
Disjoint-Access Parallelism: Impossibility, Possibility, and
Cost of Transactional Memory Implementations

[Technical Report, Virginia Tech, May 2015]

Sebastiano Peluso
ECE Department

Virginia Tech
Blacksburg VA, USA
peluso@vt.edu

Roberto Palmieri
ECE Department

Virginia Tech
Blacksburg VA, USA
robertop@vt.edu

Paolo Romano
IST & INESC-ID

Universidade de Lisboa
Lisbon, Portugal

romano@inesc-id.pt
Binoy Ravindran

ECE Department
Virginia Tech

Blacksburg VA, USA
binoy@vt.edu

Francesco Quaglia
DIAG

Sapienza University of Rome
Rome, Italy

quaglia@dis.uniroma1.it

ABSTRACT
Disjoint-Access Parallelism (DAP) is considered one of the
most desirable properties to maximize the scalability of Trans-
actional Memory (TM). This paper investigates the possi-
bility and inherent cost of implementing a DAP TM that
ensures two properties that are regarded as important to
maximize efficiency in read-dominated workloads, namely
having invisible and wait-free read-only transactions. We
first prove that relaxing Real-Time Order (RTO) is neces-
sary to implement such a TM. This result motivates us to
introduce Witnessable Real-Time Order (WRTO), a weaker
variant of RTO that demands enforcing RTO only between
directly conflicting transactions. Then we show that adopt-
ing WRTO makes it possible to design a strictly DAP TM
with invisible and wait-free read-only transactions, while
preserving strong progressiveness for write transactions and
an isolation level known in literature as Extended Update
Serializability. Finally, we shed light on the inherent in-
efficiency of DAP TM implementations that have invisible
and wait-free read-only transactions, by establishing lower
bounds on the time and space complexity of such TMs.

Categories and Subject Descriptors
D.1.3 [Programming Techniques]: Concurrent Program-
ming—distributed programming, parallel programming ; D.4.1
[Operating Systems]: Process Management—concurrency,
synchronization; F.1.2 [Computation by Abstract De-
vices]: Modes of Computation—parallelism and concurrency

PODC’15, July 21–23, 2015, Donostia-San Sebastián, Spain.
.

General Terms
Algorithms, Theory

Keywords
Disjoint-access parallelism; Wait-freedom; Real-time order;
Transactional memory; Invisible reads; Impossibility results

1. INTRODUCTION
Over the last decade, Transactional Memory (TM) [30]

has emerged as an attractive paradigm for simplifying paral-
lel programming. Further, the recent integration of TM sup-
port in hardware by major chip vendors (e.g., Intel, IBM),
along with the development of dedicated GCC extensions
for TM (i.e., GCC-4.7), have significantly increased TM’s
traction, paving the way for its mainstream adoption.

Disjoint-access parallelism (or DAP) [22] is a long stud-
ied property that assesses the ability of a TM implementa-
tion to avoid any contention on shared objects (also called
base objects), between transactions that access disjoint data
sets. Roughly speaking, DAP prescribes that non-conflicting
transactions should not contend on the same memory loca-
tions, thus minimizing expensive inter-processor coordina-
tion and enhancing scalability [5, 11]. Several consistency
criteria have been proposed for TM, such as opacity [16],
virtual world consistency [21], and TMS1 [13], which are
widely adopted because they all prevent erroneous compu-
tations that can occur as a consequence of observing arbi-
trarily stale snapshots during the transaction execution.

All the above correctness criteria require serializability
of committed transactions1, but the existing TM literature
has established that having DAP and serializable committed
transactions in the same TM implementation is impossible
under certain conditions for read-only transactions or dif-
ferent progress guarantees [4, 28, 15, 14, 8]. In particular,
Attiya et al. [4] proved that a TM cannot be weak DAP
(a weaker version of the original DAP [22]), while ensur-
ing minimal progressiveness [18] for write transactions (a

1Opacity also requires serializability of all (including pend-
ing and aborted) transactions.



!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!T2:!!!b2!!W2(x2)!!c2!!

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!T1:!!!b1!!R1(x0)!!R1(y3)!!c1!!

!!!T4:!!!b4!!R4(y0)!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!R4(x2)!!c4!!

WRTO!

HWRTO!=!{T2,T3,T4}!sa8sfies!WRTO!!but!not!RTO!!

HNO@RTO!=!{T1,T2,T3,T4}!does!not!sa8sfy!RTO!and!WRTO!!

!!!!!!!!!!!!!!!!!!!!!!!!T3:!!!b3!!W3(y3)!!c3!

Dependence!edge!
RTO/WRTO!edge!

Legend

Figure 1: Histories accepted or rejected by WRTO.

progress condition weaker than obstruction-freedom [20]),
and providing invisible and wait-free read-only transactions
if the correctness guarantee is (Strict) Serializability [7] or
Snapshot Isolation [6] (and hence opacity, virtual world con-
sistency, or TMS1). More recently, Bushkov et al. [8] proved
the impossibility of implementing a strict DAP [15] (a stronger
version of the original DAP [22]) TM that guarantees obstruction-
freedom and Weak Adaptive Consistency, which is weaker
than opacity, virtual world consistency, and TMS1.

However, the invisibility of read-only transactions as well
as their ability to always commit in a finite number of steps
(wait-freedom), are desirable requirements for enhancing the
performance of TM in case of read-dominated workloads.

For this reason, in this paper we seek an answer to the
following questions: what are the correctness and progress
guarantees that a DAP TM algorithm can ensure while hav-
ing invisible and wait-free read-only transactions? And for
those guarantees, which are the unavoidable costs to consider
in terms of both time and space complexity?

Along the path that will lead us to answer the above ques-
tions, we present two impossibility results and lower bounds
that should be taken into account while designing a DAP
TM. Specifically, in Section 3 we show that if one defines
as target correctness criterion any criterion that includes
Real-Time Order (RTO) then, independently of the partic-
ular isolation level ensured among concurrent transactions,
it is impossible to ensure wait-free read-only transactions,
obstruction-free write transactions, and the weakest form of
DAP. We also show that, even when assuming weakly pro-
gressive write transactions [17] we still have an impossibility
result if we enforce read-only transactions to be invisible.

These results highlight the need for relaxing RTO to im-
plement a DAP TM that guarantees wait-free and invisi-
ble read-only transactions. Such an observation leads us
to introduce a weaker variant of RTO, namely Witnessable
Real-Time Order (WRTO), which demands that the RTO
relation between two transactions is enforced only if they
exhibit a direct conflict or they are executed by the same
process. WRTO preserves some desirable properties of the
classic RTO, including that if a transaction T running solo
issues a read on a transactional object x, T is guaranteed
to return the version of x produced by the last transaction
that committed before T ’s beginning and updated x. On
the other hand, WRTO admits schedules in which a set of
sequential transactions (e.g., T2, T3 in Figure 1) accessing
disjoint data sets can be observed in an arbitrary order by
a concurrent transaction T4 (as in the history HWRTO of
Figure 1), which possibly contradicts their RTO relations.

The WRTO property is indeed designed to cope with DAP
TM implementations, as it demands that RTO is enforced

only among conflicting (and hence non-disjoint) transac-
tions, or trivially among transactions executed by the same
process. In fact, these transactions can use shared base-
objects involved in a conflict and thread-local base objects
as witnesses to truck RTO relations.

In Section 4 we show that, by adopting WRTO and by re-
stricting serializability to committed write transactions, it is
indeed possible to design a TM with wait-free and invisible
read-only transactions, which guarantees the strongest vari-
ant of DAP, strong progressiveness for write transactions,
and a consistency criterion strictly weaker than opacity, i.e.,
Extended Update Serializability [1] (EUS). Informally, EUS
guarantees serializability of committed write transactions,
and it ensures that each transaction observes a state pro-
duced by a serializable schedule. Despite the theoretical
relevance of this algorithm, we note that it comes with over-
heads, which can hinder its practical relevance. This obser-
vation motivates us to investigate whether such costs could
be avoided, or are inherently implied by any DAP design. In
Section 5 we prove that these costs are actually necessary, by
deriving two lower bounds on the space and time complexity
of any DAP TM that guarantees wait-free and invisible read-
only transactions, WRTO, and obstruction-freedom or weak
progressiveness for write transactions, when considering a
consistency criterion strictly weaker than EUS, i.e., Consis-
tent View [1]. Informally, Consistent View allows a specific
type of non-serializable schedules, but it ensures that trans-
actions read from a causally consistent snapshot, and pre-
vents observing the effects of aborted transactions. In par-
ticular, such a TM has: i) a read-only time complexity equal
to Ω(k·No), where k is the number of versions a transactional
object can have, and No is the total number of transactional
objects; and ii) a space complexity equal to Ω(min(No, Np))
for the meta data associated with each transactional object
version, where Np is the maximum number of concurrent
processes executing.

These lower bounds have implications of both theoretical
and practical nature. From a theoretical perspective, they
prove the optimality of the space and time complexity of
the algorithm that we present. From a practical perspective,
they provide useful guidelines to aim future research in the
area by suggesting that, in order to allow the implementa-
tion of efficient DAP TM, lowering the correctness property
is not enough (although remaining as strong as Consistent
View), rather either WFRO or IRO should be sacrificed.

2. FORMALISM AND ASSUMPTIONS
System and Transaction Execution Model. We con-
sider an asynchronous shared memory system composed of
Np processes p1, . . . , pNp that communicate by executing
transactions on No shared objects, which we call transac-
tional objects, and may be faulty by crashing (i.e., slow down
or block indefinitely). We use the term transactional objects
to distinguish them from base objects, which are used to en-
capsulate any information (data and meta data) associated
with a transactional object, and are manipulated via primi-
tive operations (primitives, hereafter). We say that a primi-
tive is non-trivial if it may change the value of a base object
(e.g., Compare-And-Swap or Store), otherwise it is trivial
(e.g., Load). Also primitives are atomic and wait-free.

A transaction starts with a begin operation, and can be
followed by a sequence of read and write operations on trans-
actional objects not known a priori, and finally completed



by either a commit or an abort operation. A transaction
only performing read operations is named read-only; other-
wise it is called write. We denote with xi the version of the
transactional object x committed by transaction Ti, where i
is an index that univocally identifies a transaction. We de-
note by opi an operation issued by Ti, and by OPi the set of
operations issued by Ti, which is assumed to be totally or-
dered. We denote a write operation of Ti on a transactional
object x as Wi(xi); and we use the notation Ri(xj) to indi-
cate that a transaction Ti has read a version xj of x written
by transaction Tj . We say that two operations opi and opj
are conflicting if they access a common transactional object
x and at least one of them is a write.
History and DSG. A history H over a set of transac-
tions {T1, . . . , Tn} is a partial order ≺H defined over the
set of operations OPH =

⋃n
i=1OPi such that ≺H pre-

serves the ordering of the operations of each transaction Ti

(≺H⊇
⋃n

i=1OPi); and for any two conflicting operations
opi, opj ∈ H, either opi ≺H opj or opj ≺H opi. H implic-
itly induces a total order � on the committed versions of a
given transactional object [1]. Specifically, the order of the
versions associated with that object follows the order of the
write operations successfully executed on it.

We define the Direct Serialization Graph DSG(H) on a
history H (as in [1, 7]) as a direct graph with a vertex for
each transaction Ti in H and a directed edge from Ti to Tj ,
with i 6= j, if there exist two operations opi, opj ∈ OPH
such that opi ≺H opj or opj ≺H opi. We distinguish three
types of edges depending on the type of conflicts between
Ti and Tj : i) Direct read-dependence edge, if there exists
a transactional object x such that both Wi(xi) and Rj(xi)
are in H. We say that Tj directly read-depends on Ti and

we use the notation Ti
wr−−→ Tj . ii) Direct write-dependence

edge, if there exists a transactional object x such that both
Wi(xi) and Wj(xj) are in H and xj immediately follows xi
in the total order defined by� on x. We say that Tj directly

write-depends on Ti and we use the notation Ti
ww−−→ Tj . iii)

Direct anti-dependence edge, if there exists a transactional
object x and a committed transaction Tk in H, with k 6= i
and k 6= j, such that both Ri(xk) and Wj(xj) are in H and
xj immediately follows xk in the total order defined by �
on x. We say that Tj directly anti-depends on Ti and we use

the notation Ti
rw

� Tj .
Configurations, Events and Executions. A configura-
tion is a tuple characterizing the status of each process, and
of the base objects at some point in time. On the other hand,
an event is a step performed by a process in a configuration,
which encompasses the execution of a local computation, the
application of a primitive on a base object, and a change to
the status of the process. An event is generated by an op-
eration of a transaction and in general an operation of a
transaction can generate one or more events. An execution
interval is a sequence Ψi ·φi ·Ψi+1 ·φi+1 ·Ψi+2 ·φi+2 · . . . that
alternates configurations Ψk and events φk, and where the
sequence Ψk ·φk generates the configuration Ψk+1. An event
φk is said to be pending when configuration Ψk+1 has not
been generated yet. We also refer an execution E to as an
execution interval starting from an initial configuration Ψ0,
and we say that two executions are indistinguishable to a
process pi if pi observes the same sequence of configurations
and steps in both the executions.

Since an execution E is actually a low-level history of con-
figurations and events that are generated by operations of

transactions in a history H, we may also want to derive a
history H from one of the possible executions, say E. In
particular, given an execution E, we define E|H as the his-
tory derived from E by removing all the events and con-
figurations, and where each sequence of events (which may
possibly contain one event) is replaced by the corresponding
operation that generated it.

Two events contend on a base object o if they both access
o, and at least one of them applies a non-trivial primitive to
o. Two processes concurrently contend on a base object o if
they have pending events at the same configuration, which
contend on o.
DAP and Invisible Reads. We consider two versions
of disjoint-access parallelism (DAP), namely strict disjoint-
access parallelism [15] (SDAP), and weak disjoint-access par-
allelism [4] (WDAP). A TM ensures SDAP if two trans-
actions contend on a common base object only if they ac-
cess some common transactional object; while a TM ensures
WDAP if two concurrent transactions concurrently contend
on a common base object only if they are not disjoint-access.
Two transactions are not disjoint-access, according to the
definition provided in [4], if there is a path that connects
the two transactions in the undirected version of the DSG.
A read operation Ri performed by Ti is called invisible if it
does not apply any non-trivial primitive on any base object.
Otherwise it is called visible. A read-only transaction per-
forming only invisible reads is also called invisible (or IRO).
Progress Guarantees. A TM is strongly progressive [17]
if i) transactions that do not encounter any conflict must
be able to commit; and ii) at least one transaction among a
set of transactions that only conflict on one common object
must be able to commit. A weaker form of this progress
condition, i.e., weak progressiveness, has also been defined
in [17], which requires that a transaction can only abort if
it experiences a conflict.

We consider two additional liveness properties, namely
obstruction-freedom and wait-freedom. A TM is obstruction-
free [15] if for every history H executed by the TM, a trans-
action Ti ∈ H is forcefully aborted only if Ti encounters
step contention. We have step contention for a transaction
Ti if a process different from the one running Ti executes
a step after the first operation of Ti and before its comple-
tion (whether commit or abort). As for wait-freedom we
adopt the definition adapted for TM that was introduced by
Attiya et al. [4]: a TM is wait-free [19] if any transaction ex-
ecuted by a non-faulty process eventually commits in a finite
number of steps despite the behavior of concurrent transac-
tions2. We consider processes to be non-parasitic, i.e., they
eventually request the commit of every transaction that they
start unless they crash or the transaction is aborted by the
TM [9]. Hereafter, we refer to a read-only transaction that
guarantees wait-freedom as WFRO; also, if such a read-only
transaction also provides invisible reads, then we name it
WFIRO (i.e., the union of WFRO and IRO).
Correctness guarantees. Consistent View proscribes the
anomalies G1a, G1b, G1c, and G-single as defined in [1].
In particular, proscribing G1a means that values created
by transactions that abort cannot be observed. Proscribing

2We adopt the definition provided in [4] because we want
to relate the results presented in this paper with the ones
presented in [4]. For a formal definition of the strongest
progress condition specifically defined for (S)TM, i.e., local
progress, the reader can refer to the work in [9].



G1b does not allow the observation of intermediate non-
committed values. G1c is not allowed when there is no ori-
ented cycle of all dependence edges in the DSG(Hc) graph
built on the history Hc, where Hc is derived from H by
removing aborted and executing transactions. Consistent
View prevents the G-single anomaly, hence it avoids that
DSG(H) contains an oriented cycle with exactly one anti-
dependence edge.

Extended Update Serializability (EUS) [27] is stronger
than Consistent View, and it can be seen as the union
of Consistent View and Serializability of committed write
transactions. EUS proscribes the anomalies G1a, G1b, and
G1c, as well as the anomaly Extended G-update, such that
the DSG(Hupc

Tk
) graph built on the committed write trans-

actions in H plus a generic transaction Tk in H contains an
oriented cycle with one or more anti-dependence edges.

The graph considered in the Extended G-update anomaly
only includes committed write transactions and at most one
additional transaction Tk belonging to one among the fol-
lowing categories: aborted, executing or read-only trans-
actions. EUS admits non-serializable histories, as illus-
trated in history HNO−RTO of Figure 1, in which two
read-only/executing/aborted transactions (e.g., T4 and T1

in HNO−RTO) are allowed to observe in different orders the
commits of non-conflicting write transactions (e.g., T2 and
T3 in HNO−RTO).

Real-Time Order (RTO) is a partial order defined over
a transaction history H, noted ≺RTO

H , which reflects the
happened-before relations among transactions in a history.
A transaction Tq is ordered before Tk in RTO, Tq ≺RTO

H Tk,
if the commit operation cq of Tq precedes the begin operation
bk of Tk in H. We introduce a weaker variant of RTO, which
we call Witnessable Real-Time Order (WRTO), which tracks
happened-before relations exclusively between directly con-
flicting transactions and transactions executed by the same
process. Formally Tq ≺WRTO

H Tk if Tq ≺RTO
H Tk, and Tq and

Tk are connected by a direct dependence edge in DSG(H).
A history H preserves RTO (respectively WRTO) if, after
having included in DSG(H) a direct edge ∀Tq, Tk in H, such
that Tq ≺RTO

H Tk (respectively Tq ≺WRTO
H Tk), then the

resulting graph does not contain cycles involving Tq and Tk.
An example history ensuring WRTO but not RTO is the

history HWRTO shown in Figure 1, where transaction T4

runs concurrently with two write transactions T3 and T2,
and T2 runs sequentially after T3. Since T2 and T3 nei-
ther conflict nor are executed by the same process, then
T3 ≺RTO

H T2 holds. RTO is not ensured because T4 observes
the committed versions of T2 but not those of T3, and hence
DSG(HWRTO) plus the RTO edge from T3 to T2 contains
a cycle that includes T3 and T2. On the contrary, a his-
tory that does not ensure WRTO and RTO is the history
HNO−RTO in Figure 1. Transaction T1 runs sequentially af-
ter transaction T2, and the two transactions conflict, hence
T2 ≺WRTO

H T1 holds. However, T1 does not observe the ver-
sion of x committed by T2, and thus DSG(HNO−RTO) plus
the WRTO edge from T2 to T1 contains a cycle that includes
T2 and T1.

3. IMPOSSIBILITY RESULTS ON DAP
AND RTO

In this section we seek an answer to the following question:
consider a DAP TM that guarantees RTO; can such a TM

provide WFRO and IRO? We do so by proving in Theorem 1
that a DAP TM cannot guarantee both RTO and WFRO if
write transactions are obstruction-free. The result assumes
only the RTO relation as the correctness guarantee and it
is independent of the visibility of read-only transactions. In
Theorem 2 we show that the impossibility of combining RTO
and WFRO holds if the progress requirement of write trans-
actions is weak progressiveness and read-only transactions
are invisible (IRO). The intuition to prove these two results
is the following: we show that any DAP TM that guarantees
WRTO must accept a history that violates RTO. This his-
tory is illustrated in Figure 1 through HWRTO, where the
RTO between the two non-conflicting transactions T2 and
T3 is violated due to the return values of T4’s read opera-
tions. To show that HWRTO is accepted by any DAP TM
that guarantees WRTO and WFRO, we prove that such a
TM must produce the return values of the read operations
in HWRTO.

The proofs of the theorems rely on the following lemmas.
In Lemma 1 we prove that in a WDAP TM two concurrent
disjoint-access transactions cannot (even non-concurrently)
contend on a common base object. It is worth noting that
this result is not directly entailed by the definition of WDAP,
because WDAP only precludes such transactions to concur-
rently contend on a common base object. The proof of
Lemma 1 is based on the indistinguishability of detecting
if the two concurrent disjoint-access transactions are con-
currently contending on a common base object. In addition,
this result differs from the result of Lemma 2 in [4], which
proves that in a WDAP TM two disjoint-access transactions
cannot contend on a common base object if they are non-
concurrent.

Then Lemma 2 uses the result of Lemma 1 to prove that
in a WDAP TM two conflicting transactions cannot con-
tend on a common base object before the conflict actually
occurs. Finally Lemma 3 relies on Lemma 2 to show why the
read-only transaction T4 in HWRTO must execute as shown
in Figure 1 in a WDAP TM that guarantees WRTO and
WFRO. An interesting study on the relation between the
impossibility results proved in this section and the existing
impossibility results in literature is reported in Section 6.

Lemma 1. In a WDAP TM two concurrent disjoint-
access transactions cannot contend on a common base ob-
ject.

Proof. By the definition of WDAP TM, two concurrent
disjoint-access transactions Ti, Tj cannot concurrently con-
tend on a common base object. We need to show that Ti and
Tj cannot contend even non-concurrently. To do so, let us
assume by contradiction that they contend non-concurrently
on a base object o. We denote with φi, φj the first two pairs
of events processed by Ti and Tj , respectively, that contend
on o. It follows that φi and φj are non-concurrent events —
otherwise, Ti and Tj would concurrently contend, which is
proscribed by WDAP.

Figure 2(a) depicts an execution of Ti and Tj , where we
have denoted with α the set of events processed by Ti before
φi, and with α′ those processed by Tj before φj . We suppose
that α and α′ do not overlap in time. Now let us consider,
in Figure 2(b), an execution in which we have postponed the
processing of φj by Tj to take place concurrently with φi. By
construction, the execution interval αα′ of the execution in



α	  

α’	  

φi	  

φj	  

Ti 

Tj 

pi 

pj 

(a)

α	  

α’	  

φi	  

φj	  

Ti 

Tj 

pi 

pj 

(b)

Figure 2: Undistinguishable execution intervals in
WDAP.

Figure 2(a) and the execution interval αα′ of the execution
in Figure 2(b) are indistinguishable to both pi and pj since
they are the same execution interval. Therefore, pi and pj
are about to perform respectively φi and φj after αα′ in both
the executions and, since φi and φj contend on a common
base object in Figure 2(a), they contend on the same base
object in Figure 2(b) as well. In the execution of Figure 2(b),
however, φi and φj contend concurrently, which is impossible
as we assume that the TM is WDAP. Therefore, we obtain
a contradiction and the proof holds.

As said, Lemma 2 asserts that in a WDAP TM, two trans-
actions that conflict (either directly or transitively) cannot
contend on a common base object before the time in which
a path connecting the two transactions in the conflict graph
is created. The proof is based on the indistinguishability
of the following two scenarios: one where a conflict actu-
ally occurs; and the other where one of the two operations
generating the conflict never occurs.

Lemma 2. Let Ti and Tj be two transactions in a history
H generated by a WDAP TM. Assume that there exists only
one path connecting Ti and Tj in DSG(H), which consists
of a direct edge connecting Ti and Tj corresponding to two
conflicting operations opi and opj, issued respectively by Ti

and Tj. The operation opi generates the event φi, and opj
generates φj. Further, assume that Ti executes φi after the
commit of Tj. Then, if Ti and Tj contend on a common
base object at time t, the conflict between them must occur
at time t′ ≤ t.

Proof. Assume without loss of generality that Ti and Tj

are two transactions executed by process pi and process pj ,
respectively. Let t′ be the time at which event φi is processed
by Ti, hence the conflict between Ti and Tj occurs at time
t′. We distinguish two cases depending on whether Ti and
Tj are concurrent or not.

In case Ti and Tj are concurrent, since Ti executes φi after
Tj commits, we can decompose their execution intervals in
three phases, as depicted in Figure 3(a). The possible exe-
cution intervals of Ti can be expressed by means of i) the
execution interval α, which comprises all the events gener-
ated by Ti since its beginning and prior to the execution of

(a)

(b)

Figure 3: Concurrent executions used in proofs of
Lemmas 2 and 3.

φi (if any); ii) the event φi; and iii) the execution interval
β, which comprises all the events generated by Ti after φi

(if any). Analogously, transaction Tj is constituted by the
event φj that is processed in between two execution intervals
α′ and β′. Note that since we assume that φi is executed
by Ti after Tj ’s commit and that the two transactions are
concurrent, it follows that α and the execution interval of
Tj are concurrent.

Since the operations issued by a transaction are not known
a priori, at any time t′′ < t′ pi is not able to distinguish
whether it is processing the execution interval α of trans-
action Ti or the execution interval α of a transaction T ∗

that completes without executing φi · β, like the one of Fig-
ure 3(b). Therefore if at time t′′, α of Ti contended on a
base object accessed by Tj , α of T ∗ would have to do the
same. However, since T ∗ and Tj are two concurrent and
disjoint-access transactions, they cannot either concurrently
or non-concurrently contend on a common base object due
to the definition of WDAP and Lemma 1 respectively. Con-
sequently, Ti and Tj can only contend on a common base
object at time t ≥ t′.

If Ti and Tj are not concurrent, by the assumption that
Ti executes φi after Tj commits, we can depict their execu-
tions as in Figure 4(a). Transaction Ti is constituted by an
execution interval α, followed by the event φi, and another
execution interval β, and such that α is not concurrent with
any execution interval of Tj . Transaction Tj is constituted
by the event φj that is processed in between two execution
intervals α′ and β′. As for the previous case, since the op-
erations executed by a transaction are not known a priori,
at time t′′ < t′ pi is not able to distinguish whether it is
processing the execution interval α of transaction Ti or the
execution interval α of a transaction T ∗ that completes with-
out executing the interval φi · β, as depicted in Figure 4(b).
Therefore, if at time t′′, α of Ti contended on a base object
accessed by Tj , α of T ∗ would do the same. However, T ∗ and
Tj cannot contend on a common base object by the result
of Lemma 2 in [4]. In fact, T ∗ and Tj are two consecutive
and non-conflicting transactions executed by a WDAP TM
starting from a quiescent configuration (i.e., a configuration
with no pending event), and there is no path connecting T ∗



and Tj in the conflict graph of the minimal execution inter-
val containing T ∗ and Tj by hypothesis. Consequently, Ti

and Tj cannot contend on a common base object at time
t′′ < t′, meaning that Ti and Tj can contend on a common
base object only at time t ≥ t′.

Lemma 3 asserts that a read operation of a wait-free read-
only transaction has to always return at least the latest ver-
sion of an object committed at the time the read operation
on that object started. As before, the proof is based on in-
distinguishability arguments. Its core argument is that, in
a WDAP TM a read operation of a read-only transaction
Ti, which reads a version preceding the latest committed
version xj , is not able to distinguish whether xj has been
committed before Ti began or not.

Lemma 3. Given a WDAP TM that guarantees WRTO
and WFRO, for each read-only transaction Ti executed by
the TM, a read operation Ri(x) by Ti returns the last version
xj committed on x at the time Ri(x) starts its execution, if
xj has been committed by a transaction Tj that conflicts with
Ti only due to the operations Ri(x) and Wj(x).

Proof. We assume transactions Ti and Tj as the ones
defined in the hypothesis. Therefore Ti executes a read op-
eration on object x, i.e., Ri(x), and Tj is the last transaction
that commits by writing version xj on x (i.e., Tj executes
Wj(xj), and it is the last one to commit a version on x)
before Ri(x) starts. Further, the only path connecting Ti

and Tj in the DSG is the edge associated with the conflict
of Ri(x) and Wj(x). We distinguish two cases depending on
whether Ti and Tj are concurrent or not.

If Ti and Tj are consecutive (i.e., not concurrent) and
Ri(x) follows the commit of Tj , then the begin of Ti too
follows the commit of Tj . Therefore we have Tj ≺WRTO

H Ti

because Ti and Tj are conflicting and Tj ≺RTO
H Ti. Con-

sequently, Ri(x) has to return a version, meaning that it
cannot abort due to the hypothesis of WFRO, and that ver-
sion must be xj . In fact, if that was not the case and Ti

returned xv � xj , then the DSG on the history containing
Ti and Tj augmented with WRTO edges would contain both
an edge reflecting Tj ≺WRTO

H Ti and a path from Ti to Tj

reflecting the fact that Ti missed version xj , by violating the
assumption of a TM that guarantees WRTO.

If Ti and Tj are concurrent, we can assume Ti and Tj

as depicted in Figure 3(a) where φi and φj are the events
generated by the operations Ri(x) and Wj(xj) respectively.
In this scenario, the hypothesis of Lemma 2 are verified,
and therefore Ti and Tj cannot contend on a common base
object till Ti executes φi and hence Ri(x). This means that
α and all the execution intervals of Tj cannot contend on a
common base object, and therefore pi and pj have to perform
the same steps in all the aforementioned executions up to
the execution of φi and hence of Ri(x). More in detail, the
following execution intervals are indistinguishable to pi: i) α
concurrent to α′ ·φj ·β′; ii) α ·α′ ·φj ·β′; and iii) α′ ·φj ·β′ ·α.

As a consequence, Ti cannot abort because of the hypoth-
esis of WFRO, and if we assumed that Ri(x) returned a
version xv � xj in the executions of Figure 3(a), where α
is concurrent to α′ · φj · β′, then Ri(x) should return xv
in the execution of Figure 4(a) as well, which is the case
of α′ · φj · β′ · α. However, since in the last execution we
have Tj ≺WRTO

H Ti because Ti and Tj are conflicting and
Tj ≺RTO

H Ti, returning xv � xj violates WRTO as proved

(a)

(b)

Figure 4: Non-concurrent executions used in proofs
of Lemmas 2 and 3.

in the first case (i.e., when Ti and Tj are assumed to be
consecutive). Therefore, R(x) returns xj also when Ti and
Tj are concurrent.

We now prove Theorem 1, which states that a DAP TM
cannot guarantee both RTO and WFRO if the progress re-
quirement of write transactions is obstruction-freedom.

Theorem 1. No WDAP, obstruction-free TM that guar-
antees WFRO can ensure RTO.

Proof. The proof follows by contradiction and we as-
sume that two different transactions are executed by two
distinct processes. By contradiction, we assume that there
exists a TM providing WDAP, obstruction-free write trans-
actions, WFRO and such that ∀H accepted by the TM,
H preserves RTO, and hence WRTO. Consider the history
HWRTO as executed in Figure 1. T3 is a write transaction
that runs solo and writes the version y3 of y and then com-
mits. T2 begins after T3, runs solo, writes x2 of x, and
then commits. T4 is a read-only transaction that reads the
initial version of y, i.e., y0, before T3 begins, and executes
a read operation R4(x) on x, after T2’s commit. Both T2

and T3 cannot be aborted in HWRTO because the TM is
obstruction-free.

Since x2 is the last version of x committed before the ex-
ecution of R4(x), and the only path connecting T2 and T4

in DSG(HWRTO) is the edge associated with the conflict of
R4(x) and W2(x), then R4(x) has to return the version x2 of
T2 by the result of Lemma 3. That is because the assumed
WDAP TM provides WFRO and WRTO, which is implied
by RTO (assumed by contradiction). Note that, even as-
suming the visibility of T4’s reads, T3 can neither abort due
to the detection of the conflict with R4(y0), which is now
visible, (as T3 runs solo), nor wait for the completion of T4

(as T3 could be indefinitely blocked if the process executing
T4 crashed).

However, historyHWRTO does not preserve RTO because:
i) T3 ≺RTO

HWRTO
T2; and ii) there exists the oriented path

T2
wr−−→ T4

rw
� T3 from T2 to T3 in DSG(HWRTO).

Therefore we have shown that a WDAP, obstruction-free
TM, that guarantees WFRO and WRTO necessarily vio-
lates RTO (as the TM cannot reject the history HWRTO).



But WRTO is strictly weaker than RTO, which means that
to guarantee RTO the TM should guarantee WRTO, and
thus there cannot exist a WDAP, obstruction-free TM that
guarantees WFRO and RTO.

Next we question the possibility to ensure RTO in a
WDAP TM when considering weak progressiveness as the
progress guarantee for write transactions. The answer is still
negative (as we show in Theorem 2) if we require WFIRO,
which includes invisible read-only transactions. The proof is
analogous to the one of Theorem 1, but further takes into ac-
count that write transactions cannot detect a conflict with
read-only transactions due to the invisibility of the latter.
To do so, we rely on the indistinguishability between the
execution in Figure 1 and an analogous execution where T4

does not take any step.

Theorem 2. No WDAP, weakly progressive TM that
guarantees WFIRO can ensure RTO.

Proof. As in the proof of Theorem 1, also this proof
follows by contradiction and we assume that two different
transactions are executed by two distinct processes. By
contradiction, we assume that there exists a TM providing
WDAP, weakly progressive write transactions, WFIRO and
such that ∀H accepted by the TM, H preserves RTO, and
hence WRTO. Consider the history HWRTO as executed in
Figure 1. In this proof we do not require T2 and T3 to run
solo. Therefore, T3 is a write transaction that writes the
version y3 of y and then commits. T2 begins after T3, writes
x2 of x, and then commits. T4 is a read-only transaction
that reads the initial version of y, i.e., y0, before T3’s begin,
and executes a read operation R4(x) on x, after T2’s com-
mit. Both T2 and T3 cannot be aborted in HWRTO because
the TM is weakly progressive, namely they are allowed to
abort only if they encounter a conflict. In fact, even though
T2 and T3 conflict only with T4, they should commit in an
analogous execution where T4 does not take any step, and
that execution is indistinguishable from the one in Figure 1
to the processes executing T2 and T3 because T4 is invisible.

Since x2 is the last version of x committed before the
execution of R4(x), and the only path connecting T2 and T4

in the conflict graph of DSG is the edge associated with the
conflict of R4(x) and W2(x), then R4(x) has to return the
version x2 of T2 by leveraging the result of Lemma 3 when
running. That is because the assumed WDAP TM provides
WFIRO and WRTO, which is implied by RTO (assumed by
contradiction).

However, historyHWRTO does not preserve RTO because:
i) T3 ≺RTO

HWRTO
T2; and ii) there exists the oriented path

T2
wr−−→ T4

rw
� T3 from T2 to T3 in DSG(HWRTO).

Therefore we have showed that a WDAP, weakly progres-
sive TM, that guarantees WFIRO and WRTO necessarily
violates RTO (as the TM cannot reject the historyHWRTO).
But WRTO is strictly weaker than RTO, which means that
to guarantee RTO the TM should guarantee WRTO, and
thus there cannot exist a WDAP, weakly progressive TM
that guarantees WFIRO and RTO.

It is interesting to relate the above results to at least two ex-
isting DAP TM algorithms, namely TLC [5] and the SDAP
TM proposed in [3]. The latter TM guarantees opacity (and
hence RTO) and can be easily shown to ensure WFRO. How-
ever, this TM adopts visible read-only transactions (hence

not contradicting Theorem 2), because their execution needs
to block the commit of concurrent and conflicting write
transactions. For this reason, write transactions are not
obstruction-free and, hence, the TM in [3] does not con-
tradict Theorem 1. TLC [5] is another SDAP TM imple-
mentation that guarantees invisible read-only and strongly
progressive transactions. However, TLC does not guarantee
WFRO, thus again one of the hypothesis of Theorem 2 is
not met.

4. A SDAP TM WITH WITNESSABLE
REAL-TIME ORDER

In Section 3 we have shown that RTO cannot be guaran-
teed by a WDAP TM that provides WFIRO. Here we pro-
vide a possibility result by adopting WRTO: it is possible to
implement a WFIRO TM that guarantees the strongest vari-
ant of DAP, strong progressiveness for write transactions,
and a correctness criterion whose semantics is very close to
those provided by opacity or virtual world consistency. This
consistency criterion, known in the literature as Extended
Update Serializability (EUS) [1, 27], guarantees the serial-
izability of the history of committed write transactions —
hence ensuring that the state of the TM is updated without
anomalies. Further, analogously to opacity, virtual world
consistency, and TMS1, EUS provides Consistent View.

Intuitively the above properties are achieved as follows.
Committed write transactions can be guaranteed to be se-
rializable without sharing any global information but just
leveraging meta data associated with transactional objects,
by adopting a scheme similar to the DAP version of TL2 [5].
On the other hand, Consistent View and WRTO can be en-
sured by combining a multi-version scheme that allows a
read operation by a transaction T to never incur wait con-
ditions, and to always return the right version v such that v
was not committed by a transaction T ′ that causally follows
T , i.e., v is a correct state observable by T . This is achiev-
able without sharing any global information (e.g., a global
clock, which would violate DAP) and without applying any
modification during the execution of a read operation (in-
visible read-only transactions) by just exploiting meta data
associated with the committed versions, in order to detect
the causal dependencies of commit events.

4.1 Algorithm Overview
Data structures. The proposed algorithm relies on vector
clocks as identifiers of the snapshots committed and as ref-
erences to determine which of the available object versions
should be returned by read operations.

Each process pi maintains a scalar, tc, that stores the
timestamp associated with the last commit of process pi;
and a vector clock of size Np, maxS, where maxS[k] records
the maximum value of process pk’s tc as known by pi. In-
tuitively, at each step of the execution of a transaction T
processed by pi, maxS identifies the commit events of the
transactions serialized before T . Further, each transaction T
maintains a vector clock, upperS, which identifies the com-
mit events of the transactions serialized after T .

Commit events. In order to univocally identify the com-
mit events in a totally decentralized way, the versions cre-
ated upon commit are associated with two identifiers, i.e.,
cid and S. The former is the identifier of the process hav-
ing committed those versions, while the latter is the vector



clock that identifies the committed snapshot containing the
versions created by this commit event. Therefore the cid-th
entry of vector S associated with a version ver is the value
of tc at the time ver was committed by pcid. Intuitively,
the remaining entries S[j], with j 6= cid, capture the causal
dependencies developed by the transaction that committed
ver with the transactions executed by the other processes.

Read logic. The version visibility logic relies on both
upperS and maxS to determine whether a commit event
should be visible by a transaction T . As already mentioned,
the commit events that precede or are equal to maxS cor-
respond to transactions that were already serialized before
T , and are hence considered as visible by T ; the commit
events that do not precede or are equal to upperS corre-
spond to transactions that were already serialized after T ,
and are hence non-visible by T . Finally, the remaining com-
mit events can be potentially visible by T and are said to be
uncertain.

As an example, we provide in Figure 5 a graphical repre-
sentation of the meaning of maxS and upperS for a trans-
action T at a certain point of its execution by process p0 in
a configuration of three processes p0, p1 and p2. Given the
current value of maxS, transaction T can determine that the
transactions that generated the commit events having S ∈{
{1,0,0}, {0,2,0}, {0,1,2} } are serialized before T . They are
therefore in the past of T . On the contrary, due to the value
of upperS, T cannot observe the commit events with S ∈
{ {0,5,3}, {0,4,3} }, as their vector clocks S are concurrent
with T ’s upperS. This is because, as a result of the values
observed by T ’s read operations so far, T has been serialized
before the transactions that generated these commit events.
These transactions are therefore in T ’s future.

Upon each read operation on a transactional object, the
corresponding set of versions is retrieved and the uncertain
ones are analyzed to determine whether the corresponding
commit is visible to T , i.e., serialized before T . If an uncer-
tain version ver is not visible, the transaction creating ver is
serialized after T , therefore T moves its upperS backwards
so as to exclude the vector clock S of ver. Otherwise, that
transaction creating ver has to be serialized before T . The
latter case will trigger an advancement of maxS only when
T completes, in order to include the vector clock S of ver
in the visible snapshot of the transactions executing after T
on the same process.

In order to determine the visibility of an uncertain version
ver, if any exists, the transaction read-set is re-validated
to verify whether it is safe to serialize the transaction that
committed ver before the reading transaction. An uncertain
version ver of object o is non-visible to transaction T , if T
has read a version ver1 of object o′, and: i) a version ver2
of o′ exists that is more recent than ver1; ii) the commit
of ver causally depends on the commit of ver2 (the vector
clock S of ver is greater than or equal to the vector clock S
of ver2). If the two conditions above are met, and ver had
been serialized before T since its beginning, then T should
have observed ver2 (and not ver1) at the time it issued a
read on o′.

Finally, the version returned by a read operation is the
most recent of the visible versions.

Commit phase. The algorithm allows a write transac-
tion T to commit only if i) it is able to acquire all locks on
the objects read and written by T ; and ii) T ’s read-set has

p0#

p1#

p2#

S={1,0,0} 

maxS={1,2,2} upperS={1,4,2} 

past uncertain future 

S={0,1,0} 

S={0,0,1} 

S={0,2,0} 

S={0,1,2} 

S={0,3,0} S={0,4,2} 

S={0,4,3} 

S={0,5,3} 

Figure 5: Example of usage of vectors maxS and
upperS for a transaction T . A rectangle at process pi
identifies a commit event by process pi and is tagged
with the corresponding vector clock S.

not been invalidated by a concurrent transaction, i.e., for
each version read by T , that version is still the last commit-
ted version of the corresponding object. This is sufficient
to guarantee the serializability of the history of the write
transactions, as required by EUS. Furthermore, the S vec-
tor clock associated with a snapshot committed by T is set
to be greater than any of the S vector clocks of the objects
read and overwritten by T . This allows to track causal-
ity dependencies among transactions, which is necessary to
guarantee the correct execution of read operations.

4.2 Algorithm Details
We now provide all the details of the algorithm.
In the following we use the binary relation ≤ to define

an order for both scalar values and vector clock values. In
case of scalar values the relation is the standard less-than-or-
equal relation defined for natural numbers. On the contrary,
in case of vector clock values the relation has the meaning
defined as follows. For each pair of vector clock values v1,
v2, the pair 〈v1, v2〉 is in ≤, by also writing v1 ≤ v2, if
∀i, v1[i] ≤ v2[i]. If there exists also an index j such that
v1[j] < v2[j], where < is the standard less than relation
defined for natural numbers, then v1 < v2 holds.

Initialization. tc, maxS and upperS are initialized respec-
tively with 0, [0,. . .,0] and [-1,. . .,-1]. upperS is reset each
time a transaction starts.

Write and read operations. The write operation simply
stores only the written object in the transaction’s write-set
and, in case a write is executed multiple times on the same
object, only the last value is maintained in the write-set.

The read operation on v of transaction T processed by pi
(see Algorithm 1) checks first if v has been previously written
by T . In this case it returns the written value (lines 2-3).
Otherwise, the versions’ chain associated with v is traversed
from the most recently committed version to the oldest one
(lines 4 and 11-17). Specifically for each version ver, ver’s
snapshot S is compared to the vector clocks upperS of T
and maxS of pi (functions nonV isible and unsafe at lines
13, 23-26 and 28-35). If maxS ≥ S (the condition at line 29
is false), which means that the process that is executing T
has already observed a snapshot at least as recent as S, then
ver can be observed by T . This corresponds to the case in
which the returned version is in the past of T .

Otherwise there are two scenarios in which the current
version could not be readable by T : when upperS < S on
the significant entries (i.e., those different from -1) meaning
that the condition at line 24 is true, or when maxS is less
than or not comparable with S (the condition at line 29 is
true). In these scenarios, in fact, reading the version could
lead to a history that violates EUS.



Algorithm 1 Read operation of transaction T on process
pi
1: Val read(Tx T , Var v)
2: if ∃ val′ : < v, val′ > ∈ T.writeSet then
3: return val′

4: [Val result,bool mostRecent] ← doRead(T, v)
5: if T.writeSet 6= ∅ ∧ mostRecent = ⊥ then
6: pi.maxS ← max(pi.maxS̄, pi.maxS)
7: abort(T )
8: else
9: return result

10:
11: [Val,bool] doRead(Tx T , Var v)
12: Version ver ← v.mostRecentV ers
13: while nonVisible(T ,ver) ∨ unsafe(T ,ver,v) do
14: if T.upperS[ver.cid] ≥ ver.S[ver.cid] ∨

T.upperS[ver.cid] = −1 then
15: T.upperS[ver.cid]← ver.S[ver.cid]− 1

16: ver ← ver.prev
17: end while
18: pi.maxS̄ ← max(pi.maxS̄, pi.maxS)
19: T.readSet← T.readSet ∪ < v, ver >
20: return [ver.value, ver = v.mostRecentV ers]

21:
22:
23: bool nonVisible(Tx T , Version ver)
24: if ∃k : T.upperS[k] 6= −1 ∧ T.upperS[k] < ver.S[k] then
25: return >
26: return ⊥
27:
28: bool unsafe(Tx T , Version ver, Var v)
29: if ∃k : pi.maxS[k] < ver.S[k] then
30: if locked(v) ∧ ver.committed = ⊥ then
31: return >
32: for all < readV, readV er >∈ tx.readSet do
33: if overwritten(T, readV, readV er, ver) then
34: return >
35: return ⊥
36:
37: bool overwritten(Tx T , Var readV , Version readV er, Version

target)
38: Version curr ← readV.mostRecentV ers
39: while curr 6= readV er do
40: if curr.S ≤ target.S then
41: return >
42: curr ← curr.prev
43: end while
44: return ⊥

In the former scenario, T cannot read ver because it be-
longs to a snapshot already skipped by T due to a previous
read, which has serialized T before the transaction that com-
mitted ver. This is the case in which the snapshot identified
by S is in the future of T .

In the latter scenario, ver is uncertain for T . So T has
to check if by reading version ver, which implies serializing
T after the transaction T ′ that committed this version, it is
still possible to serialize all the reads already performed by
the transaction after T ′. For this reason, a re-validation of
the read-set of T is needed (lines 32-34 and 37-44) to check if
there exists a version ver? that has been committed after any
version in T ’s read-set, and the snapshot that contains ver?

is serialized before the snapshot that contains ver (which
can be determined by comparing the vector clocks of their
snapshots S at line 40). In other words, T can observe a
version ver if the commit of ver does not causally depend on
a commit that invalidated (i.e., had overwritten) a snapshot
already observed by T in its previous reads. In this aspect,
the proposed algorithm shares similarities with LSA [29],
which also forces a re-validation of the read-set in analogous
circumstances, but which relies on a shared global clock and
is therefore non-DAP.

There exists another additional case in which transaction
T has to discard a version in order to not violate wait-
freedom for read-only transactions. In particular, that’s
happen if an uncertain version ver is found and ver is not
marked as committed while v is still locked (lines 30-31).
As it will be clearer in the description of the commit phase,
that is the case in which the transaction committing ver,
e.g., T ′, has not completely finalized its commit phase yet.
In that case, in fact, allowing T to observe ver would imply
forcing T to possibly wait, upon a subsequent read, for the
commit of another version written by T ′.

After each read operation, an auxiliary vector clock asso-
ciated with the current process, i.e., maxS̄, is updated by
computing the maximum between the snapshot S of the re-
turned version and maxS̄ (line 18). This implies a possible
shrinking of the unexplored area for all the transactions the
will follow the execution of T on the same process. On the
contrary, as soon as ver is discarded by a read operation by
T (lines 14-16), upperS is changed accordingly by possibly
moving the commit of ver from the uncertain area to the
future of T .

Finally a transaction tracks the read versions in its read-
set (line 19), and during a read operation only write trans-
actions can be aborted if they cannot access the newest ver-
sion of a read object (lines 5-8). This optimization allows to
early abort update transactions whose validation would fail
at commit time.

Commit operation. When a transaction tries to com-
mit (see Algorithm 2), it tries to acquire an exclusive lock
on each object stored in its write-set, thus it can safely add
a new version to the chain. If at least one of the lock acqui-
sitions fails the transaction immediately aborts (lines 3-8).
This means that read-only transactions always commit with-
out any additional step. This is safe because, as required by
EUS, they always observe a state produced by a serializable
history of update transactions.

Next, a transaction tries to acquire shared locks on the
objects listed in its read-set. As before, a failed lock acquisi-
tion triggers the abort of the transaction (lines 11-14). Only
after the successful acquisition of all the requested locks,



Algorithm 2 Commit operation of transaction T on pro-
cess pi
1: commit(Tx T )
2: pi.maxS ← max(pi.maxS̄, pi.maxS)
3: if T.writeSet 6= ∅ then
4: VectorClock newS ← pi.maxS
5: for < v, val >∈ T.writeSet do
6: bool locked← tryLock(v)
7: if locked = ⊥ then
8: abort(T )
9: else

10: newS ← max(newS, v.mostRecentV ers.S)

11: for < v, version >∈ T.readSet do
12: bool locked← trySharedLock(v)
13: if locked = ⊥ then
14: abort(T )

15: for < v, version >∈ T.readSet do
16: if version 6= v.mostRecentV ers then
17: abort(tx)
18: else
19: newS ← max(newS, v.mostRecentV ers.S)

20: pi.tc + +
21: newS[i]← pi.tc
22: pi.maxS ← max(pi.maxS, newS)
23: for < v, val >∈ T.writeSet do
24: Version newV ersion
25: newV ersion.value← val
26: newV ersion.S ← newS
27: newV ersion.cid← i
28: newV ersion.prev ← v.mostRecentV ers
29: newV ersion.committed← ⊥
30: v.mostRecentV ers← newV ersion
31: for < v, val >∈ T.writeSet do
32: v.mostRecentV ers.committed← >
33: for < v,− >∈ T.readSet ∪ T.writeSet do
34: unlock(v)

the transaction validates its read-set, by checking that the
read versions are the last committed ones (lines 15-17), and
flushes the write-set (lines 20-34).

Note that the same outcome may be obtained by avoid-
ing the acquisition of locks on the objects in the transac-
tions’ read-set, as implemented by other lock-based TMs,
e.g., TL2 [12]. But the reason why we acquire locks on the
read-set of a transaction T , is to prevent a concurrent trans-
action T ′ from committing a new version of an object read
by T and just after T successfully validated that object. In
this case, in fact, the commit of T ′ could possibly complete
even before the completion of the commit of T even though
T ′ has to appear as serialized after T . The correct execu-
tion on a run like that is to force an abort of the transactions
that try to read an object still locked by T (e.g., TL2 [12]).
However, our TM has to ensure wait-free read-only transac-
tions, hence reads executed on locked objects can generate
neither aborts nor delays.

Finally the snapshot S of each newly committed version
(i.e., newS in the pseudocode) results in a vector clock
greater than all the most recent committed snapshots as-
sociated with the objects in the read-set and write-set (lines
10, 19 and 26). Further, the cid of those versions is equal
to the identifier of the process committing the transaction
(line 27).

After having completed the updates on the versions’
chains, a transaction marks the new versions as committed
(lines 31-32) and it releases the previously acquired locks
(lines 33-34).

4.3 Correctness Arguments

In the following we provide arguments on why the pro-
posed algorithm ensures EUS and WRTO. We also discuss
what mechanisms it employs to ensure liveness.

Regarding EUS, the acquisition of locks on read-set and
write-set plus the validation of the read-set is used to seri-
alize conflicting update transactions by preventing the pos-
sibility of cycles in the DSG of the history of the committed
update transactions Hupc. Read-only transactions are guar-
anteed to observe (possibly different) linearizations of the
partial order defined by DSG(Hupc), since the necessity to
advance maxS, which is used to determine the most recent
version visible by a transaction, triggers the re-validation of
the transaction read-set. This re-validation ensures that the
previous reads executed by the transaction would have re-
turned the same value, if they had been executed using the
new value of maxS.

Intuitively, the algorithm guarantees WRTO, since, given
two transactions T1,T2 ∈ H such that T1 ≺WRTO

H T2, a read
operation by T2 on an object written by T1 never returns a
committed version ver such that ver is serialized before T1.

Concerning liveness, the proposed algorithm ensures wait-
free read-only transactions and strong progressive update
transactions. The former follows trivially from that we never
block or abort a read-only transaction (and we are assuming
parasitic-free histories). As for update transactions, if we ex-
clude shared locks since they can be simultaneously acquired
by read operations at commit time, they achieve strong
progressiveness as the commit scheme that they adopt fol-
lows the lock-based scheme implemented in TL2 [12], which
has already been proved to guarantee strong progressiveness
in [17].

5. TIME AND SPACE COMPLEXITY OF
DAP TM IMPLEMENTATIONS

Despite the theoretical relevance of the algorithm in Sec-
tion 4, we note that it comes with a non-negligible overhead:
each version of a transactional object has to keep a vector
clock as big as the maximum number of concurrent processes
Np; a read operation of a read-only transaction may accom-
plish k ·No steps in order to return the correct value, where
k is the number of versions of a transactional object, and No

is the total number of transactional objects. In the follow-
ing we prove that these costs are necessary even considering
only Consistent View and WRTO.

5.1 Time Complexity
In this section we investigate the costs a WDAP TM has to

pay if it guarantees WFIRO when the correctness guarantee
is Consistent View. Roughly, this means that every read
operation does not observe any incorrect state as long as
write transactions produce correct states. Note that the
latter is needed because Consistent View does not enforce
write transactions to always produce correct states (unlike
EUS). We also suppose that the TM guarantees WRTO,
in order to rule out any trivial implementation of WFIRO,
in which the read-only transactions only observe the initial
version of the transactional objects.

The intuition behind the result is that such a TM cannot
always ensure a constant cost for handling any read opera-
tion because a read cannot rely on any shared timestamp to
determine the correct state to be observed (as for TL2 [12]
or LSA [29]). In fact, if that was the case, then the TM



would trivially violate DAP. In particular, what we show is
that, the maximum number of steps performed by any read
operation of read-only transactions for determining whether
a version can be observed without violating Consistent View
is Ω(No). Let us introduce the definition of read-only time
complexity of a TM.

Definition 1. The read-only time complexity of a TM is
the maximum number of steps performed by any read oper-
ation of any read-only transaction executed by the TM.

Given the previous definition, we show that the read-only
time complexity of the above TM is Ω(k ·No), where k is the
maximum number of versions associated with any transac-
tional object. For convenience in the proof we rely on the
function CheckVersion, which determines whether a live
read-only transaction that executes a read operation on an
object x is allowed to observe the version xi of x. More
formally, given a configuration Ψk, a read-only transaction
Tro live in Ψk, and a version xi that exists in Ψk, Check-
Version(Ψk,Tro,xi) returns true if Tro can return xi by ex-
ecuting a read operation on x without violating Consistent
View; it returns false otherwise.

The proof is based on the following scenario: a read-only
transaction Tro whose read-set has been invalidated by a
write transaction Ti and such that it executes a read oper-
ation on an object x after the invalidation. Here, we focus
on how to determine the correct version of x to be observed.
Clearly, Tro cannot observe the version xi if xi has been
written by Ti because the resulting DSG would contain the
following cycle: Tro

rw
� Ti

wr−−→ Tro. In addition, Tro can-
not arbitrarily decide not to observe xi because it could have
been written by a transaction committed before Tro’s begin,
hence violating WRTO.

To determine this, the function CheckVer-
sion(Ψk,Tro,xi) executed by a WDAP TM has to apply
trivial primitives on the base objects associated with the
objects that Tro already read (i.e., the validation of Tro’s
read-set). Let us assume that at the time Tro executes
its read operation on x, it has already executed read
operations on all the other objects, then the number of
steps performed by CheckVersion(Ψk,Tro,xi) is Ω(No).
Now, if we suppose that there are k versions associated with
any transactional object, the number of steps performed by
the Tro’s read operation on x is equal to Ω(k · No), which
is also the read-only time complexity of the TM. In the
following proof we assume either obstruction-free or weakly
progressive write transactions.

Theorem 3. Given a WDAP multi-version TM that
guarantees WFIRO, Consistent View, WRTO, and either
obstruction-freedom or weak progressiveness for write trans-
actions, the read-only time complexity of the TM is Ω(k·No),
where k is the number of versions a transactional object can
have, and No is the total number of transactional objects.

Proof. By hypothesis we consider a WDAP multi-
version TM that guarantees WFIRO, Consistent View,
WRTO, and either weakly progressive or obstruction-free
write transactions. Also, let E = E1 · E2 · E3 · E4 be the
following execution of the TM in which only the processes p1
and p2 take steps. E1: transaction T1, executed by process
p1, writes to all the No shared objects some values and then
it commits. E2: transaction Tro, executed by process p2,

performs Θ(No) read operations on Θ(No) different objects
from some set QRO. Due to WRTO, these operations re-
turn the last available versions (the ones committed by T1).
E3: transaction Ti, executed by process p1, performs Θ(No)
write operations on Θ(No) different objects from some set
QWR = Q1 ∪ {y}, such that Q1 ∩ QRO = ∅ and y ∈ QRO.
Then Ti commits. E4: transaction Tro performs a read op-
eration on object x ∈ Q1 (thus x 6∈ QRO) and it returns
the version xj such that xj � xi and xi is the version of x
committed by Ti. We also assume that the process running
in an execution interval (i.e., E1, E2, E3, E4) runs solo in
that interval.
E is an admissible execution for the assumed TM be-

cause no transaction in E violates neither the liveness nor
the correctness properties guaranteed by the TM. Regarding
the former, no read operation of Tro can generate an abort
since read-only transactions are wait-free; and both the write
transactions T1 and Ti have to commit in E because of the
following. T1 has to commit in E because it runs solo (as
required by obstruction-freedom) and it does not encounter
any conflict (as required by weak progressiveness); Ti has to
commit under obstruction-freedom because it runs solo, and
it has to commit under weak progressiveness (even though it
encounters a conflict with Tro) for the following reason: Ti

has to commit also in an execution E′ = E1 ·E3, where Tro

is not processed, and E′ and E are indistinguishable to p1
since Tro is invisible. Regarding the correctness guarantee,
the history E|H does not violate Consistent View since the
graph DSG(E|H) does not contain any oriented cycle (in-
cluding those with exactly one anti-dependence edge) and
transactions only observe committed values. The graph is
the union of the paths T1

wr−−→ Tro
rw

� Ti and T1
ww−−→ Ti.

We define the configuration Ψk as the result of the process-
ing of E1 ·E2 ·E3. Now, by contradiction we assume that the
number of steps for executing CheckVersion(Ψk,Tro,xi) is
O(No). Our assumption means that, when Tro executes
the read operation on x in E4, p2 executes O(No) steps
by applying trivial primitives on O(No) base objects, in or-
der to determine that xi cannot be visible. In fact, if that
read operation returned xi, then Consistent View would
be violated. Our assumption also entails that Ti has to
apply non-trivial primitives on O(No) base objects among
the ones accessed by Tro to guarantee the correct execution
of CheckVersion(Ψk,Tro,xi) in E. In fact, if that is not
the case and Ti’s execution applies non-trivial primitives on
No − O(No) base objects among the ones that are not ac-
cessed by Tro, then E|H can violate Consistent View because
CheckVersion(Ψk,Tro,xi) can return true by erroneously
applying trivial primitives on only O(No) base objects.

We now show that our assumption leads us to a contradic-
tion since either the worst case of O(No) steps is not enough
to preserve Consistent View or WDAP is not guaranteed. To
do that, let us consider an execution E′′ = E1 ·E2 · Ē3 ·E4,
where Ē3 differs from E3 only because QWR is equal to
Q1 ∪ {z} in Ē3, where z ∈ QRO. First, we have to notice
that E′′ is admissible for the assumed TM because of the
same arguments provided for E. Then, since Ti does not
write on y in Ē3, but it writes on z, it has to apply non-
trivial primitives on the O(No) base objects which Tro ap-
plies trivial primitives on. In fact, if that is not the case and
Ti’s execution applies non-trivial primitives on No −O(No)
base objects among the ones that are not accessed by Tro,
then E′′|H can violate Consistent View because Check-



Version(Ψk,Tro,xi) can return true by erroneously applying
trivial primitives on only O(No) base objects.

However, if that is the case, we can build Θ(No) execu-
tions like E′′, i.e., E∗, where z is replaced by an object
among the ones in QRO, and Ti’s execution in E∗ performs
its write operations by applying non-trivial primitives on
O(No) base objects among the ones accessed by Tro. Since
the executions are Θ(No) and the base objects accessed by
Tro are only O(No), there exist at least two executions of
them where the transactions Ti in the two executions access
at least one common base object among the O(No) previ-
ously accessed by Tro. Without loss of generality we assume
that those two executions are E and E′′.

Therefore Ti in E and Ti in E′′ access at least one com-
mon base object among the O(No) previously accessed by
Tro, and the access to that base object depends on the write
operations on y and z respectively, in order to be distinguish-
able to the process executing Tro from an execution where
Ti does not write any object in QRO (Ti does not invalidate
Tro’s read-set). Consequently, such a TM must accept an
execution with two concurrent non-conflicting transactions
T ∗i and T+

i , one writing only y and the other writing only z,
which both access at least one common base object among
the O(No) previously accessed by Tro, thus violating WDAP
due to Lemma 1.

Therefore, since the assumption on the cost of O(No)
for CheckVersion(Ψk,Tro,xi) entails a TM that vio-
lates either WDAP or Consistent View, then CheckVer-
sion(Ψk,Tro,xi) must have a cost equal to Ω(No). Thus the
maximum number of steps performed by any read operation
of read-only transactions for determining whether a version
can be observed without violating Consistent View is Ω(No).
If we suppose that there are k versions of any transactional
object, then the read-only time complexity of the assumed
TM is equal to Ω(k ·No).

5.2 Space Complexity
We now investigate the space complexity of a SDAP multi-

version TM that guarantees WFIRO, namely the necessary
meta data associated with each version of a transactional
object. We prove a lower bound that holds assuming Con-
sistent View as correctness guarantee, WRTO, and assum-
ing either weak progressiveness or obstruction-freedom for
write transactions. Note that in this lower bound we con-
sider SDAP, which matches also the variant of DAP ensured
by the algorithm in Section 4, rather than WDAP as before.

As in the proof of the time complexity, we assume that the
TM also guarantees WRTO to rule out any trivial implemen-
tation of WFIRO, in which the read-only transactions only
observe the initial transactional state. In order to derive
an implementation-independent proof, we use an innovative
technique, which shows an equivalence between the problem
of detecting cycles containing exactly one anti-dependence
edge using a SDAP TM, and determining causality in a dis-
tributed message passing system. The intuition behind the
proof is that whenever a read-only transaction executes a
read operation, it needs to detect whether that operation
creates a cycle with one anti-dependence edge in the con-
flict graph associated with the current history. Due to the
existence of the SDAP requirement, this check has to be
performed without indiscriminately accessing all the infor-
mation associated with the conflict graph, but only extract-

…" Ts#1%

wr"

rw"

wr"

Ts%T1%Tj%

Tq%

Tro%

Figure 6: Tro creating a cycle C with exactly one
anti-dependence edge in DSG(H).

ing this information via the base objects associated with the
accessed transactional objects.

Theorem 4. Given a SDAP TM that guarantees
WFIRO, Consistent View, WRTO and either obstruction-
freedom or weak progressiveness for the write transactions,
then the space complexity for each version of a transactional
object is Ω(m), where m = min(No, Np).

Proof. To guarantee Consistent View, the TM has to en-
sure that every accepted history H does not contain a cycle
C with exactly one anti-dependence edge in the DSG(H).
We assume that an initial version of each transactional ob-
ject d exists in the TM, which we denote with d0. Now
consider the history H whose DSG(H) is shown in Figure 6,
in which the first transaction to execute in absence of con-
currency is Tq, which commits the version xq. As we assume
obstruction-freedom or weak progressiveness, the TM can-
not refuse Tq’s commit.

After Tq’s commit a read-only transaction Tro issues a
read on object x. As we assume WFRO, the read operation
of Tro must eventually return some value, and by WRTO,
the value returned has to be xq. Before Tro takes any
other step, transaction Tj starts, writes xj and d1j (where

we assume object d1 6= x) and commits (we will shortly
prove that this commit cannot be rejected by the TM).
Following the commit of Tj , the set of write transactions
T ={T1,. . .,Ti,. . .,Ts−1,Ts} is executed sequentially. Each
transaction Ti ∈ T issues the following operations in H: Ti

starts, reads an object di, writes a different object di+1, and
requests to commit. We further assume that each transac-
tion Ti runs solo, i.e., Ti+1 starts only after Ti commits. As
we assume that transaction T1 and the transactions in T run
solo, they must commit if we assume obstruction-freedom.
On the other hand, if we assume weak progressiveness, Tj

may abort due to the presence of an anti-dependency on Tro.
However, since we assume invisible read-only transactions,
Tj cannot detect the occurrence of this conflict and, also in
this case, it cannot abort.

Now, let us assume that Tro issues a read operation on ob-
ject ds+1. At this point, as Ts committed version ds+1

s , Tro

needs to decide whether to observe this version or not. Note
that, since Tro has already developed an anti-dependence to-
wards Tj , if Tro observed ds+1

s , Consistent View would be vi-
olated, as a cycle with exactly one anti-dependence would be
created. Also, since we assume that the TM ensures WRTO,
it cannot deterministically return the initial version ds+1

0 . In
fact, using such a deterministic policy, it is straightforward
to show that a read-only transaction T ′ may trivially miss
the version committed by a write transaction that commits
before T ′’s begin. Also, in the assumed history, Tro cannot
be aware of having developed an anti-dependence towards
Tj , as we assume IRO. Hence, by no means, Tro could have



transmitted any information to Tj on the execution of its
read on xq. Further, no other transaction could have noti-
fied Tro of the existence of such anti-dependence.

Note that if Tro ignored the possibility of having devel-
oped new anti-dependences when determining the visibility
of ds+1

s , it could miss the existence of the cycle C, and vio-
late Consistent View. It follows that Tro has to first validate
its current read-set, which comprises only xq. This allows
Tro to detect the anti-dependence with Tj , and poses Tro

with the problem to determine whether there exists an ori-
ented path from Tj to Ts (in which case ds+1

s should not
be observed). Note that since we assume a SDAP TM, Tro

needs to detect the existence of a path of direct dependencies
from Tj to Ts, without however being able to apply trivial
operations to any of the base objects that the transactions
T1,. . .,Ts−1 accessed (as Tro accesses a disjoint data set with
respect to these transactions).

We now assume a total number of transactional objects
greater than the maximum number of concurrent processes
(i.e., No ≥ Np). In a SDAP TM, the only way for transac-
tions to transmit information concerning the conflicts that
they develop is via the base objects associated with the
transactional objects that they access. The transmission of
this information can be emulated considering a distributed
message passing system (DS) comprising the same number
of processes considered in the TM, namely Np. Consider,
in particular, the following simulation: for each direct read-
dependence edge Ti

wr−−→ Ti+1 ∈DSG(H) developed by a pair
of write/read operations on version di+1

i of transactional ob-
ject di+1, we can associate the events of send, respectively
receive, of a message mi,i+1 in DS from pi, respectively to
pi+1. Since the communication of any type of information on
the ordering of events in a SDAP TM can only take place via
base objects, this can be simulated in the DS by assuming
that mi,i+1 can only be tagged with the information that Ti

had stored in the base object associated with version di+1
i ,

at the time in which Ti created it. Analogously for the di-
rect anti-dependence edge Tro

rw
� Tj ∈DSG(H) developed

by the operations R(xq) and W (xj), we can associate the
events of send, respectively receive, of a message mj,ro in
DS from pj , respectively to pro. What triggers the sending
of this message in this history is the fact that Tro has to
access the base object of xj (and of all existing versions of
x) in order to validate its read-set.

With this simulation we transformed the problem of deter-
mining if there exists a path from Tj to Ts in DSG(H) based
on the information available to Tro, to the problem of hav-
ing the process pro (that executes transaction Tro) in DS to
determine if the two messages mj,ro and ms,ro are causally
ordered [23], namely mj,ro ≺DS ms,ro. Thanks to the result
in [24], in a distributed system of Np processes such as DS,
given two events e and e′, e ≺DS e

′ iff V(e) < V(e′), where
V(e) (respectively V(e′)) is the vector clock of size Np asso-
ciated to e (respectively e′). Hence the base objects need to
have a space capacity equal [10] to Ω(Np).

We now go over the case where the total number of trans-
actional objects is lesser than the maximum number of con-
current processes (i.e., No < Np). In this case, each version
encodes the most recent state of the TM at the time the
version is created. By doing so, a transaction has all the
sufficient information to decide whether a version can be
read or not. Note that, storing the most recent state of
the whole TM in each version is also (trivially) necessary in

this case because keeping the entire state but one transac-
tional object could let the TM miss a dependency on that
object, thus generating a violation of Consistent View. For
instance, a TM that follows this intuition has been provided
by Ardekani et al. in [2].

We showed that a lower bound on the space complexity
of each version of a SDAP TM that guarantees Consistent
View, WFIRO, WRTO and obstruction-freedom (or weak
progressiveness), is Ω(m), where m = min(No, Np).

6. RELATED RESULTS
Theorem 1 has relations with a lower bound [4] defined on

the number of non-trivial primitives applied by read-only
transactions in a Strict Serializable and DAP TM (where
DAP here is the one defined in [22]) that ensures minimal
progressiveness for write transactions. This lower bound
defines a necessary condition for the visibility of the read-
only transactions to ensure WFRO and Strict Serializability,
that is not sufficient in the case of obstruction-free write
transactions because it is superseded by Theorem 1 in that
case (since Strict Serializability demands RTO [25, 16]).

On the other hand, that necessary condition is also a suf-
ficient condition in case write transactions are weakly pro-
gressive. As an evidence of that, Attiya and Hillel proposed
such a TM in [3], which is even able to guarantee opacity.

If we suppose a parasitic-free TM, the impossibility pre-
sented by Perelman et al. [28] uses the same assumptions of
Theorem 2, and proves that such a TM cannot guarantee
Strict Serializability. In fact, it is easy to prove that, in a
parasitic-free TM, MV-permissiveness may imply wait-free
and invisible read-only transactions, and weakly progressive
write transactions. However, the result is weaker than the
one of Theorem 2, since Strict Serializability demands RTO.

The impossibility result by Guerraoui and Kapalka [15]
rules out the possibility to combine a SDAP TM and
obstruction-free transactions if the target correctness guar-
antee is Serializability. The authors prove the result by only
considering write transactions, and therefore we can con-
sider their impossibility still valid if the target correctness
guarantee is EUS. Later this same impossibility result [15]
has been superseded by the results of the PCL theorem [8],
which relaxes the correctness guarantee assumed in [15]. Our
algorithm overcomes those two results by assuming a differ-
ent progress guarantee for write transactions.

Our lower bound on the time complexity is related to
the lower bound presented in [16] where the authors prove
that the maximum number of steps performed by any op-
eration of any transaction executed by a progressive (which
is stronger than weakly progressive) single-version TM is
Ω(No) if the TM guarantees opacity.

7. CONCLUSIONS
In this paper we enriched the literature on impossibil-

ity, possibility, and lower bound results of DAP TM. We
presented two impossibility results ruling DAP TM that
guarantees real-time order relations and a set of desirable
progress properties. Furthermore, we provided a possibil-
ity result: an algorithm that circumvents the existing DAP
limitations by providing a strong correctness property (i.e.,
EUS), a variant of the real-time order we introduced in this
paper (i.e., Witnessable Real-Time Order), and the same
set of progress properties as before. We also provided two



lower bounds on the space and time complexity of such a
DAP TM, which highlight that efficient DAP TM imple-
mentations should necessarily sacrifice either invisible reads
or wait-freedom for read-only transactions because lowering
the correctness level is not enough.

8. ACKNOWLEDGMENTS
The authors thank Rachid Guerraoui and Srivatsan

Ravi for the useful feedbacks. Peluso, Palmieri and
Ravindran are supported in part by US Air Force Office
of Scientific Research under grants FA9550-14-1-0143 and
FA9550-14-1-0187, and US National Science Foundation un-
der grant CNS-1217385. Romano is supported in part
by FCT projects UID/CEC/50021/2013 and EXPL/EEI-
ESS/0361/2013.

9. REFERENCES
[1] A. Adya. Weak Consistency: A Generalized Theory

and Optimistic Implementations for Distributed
Transactions. PhD thesis, 1999.

[2] M. S. Ardekani, P. Sutra, and M. Shapiro.
Non-monotonic snapshot isolation: Scalable and
strong consistency for geo-replicated transactional
systems. In SRDS, pages 163–172, 2013.

[3] H. Attiya and E. Hillel. A single-version STM that is
multi-versioned permissive. Theory Comput. Syst.,
51(4):425–446, 2012.

[4] H. Attiya, E. Hillel, and A. Milani. Inherent
limitations on disjoint-access parallel implementations
of transactional memory. Theory Comput. Syst.,
49(4):698–719, 2011.

[5] H. Avni and N. Shavit. Maintaining Consistent
Transactional States Without a Global Clock. In
SIROCCO, pages 131–140, 2008.

[6] H. Berenson, P. Bernstein, J. Gray, J. Melton,
E. O’Neil, and P. O’Neil. A Critique of ANSI SQL
Isolation Levels. In SIGMOD, pages 1–10, 1995.

[7] P. A. Bernstein, V. Hadzilacos, and N. Goodman.
Concurrency Control and Recovery in Database
Systems. Addison-Wesley, 1987.

[8] V. Bushkov, D. Dziuma, P. Fatourou, and
R. Guerraoui. The PCL Theorem. Transactions
cannot be Parallel, Consistent and Live. In SPAA,
pages 178–187, 2014.

[9] V. Bushkov, R. Guerraoui, and M. Kapalka. On the
liveness of transactional memory. In PODC, pages
9–18, 2012.

[10] B. Charron-Bost. Concerning the size of logical clocks
in distributed systems. Inf. Process. Lett., 39(1):11–16,
1991.

[11] T. David, R. Guerraoui, and V. Trigonakis.
Everything you always wanted to know about
synchronization but were afraid to ask. In SOSP,
pages 33–48, 2013.

[12] D. Dice, O. Shalev, and N. Shavit. Transactional
Locking II. In DISC, pages 194–208, 2006.

[13] S. Doherty, L. Groves, V. Luchangco, and M. Moir.
Towards formally specifying and verifying
transactional memory. Formal Asp. Comput.,
25(5):769–799, 2013.

[14] F. Ellen, P. Fatourou, E. Kosmas, A. Milani, and
C. Travers. Universal constructions that ensure
disjoint-access parallelism and wait-freedom. In
PODC, pages 115–124, 2012.

[15] R. Guerraoui and M. Kapalka. On Obstruction-free
Transactions. In SPAA, pages 304–313, 2008.

[16] R. Guerraoui and M. Kapalka. On the correctness of
transactional memory. In PPoPP, pages 175–184,
2008.

[17] R. Guerraoui and M. Kapalka. The Semantics of
Progress in Lock-based Transactional Memory. In
POPL, 2009.

[18] R. Guerraoui and P. Romano. Transactional Memory.
Foundations, Algorithms, Tools, and Applications.
Springer, 2015.

[19] M. Herlihy. Wait-free synchronization. ACM
TOPLAS, 13(1), 1991.

[20] M. Herlihy, V. Luchangco, and M. Moir.
Obstruction-Free Synchronization: Double-Ended
Queues As an Example. In ICDCS, pages 522–529,
2003.

[21] D. Imbs and M. Raynal. Virtual World Consistency:
A Condition for STM Systems (with a Versatile
Protocol with Invisible Read Operations). Theoretical
Computer Science, 444:113–127, July 2012.

[22] A. Israeli and L. Rappoport. Disjoint-access-parallel
Implementations of Strong Shared Memory Primitives.
In PODC, pages 151–160, 1994.

[23] L. Lamport. Time, clocks, and the ordering of events
in a distributed system. Communications of the ACM,
21(7):558–565, 1978.

[24] F. Mattern. Virtual time and global states of
distributed systems. In Parallel and Distributed
Algorithms, pages 215–226, 1989.

[25] C. H. Papadimitriou. The Serializability of Concurrent
Database Updates. Journal of the ACM,
26(4):631–653, Oct. 1979.

[26] S. Peluso, R. Palmieri, P. Romano, B. Ravindran, and
F. Quaglia. Disjoint-Access Parallelism: Impossibility,
Possibility, and Cost of Transactional Memory
Implementations. Technical report, Virginia Tech,
2015.

[27] S. Peluso, P. Ruivo, P. Romano, F. Quaglia, and
L. Rodrigues. When Scalability Meets Consistency:
Genuine Multiversion Update-Serializable Partial
Data Replication. In ICDCS, pages 455–465, 2012.

[28] D. Perelman, R. Fan, and I. Keidar. On maintaining
multiple versions in STM. In PODC, pages 16–25,
2010.

[29] T. Riegel, P. Felber, and C. Fetzer. A Lazy Snapshot
Algorithm with Eager Validation. In DISC, pages
284–298, 2006.

[30] N. Shavit and D. Touitou. Software transactional
memory. In PODC, pages 204–213, 1995.


