and software, which
are usually expensive. Additionally, such a system may also
require complex customized configurations, which are difficult
to manage and maintain.

One possible way to overcome these limitations is virtual-
ization: all applications now run on a virtual machine (VM),
and one or several VMs run on a physical server. Thus, whole-
server replication can be easily and efficiently implemented
by replicating the running VMs — a copy of the VM on
a physical server is continuously check-pointed, transferred,
and saved on a backup server. As VMs are totally hardware-
independent, the cost is significantly lower compared to the
hardware expenses in traditional HA solutions. Moreover,
virtualization technology also provides numerous benefits to

clusters and data centers such as greater security within user-
customized environments, improved load balancing, and server
consolidation. Perhaps, the biggest advantage is the flexibility
to map physical resources to a virtual server (or a VM) and
its applications so as to handle workloads dynamically.

A virtual cluster (VC) generalizes the VM concept for
distributed applications and systems. A VC is a set of multiple
VMs deployed on different physical servers, but managed as
a single entity. A VC can be created to provide computation,
software, data access, or storage services to individual users,
who do not require knowledge of the physical location or
configuration of the system. End-users typically submit their
applications, often distributed, to a VC, and the environment
transparently hosts those applications on the underlying set of
VMs. VCs are gaining increasing traction in the “Platform as
a Service” (PaaS; e.g., Google App Engine [2]) and “Infras-
tructure as a Service” (IaaS; e.g., Amazon’s AWS/EC2 [1])
paradigms in the cloud computing domain.

To provide benefits such as dynamic resource allocation
and fault tolerance, a useful feature of virtualization is
the possibility of saving, restoring, and migrating an entire
VM through transparent checkpointing. Most state-of-the-
art/practice virtualization systems (e.g., Xen [7], VMware [26],
KVM [3]) provide mechanisms to checkpoint/restart VMs
in an application-transparent manner. Unlike application-level
checkpointing [15, 22], VM-level checkpointing usually in-
volves recording the virtual CPU’s state, the current state of
all emulated hardware devices, and the contents of the running
VM’s memory. VM-level checkpointing is typically a time
consuming process due to potentially large VM memory sizes
(sometimes, it is impractical as the memory size may be up
to several gigabytes). Therefore, for solo VM checkpointing,
often a lightweight methodology is adopted [27, 17], which
doesn’t generate a large checkpoint file.

The checkpointing size also affects the scalability of provid-
ing fault tolerance for an entire VC (through checkpointing).
In addition, in a VC, since multiple VMs are distributed as
computing nodes across different servers, the failure of one
VM can affect the states of other related VMs, and may
sometimes cause them to also fail. For example, assume that
we have two VMs, V Ma and V Mb, running in a VC. Say,
V Mb sends some messages to V Ma and then fails. These
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Fig. 1. Primary-Backup model and the downtime problem. T1: primary VM
fails; T2: the failure is observed by the VC; T3: VM resumes on backup
server; D1 (T3 − T1): VC downtime; D2: VM downtime.

messages may be correctly received by V Ma and may change
the state of V Ma. Thus, when V Mb is rolled-back to its latest,
correct check-pointed state, V Ma must also be rolled-back to
a check-pointed state before the messages were received from
V Mb. In other words, all the VMs (i.e., the entire VC) must
be check-pointed at globally consistent states.

Figure 1 illustrates a basic fault-tolerant protocol design for
VC, using the classical “primary-backup” model. All the VMs
in the VC are represented by “primary” in the figure. The state
of each primary VM is check-pointed at a globally consistent
state, and all the checkpoints are saved on the “backup”, which
can be a VM or a physical machine. When anyone VM fails,
which causes a VC failure, the backup VM/server will take
over and roll-back each VM to its previous check-pointed
state, and thereby resume the entire VC from a globally
consistent checkpoint.

Figure 1 also illustrates the primary metric of HA systems:
downtime. Two downtimes are of interest: First is VC down-
time, which is the time from when the failure was detected in
the VC to when the VC resumes from the last check-pointed
state on the backup VM/server and starts to handle client
requests. Second is VM downtime, which is the time from
when the VM pauses to save for the checkpoint to when the
VM resumes. Obviously, saving a smaller checkpoint will cost
less time than saving a larger checkpoint. Thus, a lightweight
checkpoint methodology directly reduces the VM downtime.

We present Virtual Predict Checkpointing (or VPC), a
lightweight, globally consistent checkpointing mechanism for
VCs. VPC checkpoints only the updated memory pages in-
stead of the whole image during each checkpointing interval.
We show that a small checkpoint size leads to minimal
downtime with acceptable memory overhead. By predicting
the checkpoint-caused page faults during each checkpointing
interval, VPC further reduces the solo VM downtime than
traditional incremental checkpointing approaches [24, 17].
We develop a variant of Mattern’s distributed snapshot al-
gorithm [16] for capturing global snapshots of the VC that
preserve the consistency of the VMs’ execution and related
communication states.

We construct a Xen-based implementation of VPC and con-
duct experimental studies. Our studies reveal that, compared

with past VC checkpointing/migration solutions including
VNsnap [13], VPC reduces the solo VM downtime by as
much as 45%, under the NPB benchmark [4], and reduces
the entire VC downtime by as much as 50%, when running
the distributed programs in NPB benchmark. VPC only incurs
a memory overhead of no more than 9%. In all cases, VPC’s
performance overhead is less than 16%.

Our VPC implementation is open-sourced [25].
The rest of the paper is organized as follows. Section II

discusses past and related work. Section III presents the design
and implementation of VPC. Section IV presents our globally
consistent checkpointing algorithm. Section V reports our
experimental environment, benchmarks, and evaluation results.
We conclude in Section VI.

II. RELATED WORK

Checkpointing is a commonly used approach for achieving
fault-tolerance. Checkpoints can be taken at different levels of
abstraction. Application-level checkpointing is one of the most
widely used methods. For example, Lyubashevskiy et al. [15]
develop a file operation wrapper layer with which a copy-
on-write file replica is generated while keeping the old data
unmodified. Pei et al. [22] wrap standard file I/O operations
to buffer file changes between checkpoints. However, these
checkpointing tools require modifying the application code,
and thus, they are not transparent to applications.

OS-level checkpointing solutions have also been widely
studied. For example, Libckpt [23] is an open-source, portable
checkpointing tool for UNIX. It mainly focuses on perfor-
mance optimization, and only supports single-threaded pro-
cesses. Osman et al. [20] present Zap, which decouples
protected processes from dependencies to the host operating
system. A thin virtualization layer is inserted above the OS to
support checkpointing without any application modification.
However, these solutions are highly context-specific and often
require access to the source code of the OS kernel, which
increases OS-dependence. In contrast, VPC doesn’t require
any modification to the guest OS kernel or the application
running on the VM.

Our work focuses on checkpointing at the VM-level.
VM-level checkpointing can be broadly classified into two
categories: stop-and-save checkpointing and checkpointing
through live migration. In the first category, a VM is com-
pletely stopped, its state is saved in persistent storage, and then
the VM is resumed [18]. This technique is easy to implement,
but incurs a large system downtime during checkpointing. Live
VM migration is designed to avoid such large downtimes
— e.g., VMWare’s VMotion [19], Xen Live Migration [8].
During migration, physical memory pages are sent from the
source (primary) host to the destination (backup) host, while
the VM continues to run on the source host. Pages modified
during replication must be re-sent to ensure consistency. After
a bounded iterative transferring phase, a very short stop-and-
copy phase is executed, during which the VM is halted, the
remaining memory pages are sent, and the destination hypervi-
sor is signaled to resume the execution of the VM. Remus [9]



uses high frequency checkpointing to handle hardware fail-
stop failures on a single host with whole-system migration.
It does this by maintaining a completely up-to-date copy of
a running VM on the backup server, which automatically
activates if the primary server fails. However, Remus incurs
large overhead (overhead reported in [9] is approximately 50%
for a checkpointing interval of 50ms).

Multi-VM checkpointing mechanisms — our target problem
space — have also been studied. Based on a nonblocking
distributed snapshot algorithm, VNsnap [13] takes global
snapshots of virtual networked environments and does not
require reliable FIFO data transmission. VNsnap runs outside
a virtual networked environment, and thus does not require any
modifications to software running inside the VMs. The work
presents two checkpointing daemons, called VNsnap-disk and
VNsnap-memory. These solutions generate a large checkpoint
size, which is at least the guest memory size. Also, VNsnap-
memory stores the checkpoints in memory, which duplicates
the memory, resulting in roughly 100% memory overhead.
Additionally, their distributed snapshot algorithm (which is a
variant of [16]) uses the “receive-but-drop” strategy, which
would cause temporary backoff of active TCP connections in-
side the virtual network after checkpointing. The TCP backoff
time is non-negligible and seriously affects the downtime. In
Section V-C, we experimentally compare VPC with VNsnap,
and show VC downtime improvements by as much as 60%.

III. DESIGN AND IMPLEMENTATION OF VPC

A. Lightweight Checkpointing Implementation

Since a VC may have hundreds of VMs, to implement a
scalable lightweight checkpointing mechanism for the VC, we
need to checkpoint/resume each VM with minimum possible
overhead. To completely record the state of an individual VM,
checkpointing typically involves recording the virtual CPU’s
state, the current state of all emulated hardware devices, and
the contents of the guest VM’s memory. Compared with other
preserved states, the amount of the guest VM memory which
needs to be checkpointed dominates the size of the checkpoint.
However, with the rapid growth of memory in VMs (several
gigabytes are not uncommon), the size of the checkpoint easily
becomes a bottleneck. One solution to alleviate this problem
is incremental checkpointing [24, 17], which minimizes the
checkpointing overhead by only synchronizing the dirty pages
during the latest checkpoint. A page fault-based mechanism is
typically used to determine the dirty pages [11]. We first use
incremental checkpointing in VPC.

We deploy a VPC agent that encapsulates our checkpointing
mechanism on every server. For each VM on a server, in
addition to the memory space assigned to its guest OS, we
assign a small amount of additional memory for the agent
to use. During system initialization, we save the complete
image of each VM’s memory on the disk. To differentiate this
state from “checkpoint,” we call this state, “non-volatile copy”.
After the VMs start execution, the VPC agents begin saving
the correct state for the VMs. For each VM, at the beginning

of a checkpointing interval, all memory pages are set as read-
only. Thus, if there is any write to a page, it will trigger a
page fault. Since we leverage the shadow-paging feature of
Xen, we are able to control whether a page is read-only and
to trace whether a page is dirty. When there is a write to a
read-only page, a page fault is triggered and reported to the
Xen hypervisor, and we save the current state of this page.

When a page fault occurs, this memory page is set as write-
able, but VPC doesn’t save the modified page immediately,
because there may be another new write to the same page in
the same interval. Instead, VPC adds the address of the faulting
page to the list of changed pages and removes the write
protection from the page so that the application can proceed
with the write. At the end of each checkpointing interval,
the list of changed pages contains all the pages that were
modified in the current checkpointing interval. VPC copies the
final state of all modified pages to the agent’s memory, and
resets all pages to read-only again. A VM can then be paused
momentarily to save the contents of the changed pages (which
also contributes to the VM’s downtime). In addition, we apply
a high frequency checkpointing mechanism (Section III-B),
which means that each checkpointing interval is set to be
very small, and therefore, the number of updated pages in
an interval is small as well. Thus, it is unnecessary to assign
large memory to each VPC agent. (We discuss VPC’s memory
overhead in Section V-D.)

Note that, this approach incurs a page fault whenever a
read-only page is modified. When running memory-intensive
workloads on the guest VM, handling so many page faults
affects scalability. On the other hand, according to the principle
of locality on memory accesses, recently updated pages tend to
be updated again (i.e., spatial locality) in the near future (i.e.,
temporal locality). In VPC, we set the checkpointing interval
to be small (tens to hundreds of milliseconds). So similarly,
the dirty pages also follow this principle. Therefore, we use
the updated pages in the previous checkpointing interval to
predict the pages which will be updated in the upcoming
checkpointing interval – i.e., by pre-marking the predicted
pages as writable at the beginning of the next checkpointing
interval. By this improved incremental checkpointing method-
ology, we reduce the number of page faults.

The page table entry (PTE) mechanism is supported by
most current generation processors. For predicting the dirty
pages, we leverage one control bit in the PTE: accessed (A)
bit. The accessed bit is set to enable or disable write access
for a page. Similar to our incremental checkpointing approach,
for each VM, at the beginning of a checkpointing interval, all
memory pages are set as read-only (accessed bit is cleared
as “0”). Thus, if there is any write to a page, it will trigger
a page fault, and the accessed bit is set to “1.” However,
unlike our incremental checkpointing approach, after the dirty
pages in a checkpointing interval are saved in the checkpoint,
we do not clear the accessed bits of these newly updated
pages at the end of a checkpointing interval. Instead, the
accessed bits of these pages are kept as writeable to allow
write during the next interval. At the end of the next interval,



 

Fig. 2. Two execution cases under VPC.

we track whether these pages were actually updated or not. If
they were not updated, their accessed bits are cleared, which
means that the corresponding pages are set as read-only again.
Our experimental evaluation shows that, this approach further
reduces the (solo) VM downtime (Section V-B).

B. High Frequency Checkpointing Mechanism

VPC uses a high frequency checkpointing mechanism. Our
motivation for this methodology is that, several previous fault
injection experiments [14, 21] have shown that most system
crashes occur due to transient failures. For example, in the
Linux kernel [10], after an error happens, around 95% of
crashes occur within 100 million CPU cycles, which means
that, for a 2 GHz processor, the error latency is very small
(within 50ms).

Suppose the error latency is Te and the checkpointing
interval is Tc. Thus, as long as Te ≤ Tc, the probability
of an undetected error affecting the checkpoint is small. For
example, if more than 95% of the error latency is less than
Te, the possibility of a system failure caused by an undetected
error is less than 5%. Therefore, as long as Tc (application-
defined) is no less than Te (in this example, it is 50ms), the
checkpoint is rarely affected by an unnoticed error. Thus, this
solution is nearly error-free by itself. On the other hand, if
the error latency is small, so is the checkpointing interval that
we choose. A smaller checkpointing interval means a high
frequency methodology.

In VPC, for each VM, the state of its non-volatile copy is
always one checkpointing interval behind the current VM’s
state except the initial state. This means that, when a new
checkpoint is generated, it is not copied to the non-volatile
copy immediately. Instead, the last checkpoint will be copied
to the non-volatile copy. The reason is that, there is a latency
between when an error occurs and when the failure caused by
that error is detected.

For example, in Figure 2, an error happens at time t0 and
causes the system to fail at time t1. Since most error latencies
are small, in most cases, t1 − t0 < Te. In case A, the latest
checkpoint is chp1, and the system needs to roll-back to the
state S1 by resuming from the checkpoint chp1. However, in
case B, an error happens at time t2, and then a new checkpoint
chp3 is saved. After the system moves to the state S3, this error

causes a failure at time t3. Here, we assume that t3− t2 < Te.
But, if we choose chp3 as the latest correct checkpoint and roll
the system back to the state S3, after resuming, the system will
fail again. We can see that, in this case, the latest checkpoint
should be chp2, and when the system crashes, we should roll
it back to the state S2, by resuming from the checkpoint chp2.

VPC is a lightweight checkpointing mechanism, because,
for each protected VM, the VPC agent stores only a small
fraction of, rather than the entire VM image. For a guest
OS occupying hundreds of megabytes of memory, the VPC
checkpoint is no more than 20MB. In contrast, past efforts
such as VNsnap [13] duplicates the guest VM memory and
uses the entire additional memory as the checkpoint size. In
VPC, with small amount of memory, we can store multiple
checkpoints for different VMs running on the same server.
Meanwhile, as discussed in Section I, the size of the check-
point directly influences the VM downtime. This lightweight
checkpointing methodology reduces VPC’s downtime during
the checkpointing interval. (We evaluate VPC’s downtime in
Section V-B.)

IV. DISTRIBUTED CHECKPOINT ALGORITHM IN VPC

A. Communication Consistency

To compose a globally consistent state of all the VMs in the
VC, the checkpoint of each VM must be coordinated. Besides
checkpointing each VM’s correct state, it is also essential to
guarantee the consistency of all communication states within
the virtual network. Recording the global state in a distributed
system is non-trivial because there is no global memory or
clock in a traditional distributed computing environment. So
the coordination work must be done in the presence of non-
synchronized clocks for a scalable design.

We illustrate message communication with an example
in Figure 3. The messages exchanged among the VMs are
marked by arrows going from the sender to the receiver. The
execution line of the VMs is separated by their corresponding
checkpoints. The upper part of each checkpoint corresponds
to the state before the checkpoint and the lower part of each
checkpoint corresponds to the state after the checkpoint. A
global checkpoint (consistent or not) is marked as the “cut”
line, which separates each VM’s timeline into two parts.

We can label the messages exchanged in the virtual network
into three categories:

1) The state of the message’s source and the destination
are on the same side of the cut line. For example, in Figure 3,
both the source state and the destination state of message m1

are above the cut line. Similarly, both the source state and the
destination state of message m2 are under the cut line.

2) The message’s source state is above the cut line while
the destination state is under the cut line, like message m3.

3) The message’s source state is under the cut line while
the destination state is above the cut line, like message m4.

For these three types of messages, we can see that a globally
consistent cut must ensure the delivery of type (1) and type
(2) messages, but must avoid type (3) messages. For example,
consider the message m4 in Figure 3. In VM3’s checkpoint
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Fig. 3. The definition of global checkpoint.

saved on the cut line, m4 is already recorded as being received.
However, in VM4’s checkpoint saved on the same cut line, it
has no record that m4 has been sent out. Therefore, the state
saved on VM4’s global cut is inconsistent, because in VM4’s
view, VM3 receives a message m4, which is sent by no one.

B. Globally Consistent Checkpointing Design

In VPC design, we develop a variant of the distributed
checkpointing algorithm in [16] as the basis of our lightweight
checkpointing mechanism. For completeness, we summarize
the original algorithm here: This algorithm relies on vector
clocks, and uses a single initiator process. At the beginning,
a global snapshot is planned to be recorded at a future vector
time s. The initiator broadcasts this time s and waits for
acknowledgements from all the recipients. When a process
receives the broadcast, it remembers the value s and acknowl-
edges the initiator. After receiving all acknowledgements, the
initiator increases its vector clock to s and broadcasts a dummy
message. On the receiver’s side, it takes a local snapshot, sends
it to the initiator, and increases its clock to a value larger than
s. Finally, the algorithm uses a termination detection scheme
to decide whether to terminate the algorithm.

As illustrated before, type (3) messages are unwanted,
because they are not recorded in any source VM’s checkpoints,
but they are already recorded in some checkpoints of a desti-
nation VM. In VPC, there is always a correct state for a VM,
recorded as the non-volatile copy in the disk. As explained
in Section III-B, the state of the non-volatile copy is one
checkpointing interval behind the current VM’s state, because
we copy the last checkpoint to the non-volatile copy only
when we get a new checkpoint. Therefore, before a checkpoint
is committed by saving to non-volatile copy, we buffer all
the outgoing messages in the VM during the corresponding
checkpointing interval. Thus, type (3) messages are never
generated, because the buffered messages are unblocked only
after saving their information by copying the checkpoint to the
non-volatile copy. Our algorithm works under the assumption
that the buffering messages will not be lost or duplicated. (This

assumption can be overcome by leveraging classical ideas,
e.g., as in TCP.)

In VPC, there are multiple VMs running on different servers
connected within the network. One of the servers is chosen to
deploy the VPC Initiator, while the protected VMs run on the
primary servers. The Initiator can be running on a VM which
is dedicated to the checkpointing service. It doesn’t need to
be deployed on the privileged guest system like the Domain
0 in Xen. When VPC starts to record the globally consistent
checkpoint, the Initiator broadcasts the checkpointing request
and waits for acknowledgements from all the recipients. Upon
receiving a checkpointing request, each VM checks the latest
recorded non-volatile copy (not the in-memory checkpoint),
marks this non-volatile copy as part of the global check-
point, and sends a “success” acknowledgement back to the
Initiator. The algorithm terminates when the Initiator receives
the acknowledgements from all the VMs. For example, if
the Initiator sends a request (marked as rn) to checkpoint
the entire VC, a VM named V M1 in the VC will record a
non-volatile copy named “vm1 global rn”. All of the non-
volatile copies from every VM compose a globally consistent
checkpoint for the entire VC. Besides, if the VPC Initiator
sends the checkpointing request at a user-specified frequency,
the correct state of the entire VC is recorded periodically.

V. EVALUATION AND RESULTS

A. Experimental Environment

Our experimental testbed includes three multicore machines
as the primary and backup servers. Each server has 24 AMD
Opteron 6168 processors (1.86GHz), and each processor has
12 cores. The total assigned RAM for each server is 11GB.
We set up a 1Gbps network connection between the servers for
experimental studies. We used two machines as the primary
servers, and used the third as the backup server. To evaluate
the overhead of VPC (Sections V-E), we set up the VC
environment by creating 16 guest VMs (allocated 512MB
RAM for each guest VM) on one primary server, and 24 guest
VMs (allocated 256MB RAM for each guest VM) on the other
primary server. We built Xen 3.4.0 on all servers and let all
the guest VMs run PV guests with Linux 2.6.31. Each Domain
0 on the three servers has a 2GB memory allocation, and the
remaining memory was left for the guest VMs to use. All the
physical machines and the VMs were connected with each
other based on the bridging mechanism of Xen.

We refer to our proposed checkpointing design with page
fault prediction mechanism as VPC. In Sections V-B, V-D,
and V-E, to evaluate the benefits of VPC, we compare VPC
with our initial incremental checkpointing design without
prediction, which we refer to as VPC-np.

Our competitors include different checkpointing mecha-
nisms including Remus [9], LLM [12], and VNsnap [13].
Remus uses checkpointing to handle hardware fail-stop fail-
ures on a single host with whole-system migration. The
Lightweight Live Migration or LLM technique improves Re-
mus’s overhead while providing comparable availability. While



Application VPC VPC-np VNsnap
idle 55ms 57ms 53ms

Apache 187ms 224ms 267ms
NPB-EP 179ms 254ms 324ms

TABLE I
SOLO VM DOWNTIME COMPARISON.

Remus and LLM implementations are publicly available, VN-
snap is not. Thus, we implemented a prototype by using the
distributed checkpointing algorithm in VNsnap and used that
implementation in our experimental studies.

B. VM Downtime Evaluation

Recall that there are two types of downtime in the VC: VM
downtime and the VC downtime. We first consider the case of
solo VM to measure the VM downtime. The solo VM case is
considered, as it is a special case of the virtual cluster case,
and therefore gives us a baseline understanding of how our
proposed techniques perform.

As defined in Section I, the VM downtime is the time from
when the VM pauses to save for the checkpoint to when the
VM resumes. Table I shows the downtime results under VPC,
VPC-np, and VNsnap daemon for three cases: i) when the
VM is idle, ii) when the VM runs the NPB-EP benchmark
program [4], and iii) when the VM runs the Apache web server
workload [6]. The downtimes were measured for the same
checkpointing interval, with the same VM (with 512MB of
RAM) for all three mechanisms.

Several observations are in order regarding the downtime
measurements. First, the downtime results of all three mecha-
nisms are short and very similar for the idle case. This is not
surprising, as memory updates are rare during idle runs, so the
downtime of all mechanisms is short and similar.

Second, when running the NPB-EP program, VPC has much
less downtime than the VNsnap daemon (reduction is roughly
45%). This is because, NPB-EP is a computationally intensive
workload. Thus, the guest VM memory is updated at high
frequency. When saving the checkpoint, compared with other
high-frequency checkpointing solutions, the VNsnap daemon
takes more time to save larger dirty data due to its low memory
transfer frequency.

Third, when running the Apache application, the memory
update is not so much as that when running NPB. But the
memory update is significantly more than that under the idle
run. The results show that VPC has lower downtime than
VNsnap daemon (downtime is reduced by roughly 30%).

Finally, compared with VPC-np, VPC also has less down-
time when running NPB-EP and Apache (reduction is roughly
30% and 17%, respectively). As for both VPC-np and VPC,
the downtime depends on the amount of checkpoint-induced
page faults during the checkpointing interval. Since VPC-
np uses an incremental checkpointing methodology, and VPC
tries to reduce the checkpoint-induced page faults, VPC incurs
smaller downtime than VPC-np.
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Fig. 4. VC downtime under NPB-EP framework.

C. VC Downtime Evaluation

As defined in Section I, the VC downtime is the time from
when the failure was detected in the VC to when the entire
VC resumes from the last globally consistent checkpoint. We
conducted experiments to measure the VC downtime under 32-
node (VM), 64-node, and 128-node environments. We used the
NPB-EP benchmark program [4] as the distributed workload
on the protected VMs. NPB-EP is a compute-bound MPI
benchmark with a few network communications.

To induce failures in the VC, we developed an application
program that causes a segmentation failure after executing for
a while. This program is launched on several VMs to generate
a failure, while the distributed application workload is running
in the VC. The protected VC is then rolled back to the last
globally consistent checkpoint. A suite of experiments were
conducted with VPC deployed at 3 different checkpointing
intervals (500ms, 100ms, and 50ms). We ran the same
workloads on VNsnap daemon. We note that in a VC with
hundreds of VMs, the total time for resuming all the VMs from
a checkpoint may take up to several minutes (under both VPC
and VNsnap). In the presentation, we only show the downtime
results from when the failure was detected in the VC to when
the globally consistent checkpoint is found and is ready to
resume the entire VC.

Figure 4 shows the results. From the figure, we observe
that, in the 32-node environment, the measured VC downtime
under VPC ranges from 2.31 seconds to 3.88 seconds, with
an average of 3.13 seconds; in the 64-node environment, the
measured VC downtime under VPC ranges from 4.37 seconds
to 7.22 seconds, with an average of 5.46 seconds; and in
the 128-node environment, the measured VC downtime under
VPC ranges from 8.12 seconds to 13.14 seconds, with an
average of 11.58 seconds. The corresponding results from
VNsnap are 4.7, 10.26, and 22.78 seconds, respectively. Thus,
compared with VNsnap, VPC reduces the VC downtime by
as much as 50%.

Another observation is that the VC downtime under VPC
slightly increases as the checkpointing interval grows. Since



Tc perlbench bzip2 gcc xalancbmk
V PC − np : 50ms 684 593 991 1780
V PC − np : 100ms 1389 1231 2090 2824
V PC − np : 500ms 5345 5523 5769 5428

V PC : 50ms 826 737 1041 2227
V PC : 100ms 1574 1411 2349 3572
V PC : 500ms 6274 5955 6813 7348

TABLE II
VPC CHECKPOINT SIZE MEASUREMENT (IN NUMBER OF MEMORY PAGES)

UNDER SPEC CPU2006 BENCHMARK.

we didn’t consider the resumption time from the checkpoint,
when VPC is deployed with different checkpointing intervals,
the VC downtime is determined by the time to transfer all the
solo checkpoints from primary servers to the backup server.
Therefore, a smaller checkpoint size incurs less transfer time,
and thus less VC downtime. The checkpoint size depends
on the number of memory pages restored. Therefore, as the
checkpointing interval grows, the checkpoint size also grows,
so does the number of restored pages during transfer.

D. Memory Overhead

In VPC, each checkpoint consists of only the pages which
are updated within a checkpointing interval. We conducted
a number of experiments to study the memory overhead
of VPC’s checkpointing algorithm at different checkpointing
intervals. In each of these experiments, we ran four workloads
from the SPEC CPU2006 benchmark [5], including: (1) perl-
bench, which is a scripting language (stripped-down version
of Perl v5.8.7); (2) bzip2, which is a compression program
(modified to do most work in memory, rather than doing I/O);
(3) gcc, which is a compiler program (based on gcc version
3.2); and (4) xalancbmk, which is an XML processing program
(a modified version of Xalan-C++, which transforms XML
documents to other document types).

For both VPC-np and VPC designs, we measured the
number of checkpoint-induced page faults (in terms of the
number of memory pages) in every checkpointing interval
(e.g., Tc = 50ms) of each experiment duration.

Table II shows the results. We observe that for both designs,
the average checkpoint sizes are very small: around 2.00%
of the size of the entire system state when the checkpointing
interval is 50ms. For example, when VPC-np is deployed with
a checkpointing interval of 50ms, the average checkpoint size
is 1012 memory pages or 3.9MB, while the size of the entire
system state during the experiment is up to 65,536 memory
pages (256MB). The maximum checkpoint size observed is
less than 7MB (1780 pages when running the xalancbmk
program), which is less than 3% of the entire system state
size. When the checkpointing interval is increased to 100ms,
all checkpoints are less than 3,000 pages, the average size
is 1883.5 pages (7.36MB, or 2.9% of the entire memory
size), and the maximum checkpoint size is about 11MB
(2824 pages when running the xalancbmk program). When
the checkpointing interval is increased to 500ms (i.e., two

checkpoints in a second), we observe that all the checkpoint
sizes are around 5500 pages, the average size is 5516.25
pages (21.55MB, or 8.4% of the entire memory size), and the
maximum checkpoint size is about 22.5MB (5769 pages when
running the gcc program). Thus, we observe that, the memory
overhead increases as the checkpointing interval grows. This
is because, when the interval increases, more updated pages
must be recorded during an interval, requiring more memory.

Another observation is that, the checkpoint size under VPC
is larger than that under VPC-np. This is because, under
VPC, as we improve VPC-np with page faults prediction,
it generates more “fake” dirty pages in each checkpointing
interval. For example, we pre-make the updated pages in the
first checkpointing interval as writable at the beginning of the
second checkpointing interval. Thus, at the end of the second
checkpointing interval, there are some fake dirty pages, which
are actually not updated in the second checkpointing interval.
Therefore, besides the dirty pages which are actually updated
in the second interval, the checkpoint recorded after the second
checkpointing interval also includes these pages which are not
updated in the second interval but still set as dirty because of
the prediction mechanism. Note that although VPC generates
a slightly larger checkpoint, it incurs smaller downtime than
VPC-np (Section V-B).

E. Performance Overhead

We measured the performance overhead introduced into the
VC by deploying VPC. We chose two distributed programs in
the NPB benchmark [4], and ran them on 40 guest VMs with
VPC deployed. NPB contains a combination of computational
kernels. For our experimental study, we chose to use the EP
and IS programs. EP is a compute-bound MPI benchmark with
a few network communications, while IS is an I/O-bound MPI
benchmark with significant network communications.

A suite of experiments were conducted under the following
cases: (1) a baseline case (no checkpoint), (2) VPC deployed
with 3 different checkpointing intervals (500ms, 100ms, and
50ms), (3) Remus [9] deployed with one checkpointing inter-
val (50ms), (4) LLM [12] deployed with one checkpointing
interval (50ms), and (4) VPC-np deployed with one check-
pointing interval (50ms).

A given program executes with the same input across all
experiments. To test the performance accurately, we repeated
the experiment with each benchmark five times. The execution
times were measured and normalized, and are shown in
Figure 5. The normalized execution time is computed by
dividing the program execution time with the execution time
for the corresponding baseline case.

We first measured the benchmarks’ runtime when they were
executed on the VMs without any checkpointing functionality.
After this, we started the VPC agents for each protected
VM, and measured the runtime with different checkpointing
intervals. We chose EP Class B program in NPB benchmark
and recorded its runtime under different situations. Besides,
we also chose EP Class C in NPB benchmark (the Class C
problems are several times larger than the Class B problems)
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Fig. 5. Performance overhead under NPB benchmark.

to see how VPC performs if we enlarge the problem size.
Finally, we tested some extreme cases with I/O intensive
applications. We chose the IS program in NPB benchmark,
a NPB benchmark with significant network communications,
and excluding floating point computations. We ran the same
benchmarks on Remus, LLM, and VPC-np, following the same
manner as on VPC.

Figure 5 shows the results. We observe that, for all programs
running under VPC, the impact of the checkpoint on the pro-
gram execution time is no more than 16% (the normalized exe-
cution times are no more than 1.16), and the average overhead
is 12% (the average of the normalized execution times is 1.12),
when VPC is deployed with 50ms checkpointing interval.
When we increase the checkpointing interval to 100ms, the
average overhead becomes 8.8%, and when we increase the
checkpointing interval to 500ms, the average overhead be-
comes 5.4%. Thus, we observe that the performance overhead
decreases as the checkpointing interval grows. Therefore, there
exists a trade-off when choosing the checkpointing interval.
In VPC, checkpointing with a larger interval incurs smaller
overhead, while causing a longer output delay and a larger
checkpoint size. (This also means larger memory overhead,
confirming our observation in Section V-D.)

Another observation is that VPC incurs lower performance
overhead compared with other high-frequency checkpointing
mechanisms (Remus and VPC-np). The reason is that memory
access locality plays a significant role when the checkpointing
interval is short, and VPC precisely reduces the number of
page faults in this case. LLM also reduces the performance
overhead, but it is a checkpointing mechanism only for solo
VM. In our experiment, we deployed 40 VMs in the VC, and
from Figure 5, we observe that the overhead of VPC is still
comparable to that in the solo VM case under LLM.

VI. CONCLUSIONS

We presented VPC, a lightweight, globally consistent check-
pointing mechanism that records the correct state of an entire
VC, which consists of multiple VMs connected by a virtual

network. The design, implementation, and experimental evalu-
ation of VPC shows that by applying a high frequency check-
pointing mechanism and recording only the updated memory
pages during each small checkpointing interval, the downtime
can be reduced with acceptable memory overhead. Additional
reduction in the downtime can be obtained by predicting
the checkpoint-caused page faults during each checkpointing
interval. Based on this lightweight design under VPC, the
global consistency in the entire VC is ensured by modifying
and implementing a classic distributed algorithm.
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