
Noname manuscript No.
(will be inserted by the editor)

On Scheduling Garbage Collector in Dynamic
Real-Time Systems With Statistical Timing
Assurances

Hyeonjoong Cho1, Chewoo Na1, Binoy Ravindran1, and E.
Douglas Jensen2

1 ECE Dept., Virginia Tech, Blacksburg, VA 24061, USA e-mail: {hjcho, cwrha,

binoy}@vt.edu
2 The MITRE Corporation, Bedford, MA 01730, USA e-mail: jensen@mitre.org

Abstract We consider garbage collection (GC) in dynamic real-time sys-
tems. We consider the time-based GC approach of running the collector as a
separate, concurrent thread, and focus on real-time scheduling to obtain as-
surances on mutator timing behavior, while ensuring that memory is never
exhausted. We present a scheduling algorithm called GCUA. The algorithm
considers mutator activities that are subject to time/utility function time
constraints, variable execution time demands, the unimodal arbitrary arrival
model that allows a strong adversary, and resource overloads. We establish
several properties of GCUA including probabilistically-satisfied utility lower
bounds for each mutator activity, a lower bound on the system-wide total
accrued utility, bounded sensitivity for the assurances to variations in mu-
tator execution time demand estimates, and no memory exhaustion at all
times. Our simulation experiments validate our analytical results and con-
firm the algorithm’s effectiveness and superiority.

1 Introduction

Traditionally, memory management in embedded real-time systems is lim-
ited to static partitioning. Although this approach is desirable (and efficient)
when application’s memory requirements are small and can be statically
estimated (as is typically the case for many hard real-time systems), it
is inflexible for dynamic application systems, which desire run-time mem-
ory allocation. Dynamic memory management is more flexible, but suf-
fers from software engineering and product life-cycle disadvantages—e.g.,
programming becomes complex reducing code robustness and increasing
maintenance costs. Dynamic, automatic memory management or garbage

2 Hyeonjoong Cho, Chewoo Na, Binoy Ravindran, and E. Douglas Jensen

collection (GC) overcomes these problems, but introduces unpredictabil-
ity on GC-pause times, which is antagonistic to timeliness optimization in
real-time systems. This drawback has motivated research on real-time GC
(see [10] for an excellent survey).

Real-time GC efforts can be classified into work-based (or allocation-
based) and time-based [10]. In the work-based approach, the GC work is
distributed over that of the application activities (called “mutator”) by
performing a bounded amount of GC work at each mutator allocation re-
quest. Examples include Baker’s incremental collector [14] — one of the
earliest real-time GC efforts and the basis for a number of subsequent ef-
forts [1, 4–6,18,24,30].

Though the work-based approach reduces the individual pause times,
timing assurances are generally difficult to obtain with the approach, be-
cause, worst-case time bounds on each of the GC work attached to the
mutator allocations must be determined, for analyzing mutator timing be-
havior. As Detlefs shows in [10], such time bounds are likely to be highly
pessimistic. This is because, rare, but expensive GC operations must be
accounted for in each allocation, to account for the worst-case GC cost. For
example, in the semi-space copying collector used in Baker’s work [14] and
its derivative works, scanning thread stacks to identify reachable objects
and copying the objects from the from-space to the to-space during a flip
operation is expensive, though flips are rare. Further, mutator reads occur-
ring immediately after a flip are likely to trigger the read-barrier, resulting
in the worst-case read cost; reads at other times will cost much less, since
objects will be in the to-space. Nevertheless, the worst-case GC cost must
be considered for each allocation to upper bound the GC work. Such overly
pessimistic analysis will likely result in infeasible real-time schedules.

In the time-based approach, the GC executes as a separate thread and
is scheduled by the real-time scheduler just as another application real-time
thread (i.e., mutator thread). The advantage of this approach is that the
GC work is no longer coupled with each allocation, and is directly exposed
to the scheduler. Thus, a mutator thread’s execution time does not include
GC time, since all GC operations are encapsulated in the GC thread, and
consequently tightens mutator execution times to that in a system without
GC. Further, the problem of obtaining timing assurances in the presence
of a GC, now becomes a real-time scheduling problem: How to schedule
the mutator and the GC to satisfy application time constraints, while not
exhausting memory? Example works in this paradigm include [3, 11, 13, 19,
28].

In this paper, we consider garbage collection in dynamic real-time sys-
tems. By dynamic systems, we mean those that operate in environments,
where arrival and execution time behaviors of mutator activities are subject
to run-time uncertainties, causing resource overloads. Yet, such systems de-
sire the strongest possible assurances on mutator timing behaviors — both
that of individual activities and that of collective, system-wide behavior.
Hard real-time assurances — i.e., all activity deadlines will always be met

Scheduling Garbage Collector in Dynamic Real-Time Systems 3

— are generally impossible for these systems, as their dynamic operating
conditions violate the pre-requisites needed for obtaining those assurances.
Another important distinguishing feature of most of these systems (at least
the ones of primary interest to us) is their relatively long activity execu-
tion time magnitudes, compared to those of conventional hard real-time
subsystems—e.g., in the order of milliseconds to minutes. Some examples
of such dynamic systems that motivate our work include [8, 9].

Statistical assurances (e.g., meeting all deadlines with 80% probability,
meeting 95% of deadlines, missing deadlines with none more than 30% tardy,
missing deadlines with a maximum mean tardiness of 20%) are appropriate
for these systems, and possible, when activities exhibit non-deterministic,
but stochastic behaviors.

An activity’s urgency is typically orthogonal to its relative importance—
-e.g., the most urgent activity can be the least important, and vice versa; the
most urgent can be the most important, and vice versa. Hence when resource
overloads occur, completing the most important activities irrespective of
activity urgency is often desirable. Thus, a clear distinction has to be made
between urgency and importance, during overloads. During under-loads,
such a distinction need not be made, because algorithms exist that can
meet all deadlines (e.g., EDF on one processor).

Deadlines by themselves cannot express both urgency and importance.
Thus, we consider the abstraction of time/utility functions (or TUFs) [17]
that express the utility of completing an application activity as a function
of that activity’s completion time. We specify deadline as a binary-valued,
downward “step” shaped TUF — i.e., a positive utility is accrued for com-
pleting the activity anytime before the deadline time, after which zero (or
infinitively negative utility) is accrued. Figure 1(a) shows examples. Note
that a TUF decouples importance and urgency—i.e., urgency is measured
as a deadline on the X-axis, and importance is denoted by utility on the
Y-axis.

-
Time

6
Utility

0

(a)

-
Time

6
Utility

0

bbb

(b)

-
Time

6
Utility

S
SS

0
HH

(c)

Fig. 1 Example TUF Time Constraints: (a) Step TUFs; (b) AWACS TUF [8];
and (c) Coastal Air defense TUFs [23]

Our motivating applications also have activities that are subject to non-
deadline time constraints, such as those where the utility attained for ac-
tivity completion varies (e.g., decreases, increases) with completion time.
Figures 1(b) and 1(c) show example such time constraints from two real
applications in the defense domain [8, 23].

4 Hyeonjoong Cho, Chewoo Na, Binoy Ravindran, and E. Douglas Jensen

In this paper, we consider repeatedly occurring mutator activities that
are subject to TUF time constraints and variable execution times. Activities
may constitute resource overloads. To account for uncertainties in activity
execution behaviors, we consider a stochastic model, where activity exe-
cution demand is stochastically expressed. To account for the variability
in activity arrivals, we describe arrival behaviors using the unimodal arbi-
trary arrival model (or UAM) [15], which specifies the maximum number
of arrivals that can occur (with any frequency) during any time interval.
Consequently, the model subsumes most traditional arrival models (e.g.,
frame-based, periodic, sporadic) as special cases. We consider garbage col-
lection in this mutator model, and in particular, time-based GC, due to its
previously mentioned advantages. Similar to [28], we completely decouple
the mutator and the GC, allowing for any incremental GC algorithm with
fine granularity—e.g., [13].

For such a mutator model, our scheduling objective is to: (1) provide
statistical assurances on individual activity timeliness behavior including
probabilistically-satisfied lower bounds on each activity’s maximum utility;
(2) provide assurances on system-level timeliness behavior including assured
lower bound on the sum of activities’ attained utilities; and (3) maximize
the sum of activities’ attained utilities, while guaranteeing that memory is
never exhausted.

This problem has not been studied in the past and is NP-hard. We
present a polynomial-time, heuristic scheduling algorithm for the problem
called the garbage collector utility accrual scheduling algorithm (or GCUA).
We prove several properties of GCUA including optimal total utility for
activities during under-loads with step TUFs, lower bounds on each activ-
ity’s accrued utility that are probabilistically satisfied, a lower bound on the
sum of activities’ attained utilities, and no memory exhaustion during both
under-loads and overloads. We also show that the algorithm’s assurances
have bounded sensitivity to variations in activities’ execution time demand
estimates. Our simulation-based experiments validate our analytical results
and confirm GCUA’s effectiveness and superiority.

Except for [11], none of the past real-time GC efforts consider dynamic
real-time systems with variable execution demand, arbitrary arrivals, over-
loads, and TUF time constraints. The work in [11] considers overloads and
TUFs, however, no assurances on mutator timing behavior such as lower
bounds on individual and collective accrued activity utility are provided. In
contrast, our work precisely provides such assurances.

Thus, the contribution of the paper is the GCUA scheduling algorithm
that provides assurances on (individual and collective) mutator timing be-
havior in dynamic real-time systems. To the best of our knowledge, we are
not aware of any other efforts that solve the problem solved by GCUA.

The rest of the paper is organized as follows: In Section 2, we pro-
vide background on the GC techniques that form the basis of our work.
Section 3 describes our models and scheduling objective. In Section 4, we
discuss the rationale behind GCUA and present the algorithm. We estab-

Scheduling Garbage Collector in Dynamic Real-Time Systems 5

lish the algorithm’s properties in Section 5 and report our simulation-based
experimental studies in Section 6. The paper concludes in Section 7.

2 Background

Baker’s algorithm [14], one of the earliest real-time GC works, is the basis
for most of the work-based approaches. The GC algorithm in Baker’s work
(and in its derivative works) is a variant of the semi-space copying collector
approach [12]. In this GC paradigm, memory is partitioned into two regions
called from-space and to-space, and allocation proceeds from the from-space
until it is exhausted, which triggers collection. The collector copies all live
objects from the from- to the to-space, compacts the objects in the to-space
while copying (thereby generally occupying only a small portion of the to-
space), and thus frees up the from-space. The two regions then flip their
roles, and subsequent allocation proceeds from the new from-space, and the
process repeats in the reverse direction.

In Baker’s algorithm [14], the GC work is distributed over the mutator
operation to minimize individual pause times due to the GC. This is done
by ensuring that the mutator is exposed only to the to-space after a flip
through a read-barrier : When the mutator attempts to read an object, the
barrier checks whether the object is in the from-space, and if so, it is copied
to the to-space, and a forwarding pointer that points to the object in the
to-space from the from-space is returned (consequently increasing the cost
of the original read).

Baker’s approach was built upon by many others. Brooks’s GC [5], a
variant of Baker’s algorithm, reduces the increased cost of reads (due to
Baker’s read-barrier), which are generally frequent, by doing the costly bar-
rier operation on writes, which are less frequent. Thus, object copying is
done only when mutator writes to objects. The Appel-Ellis-Li collector [1]
uses virtual memory protection, instead of a read-barrier, to ensure that
mutator always reads from, and writes to, the to-space region. Nettles and
O’Toole’s replicating copying collector [24] avoids a read-barrier by simulta-
neously updating the object copies in the two spaces. But this substantially
increases the cost for writes. Cheng and Blelloch present a parallel extension
of this collector in [6].

The idea of running the collector as a separate, concurrent thread has its
roots in many work-based approaches—e.g., the Appel-Ellis-Li [1], Nettles
and O’Toole’s [24], North and Reppy’s [25]. However, one of the first efforts
where this was done for real-time GC with assurances on mutator timing
behavior is Henriksson’s work [13]. In [13], Henriksson reduces the increased
cost of writes in Brooks’ algorithm (due to the write-barrier), by delaying
the expensive object copying until the GC runs: When the mutator writes to
a from-space object, the barrier allocates space for the object in the to-space
without copying the object contents, and sets up forwarding pointers that
point to the object’s from-space location through the allocated space in to-
space. The object contents are later copied by the GC when it is scheduled

6 Hyeonjoong Cho, Chewoo Na, Binoy Ravindran, and E. Douglas Jensen

and executes. This moves the copying overhead to the GC, which tightens
mutator execution times and makes it closer to that in a system without
GC.

Henriksson’s mutator model consists of hard real-time threads and non-
real-time threads. To ensure that hard real-time threads do not suffer any
interference from the GC, the GC is run only when those threads are not
executing, and performs an amount of work proportional to the memory
allocated by them. Running the GC (essentially) as a background thread
implies that the GC may not be able to, at least temporarily, “keep up”
with the hard real-time threads, potentially causing memory starvation. To
avoid this, an amount of memory is reserved for those threads, which is
determined using modified generalized RMS [29].

In [19], Kim et. al. reduces the amount of memory reserved in Henriks-
son’s work, which can potentially be large (since the GC is scheduled in the
background), by modelling the GC as an aperiodic thread whose worst-case
sojourn time1 decides the worst-case memory requirement. To minimize the
GCs’ worst-case sojourn time, the GC is scheduled using the sporadic server
(at the highest priority), while hard real-time threads are scheduled using
RMS.

Robertz and Henriksson’s work [28] further decouples the GC from the
mutator by allowing any fine-grained, incremental GC, provided the GC’s
work which must be performed before memory is exhausted can be bounded
(e.g., [13]). Using worst-case mutator allocation needs or online tuning tech-
niques, they derive a deadline for the GC thread, such that satisfying the
GC’s deadline ensures that there will always be enough memory for muta-
tor allocation. The GC thread is run periodically with a period equal to its
deadline. Scheduling of mutator threads and the GC thread is done using
RMS or EDF [16].

Our work builds upon Robertz and Henriksson’s work [28]. While [28]
focuses on systems with deterministic mutator arrival and execution behav-
iors and desire hard real-time assurances, we target dynamic systems that
are subject to uncertainties in mutator behaviors and desire statistical tim-
ing assurances. In Sections 3–5, we show that [28] is a special-case of our
work, both in terms of input models and in terms of output behaviors and
assurances.

The time-based approach is also considered by Bacon et. al. in [3]. Here,
fixed time quanta are assigned to the GC and the mutator, which are then
scheduled in an interleaved manner for their allocated quanta. This ensures
consistent CPU utilization for the mutator, toward obtaining assurances on
mutator timing behavior. This in contrast to our work and [13], [19] [28],
where such assurances are obtained through schedule construction by the
real-time scheduler.2 Further, [3] also reduces the GC’s space overhead by

1 The sojourn time of an activity is the time between the activity’s arrival and
its completion.

2 Note that our algorithm GCUA, explicitly constructs schedules, whereas EDF
and RMS (used in [13], [19] [28]) implicitly do so.

Scheduling Garbage Collector in Dynamic Real-Time Systems 7

using an incremental mark-sweep algorithm with on-demand compaction,
which can support high heap occupancies as there is no memory partitioning
(unlike the semi-space copying collector).

3 Models and Objective

3.1 Mutator and GC Model

We consider the application to consist of a set of mutator tasks, denoted
M={M1, M2, ..., Mn}, running on one processor. Each mutator task Mi

has a number of instances, called jobs. Under the UAM, we associate a tuple
< mi, Wi > with a mutator task Mi, which means that the maximal number
of job arrivals of Mi during any sliding time window of length Wi is mi.
This model allows jobs to arrive at the same time. Note that the periodic
task arrival model is a special case of the UAM with < 1,Wi >, where 1 is
both the upper/lower bound and Wi is the period.

The jth job of mutator Mi is denoted as Ji,j . All mutator tasks are
assumed to be independent—i.e., they do not share any non-CPU resources
or have any precedences. The basic scheduling entity that we consider is the
job abstraction. Thus, we use J to denote a mutator job without being task
specific, as seen by the scheduler at any scheduling event.

Similar to [28], we consider time-based GC, where the GC is run peri-
odically, allowing for any fine-grained incremental GC algorithm. Later, in
Section 4.3, we show how the GC’s period is determined.

A job’s time constraint is specified using a TUF. Jobs of the same mu-
tator task have the same TUF. We use Ui() (or Ui,j()) to denote the TUF
of mutator Mi (or Ji,j). Thus, completion of the job Ji,j at time t will yield
an utility of Ui,j(t).

TUFs can be classified into unimodal and multimodal functions. Uni-
modal TUFs are those for which any decrease in utility cannot be followed
by an increase. Figure 1 shows examples. TUFs which are not umimodal
are multimodal. In this paper, we focus on non-increasing unimodal TUFs,
as they encompass majority of the time constraints in our motivating ap-
plications.

Each TUF Ui,j() has an initial time Ii,j and a termination time Xi,j .
Initial and termination times are the earliest and the latest times for which
the TUF is defined, respectively. We assume that Ii,j is the arrival time of
job Ji,j , and Xi,j − Ii,j is the period or minimal inter-arrival time Pi of the
mutator Mi. If Ji,j ’s Xi,j is reached and execution of the corresponding job
has not been completed, an exception is raised, and the job is aborted.

3.2 Job Execution Time Demands

We estimate the statistical properties—e.g., distribution, mean, variance,
of job execution time demand rather than the worst-case demand because:

8 Hyeonjoong Cho, Chewoo Na, Binoy Ravindran, and E. Douglas Jensen

(1) applications of interest to us [8,9] exhibit a large variation in their actual
workload. Thus, the statistical estimation of the demand is much more
stable and hence more predictable than the actual workload; (2) worst-case
workload is usually a very conservative prediction of the actual workload [2],
resulting in resource over-supply; and (3) allocating execution times based
on the statistical estimation of tasks’ demands can provide statistical timing
assurances, which is sufficient for our motivating applications.

Let Yi be the random variable of a mutator Mi’s execution time demand.
Estimating the execution time demand distribution of the task involves two
steps: (1) profiling its execution time usage, and (2) deriving the probability
distribution of that usage. A number of measurement-based, off-line and
online profiling mechanisms exist (e.g., [31]). We assume that the mean and
variance of Yi are finite and determined through either online or off-line
profiling.

We denote the expected execution time demand of a mutator Mi as
E(Yi), and the variance on the demand as V ar(Yi).

3.3 Statistical Timeliness Requirement

We consider a task-level statistical timeliness requirement: Each mutator
task must accrue some percentage of its maximum possible utility with a
certain probability. For a mutator task Mi, this requirement is specified as
{νi, ρi}, which implies that Mi must accrue at least νi percentage of its
maximum possible utility with the probability ρi. This is also the require-
ment of each job of Mi. Thus, for example, if {νi, ρi} = {0.7, 0.93}, then Mi

must accrue at least 70% of its maximum possible utility with a probability
no less than 93%. For step TUFs, ν can only take the value 0 or 1. Note
that the hard real-time objective of always satisfying all task deadlines is
the special case of {νi, ρi} = {1.0, 1.0}.

This statistical timeliness requirement on the utility of a mutator implies
a corresponding requirement on the range of mutator sojourn times. Since
we focus on non-increasing unimodal TUFs, upper-bounding task sojourn
times will lower-bound task utilities.

3.4 Scheduling Objective

We consider a two-fold scheduling criterion: (1) assure that each mutator
task Mi accrues the specified percentage νi of its maximum possible utility
with at least the specified probability ρi; and (2) maximize the sum of the
mutator tasks’ attained utility, while guaranteeing that the system never
runs out of memory, at all times (during both under-loads and overloads).
We also desire to obtain a lower bound on the sum of the mutator tasks’
attained utility, as a form of “output assurance.” Also, when it is not possible
to satisfy ρi for each mutator task (e.g., due to overloads), our objective is
to maximize the total utility.

Scheduling Garbage Collector in Dynamic Real-Time Systems 9

This problem is NP-hard because it subsumes the NP-hard problem of
scheduling dependent tasks with step TUFs on one processor [7].

4 The GCUA Algorithm

4.1 Bounding Accrued Utility

Let si,j be the sojourn time of the jth job of mutator task Mi. Now, mutator
Mi’s statistical timeliness requirement can be represented as Pr(Ui(si,j) ≥
νi×Umax

i) ≥ ρi. Since TUFs are assumed to be non-increasing, it is sufficient
to have Pr(si,j ≤ Di) ≥ ρi, where Di is the upper bound on the sojourn
time of mutator Mi. We call Di “critical time” hereafter, and it is calculated
as Di = U−1

i (νi×Umax
i), where U−1

i (x) denotes the inverse function of TUF
Ui(). Thus, Mi is (probabilistically) assured to accrue at least the utility
percentage νi = Ui(Di)/Umax

i , with the probability ρi.
Note that the period or minimum inter-arrival time Pi and the critical

time Di of the mutator Mi have the following relationships: (1) Pi = Di

for a binary-valued, downward step TUF; and (2) Pi > Di, for other non-
increasing TUFs.

4.2 Bounding Utility Accrual Probability

Since mutator task execution time demands are stochastically specified
(through means and variances), we need to determine the actual execution
time that must be allocated to each mutator task, such that the desired
utility accrual probability ρi is satisfied. Further, this execution time al-
location must account for the uncertainty in the execution time demand
specification (i.e., the variance factor).

Given the mean and the variance of a mutator Mi’s execution time
demand Yi, by a one-tailed version of the Chebyshev’s inequality, when
y ≥ E(Yi), we have:

Pr[Yi < y] ≥ (y − E(Yi))2

V ar(Yi) + (y − E(Yi))2
(1)

From a probabilistic point of view, Equation 1 is the direct result of the
cumulative distribution function of mutator Mi’s execution time demands—
i.e., Fi(y) = Pr[Yi ≤ y]. Recall that each job of mutator Mi must accrue
νi percentage of its maximum utility with a probability ρi. To satisfy this
requirement, we let ρ′i = (Ci−E(Yi))

2

V ar(Yi)+(Ci−E(Yi))2
≥ ρi and obtain the minimum

required execution time Ci = E(Yi) +
√

ρ′
i
×V ar(Yi)

1−ρ′
i

.
The GCUA algorithm allocates Ci execution time units to each job Ji,j of

mutator Mi, so that the probability that job Ji,j requires no more than the
allocated Ci execution time units is at least ρi—i.e., Pr[Yi < Ci] ≥ ρ′i ≥ ρi.

10 Hyeonjoong Cho, Chewoo Na, Binoy Ravindran, and E. Douglas Jensen

We set ρ′i = (max{ρi}) 1
n , ∀i, where n is the number of mutators, so that

each mutator accrues νi percentage of its maximum utility with a probability
ρ′i as long as all mutators satisfy the schedulability test.

4.3 Bounding GC Cycle Time Under the UAM

In [28], Robertz and Henriksson show how an upper bound on the GC cycle
time can be calculated to guarantee that the application never runs out of
memory under the periodic task arrival model. Building upon this result, we
show how to calculate the GC cycle time under the UAM that guarantees
that the GC reclaims sufficient amount of memory for the mutator. We will
show that the Robertz and Henriksson’s GC cycle time bound under the
periodic model is a special case of our result under the UAM.

Fig. 2 UAM

Lemma 1 If each task Ti is subject to < mi,Wi > under UAM, it is also
subject to < dαemi, αWi > where α ≥ 1.

Proof To compute the maximum task arrival during the extended sliding
window αWi, an array of sliding windows Wi’s can be placed as the Case
1 in Figure 2 to maximize the number of Wi within the extended sliding
window. We assume N number of Wi’s within the αWi. During each Wi, the
maximum task arrival is mi, but it is not clear during ∆1 and ∆2. Since the
number of maximum task arrivals during ∆1 and ∆2 is mi each, we can say
that Ti is subject to < (dαe+1)mi, αWi >. However, a much tighter bound
can be calculated. For this, we consider the Case 2 where the sliding window
W ′

i starts with αWi. Since Wi = W ′
i , the UAM condition also holds during

each W ′
i , so that if the last window ∆1 + ∆2 in Case 2 is smaller than W ′

i ,
this lemma is proved. We can prove that ∆1 + ∆2 ≥ Wi by contradiction.
If ∆1 + ∆2 ≥ Wi, N + 1 number of sliding windows are possible in Case 1.
This leads to contradiction, since we assume that N number of Wi’s within
αWi as the maximum.

We use the same notation as in [28]: H denotes the Heapsize, F denotes
the free memory, f denotes the frequency (or period), L denotes live object,
G denotes floating garbage, and ai denotes the allocation per each job of
Mi.

Scheduling Garbage Collector in Dynamic Real-Time Systems 11

Lemma 2 For a mutator task Mi, subject to < mi,Wi > under the UAM,
with allocation requirement ai bytes per job, and F bytes of available memory
at the start of the GC cycle, an upper bound on the GC cycle time that
guarantees that total ai is reclaimed is given by:

TGC ≤ F −∑
aimi∑

fiaimi
.

Proof To ensure that a GC cycle completes before the available memory F
has been allocated, it must hold by Lemma 1 that:

∑

i

⌈
TGC

Wi

⌉
·mi · ai ≤ F.

A stronger condition is:

∑

i

(
TGC

Wi
+ 1

)
·mi · ai ≤ F.

The final equation is obtained by substituting fi = 1
Wi

.

Note that Lemma 2 covers the periodic mutator case in [28]. We intro-
duce another lemma for deriving our final solution:

Lemma 3 Let H be the heap size and Lmax be the maximum amount of
live memory. Then, the maximum amount of memory that can be safely
allocated during a GC cycle is amax = H−Lmax

2 .

Proof See [28].

Theorem 1 An upper bound on the GC cycle time that guarantees that
sufficient memory is available for allocation is given by:

TGC ≤
H−Lmax

2 −∑
aimi∑

fiaimi
.

Proof The theorem is proved by Lemmas 2 and 3.

In Theorem 1, when each mutator’s allocation demand ai is higher, GC
cycle time becomes shorter, since GC should be invoked more frequently
to reclaim more memory. If the mutator’s memory allocation demand is
extremely high, an appropriate TGC would not be found. Thus, there exists
a bound where Theorem 1 is valid. We assume that TGC > 0. It implies
that Fmin >

∑
i aimi in Lemma 2, where Fmin is the worst-case amount of

memory available at the start of a GC cycle. Implicitly, we also assume that
the worst-case execution time of the GC, denoted CGC , does not exceed
TGC . Otherwise, the GC itself will constitute an overload and will not be
feasible. Note that CGC depends upon the particular GC algorithm, and we
assume that it is given (see [19] for CGC calculation, for a variant of Brooks’
algorithm). Therefore, we consider the case TGC > CGC > 0.

12 Hyeonjoong Cho, Chewoo Na, Binoy Ravindran, and E. Douglas Jensen

4.4 Algorithm Description

GCUA’s scheduling events include job arrival, job completion, and the ex-
piration of a time constraint such as the arrival of a TUF’s termination
time. To describe GCUA, we define the following variables and auxiliary
functions:
• ζr: current job set in the system including running jobs and unscheduled
jobs.
• σtmp, σpud, σa: a temporary schedule; σ: the final schedule
• Jk.C(t): Jk’s remaining allocated execution time.
• offlineComputing() is computed at time t = 0 once. For a mutator task

Mi, it computes Ci as Ci = E(Yi)+
√

ρ′
i
×V ar(Yi)

1−ρ′
i

, where ρ′i = (max{ρi}) 1
n .

For the collector, it computes TGC according to Theorem 1.
• UpdateRAET(ζr) updates the remaining allocated execution time of all
jobs in the set ζr.
• sortByPUD(σ) sorts jobs in σ in the potential utility density (or PUD)
order. PUD is the ratio of the expected job utility (obtained when job
is immediately executed to completion) to the remaining job allocated
execution time—i.e., PUD of a job Jk is Uk(t+Jk.C(t))

Jk.C(t) . Thus, PUD measures
the job’s “return on investment.”
• insert(Jc, σ) inserts the collector into schedule σ.
• insertByECF(Jk, σ) inserts the job Jk into σ in the earliest critical time
first (or ECF) order.
• feasible(σ) returns a boolean value denoting schedule σ’s feasibility
• append(σ,Jk) appends job Jk at rear of schedule σ; append(σ,σa) ap-
pends a schedule σa at rear of schedule σ.
• headOf(σ) returns the job that is at the head of schedule σ.

A description of GCUA at a high level of abstraction is shown in Algo-
rithm 1. The procedure offlineComputing() is included in line 4, although
it is executed only once at t = 0. When GCUA is invoked, it updates the
remaining allocated execution time of each job. The remaining allocated
execution times of running jobs are decreasing, while those of unscheduled
jobs remain constant. The algorithm then computes the PUDs of all jobs.

The jobs are then sorted in the order of largest PUD first, in line 9.
Then, it inserts the collector job first into the schedule in line 10. This is
to ensure that the collector job is never aborted even during overloads. But
this does not mean that the collector is never preempted by mutator tasks.
When a mutator job has an earlier critical time than the collector, and they
are schedulable together, the mutator job will be selected by GCUA. Similar
to [28], we call this GCUA’s non-intrusiveness property.

In each step of the for-loop from line 11 to line 17, the job with the largest
PUD is selected to be assigned to the final schedule σ. If the job inserted
into the schedule in the ECF order is not feasible, then it is appended to a
schedule σa. All jobs not inserted into the final schedule σ are temporarily
stored in a schedule σa and then appended to σ in ECF order, in line 19.

Scheduling Garbage Collector in Dynamic Real-Time Systems 13

Algorithm 1: GCUA
Input : M={M1,...,Mn}, ζr={J1,...,JN}1

Output: dispatched jobs, Jobexe2

Data: σpud, σtmp, σa, σ3

offlineComputing(M);4

Initialization: {σpud, σtmp, σa, σ} = {0, ..., 0};5

UpdateRAET(ζr);6

for ∀Jk ∈ ζr do7

Jk.PUD = Uk(t+Jk.C(t))
Jk.C(t)

;8

σpud = sortByPUD(ζr);9

if Jc ∈ ζr then insert(Jc, σ);10

for ∀Jk ∈ σpud from head to tail do11

if Jk.PUD > 0 then12

σtmp = σ;13

insertByECF(Jk, σtmp);14

if feasible(σtmp) then σ = σtmp;15

else append(Jk, σa);16

else break;17

sortByECF(σa);18

append(σ, σa);19

Jobexe = headOf(σ);20

return Jobexe;21

Note that simply aborting the removed jobs may result in decreased accrued
utility. This is because, the algorithm may decide to remove a job which is
estimated to have a longer allocated execution time than its actual one,
even though it may be able to accrue utility. For this case, GCUA gives the
job another chance to be scheduled instead of aborting it, which eventually
makes the algorithm more robust. Finally, the job at the head of σ is selected
for execution.

4.5 Algorithm Time Complexity

GCUA’s time cost depends upon that of the procedures sortByPUD(),
insertByECF(), feasible(), append(), and sortByECF(). With n jobs,
sortByPUD() and sortByECF() costs O(nlogn). While append() costs O(1)
time, both feasible() and insertByECF() costs O(n). The for-loop in line
11 iterates at most n times, costing the entire loop O(n2). Thus, the algo-
rithm costs O(n2).

GCUA’s O(n2) cost is similar to that of many past utility accrual (or
UA) real-time scheduling algorithms [27]. Our prior implementation expe-
rience with UA scheduling at the middleware-level have shown that the
overheads are in the magnitude of sub-milliseconds [21] (sub-microsecond
overheads may be possible at the kernel-level). We anticipate a similar over-

14 Hyeonjoong Cho, Chewoo Na, Binoy Ravindran, and E. Douglas Jensen

head magnitude for GCUA. Though this cost is higher than that of many
traditional algorithms, the cost is justified for applications with longer ex-
ecution time magnitudes (e.g., milliseconds to minutes) such as those that
we focus here. Of course, this high cost cannot be justified for every appli-
cation.3

4.6 Extension to UAGC

We calculated TGC with the worst-case memory demands and periods from
mutators. However, memory demands vary on run-time applications and
may lead to overloaded GC work–i.e., TGC < CGC . Under overloaded GC
work, the system cannot satisfy memory allocation demands from mutators.
That means, that the GC will never complete before its deadline and there-
fore, mutators will run out of memory. One possible way is to consider that
the scheduler aborts mutators with the least PUD until TGC >= CGC . In
this paper, we do not evaluate this extension. Our GC scheduling algorithm
assume that a GC is based on a fine-grained incremental GC algorithm
and can be arbitrarily preempted at an atomic interval. We do not consider
GCUA’s overhead in this analysis.

5 Algorithm Properties

5.1 Timeliness Assurances

We establish GCUA’s timeliness assurances under the conditions of (1) in-
dependent mutator tasks that arrive under the UAM, and (2) there is a
sufficient processor capacity for meeting all task critical times—i.e., there
is no overload.

Theorem 2 (Optimal Performance with Step-Shaped TUFs) Sup-
pose that only step-shaped TUFs are allowed under conditions (1) and (2).
Then, a schedule produced by EDF [16] is also produced by GCUA, yielding
equal total utilities. This is a critical time-ordered schedule.

Proof We prove this by examining Algorithm 1. In line 14, the queue σtmp

is sorted in a non-decreasing critical time order. In line 15, if σtmp is fea-
sible, σ = σtmp. If no overload exists, this is precisely the EDF schedule,
as GCUA’s critical time is equivalent to EDF’s deadline. EDF is optimal
with respect to meeting all task deadlines during under-loads, yielding max-
imum total utility with step-shaped TUFs. Thus, GCUA produces the same
schedule, and consequently, the same maximum total utility as EDF.

3 When UA scheduling is desired with low overhead, solutions and tradeoffs ex-
ist. Examples include linear-time stochastic UA scheduling [20], and using special-
purpose hardware accelerators for UA scheduling (analogous to floating-point co-
processors) [26].

Scheduling Garbage Collector in Dynamic Real-Time Systems 15

Some important corollaries about GCUA’s timeliness behavior can be
deduced from EDF’s behavior under conditions (1) and (2).

Corollary 1 Under conditions (1) and (2), GCUA always completes the
allocated execution time of all tasks before their critical times.

Corollary 2 Under conditions (1) and (2), GCUA minimizes the maximum
lateness.

Theorem 3 (Statistical Task-Level Assurance) Under conditions (1)
and (2), GCUA meets the statistical timeliness requirement {νi, ρi} for each
mutator task Mi.

Proof From Corollary 1, all allocated execution times of tasks can be com-
pleted before their critical times. Further, based on the results of Equation 1,
among the actual processor time of mutator task Mi’s jobs, at least ρ′i of
them have lesser actual execution time than the allocated execution time.
Thus, GCUA can satisfy job critical times at least with a probability of
Πρ′i, since all mutator tasks must have lesser actual execution time than
the allocated. Πρ′i = max{ρi} ≥ ρi, ∀i—i.e., the algorithm accrues νi utility
with a probability of at least ρi.

Theorem 4 (System-Level Utility Assurance) Under conditions (1)
and (2), if a mutator task Mi’s TUF has the highest height Umax

i , then
the system-level utility ratio, defined as the utility accrued by GCUA with

respect to the system’s maximum possible utility, is at least
∑n

i=1
ρiνiU

max
i∑n

i=1
Umax

i

.

Proof We denote the number of jobs released by mutator Mi as li. Mutator
Mi can accrue at least νi percentage of its maximum possible utility with the
probability max{ρi} ≥ ρi. Thus, the ratio of the system-level accrued utility
to the system’s maximum possible utility is max{ρi}ν1Umax

1 l1+...+max{ρi}νnUmax
n ln

Umax
1 l1+...+Umax

n ln

and it is greater than or equal to ρ1ν1Umax
1 l1+...+ρnνnUmax

n ln
Umax

1 l1+...+Umax
n ln

. Thus, when li

approaches ∞, the formula converges to
∑n

i=1
ρiνiU

max
i∑n

i=1
Umax

i

.

5.2 Sensitivity of Assurances

GCUA is designed under the assumption that task expected execution time
demands and the variances on the demands — i.e., the algorithm inputs
E(Yi) and V ar(Yi) – are correct. However, it is possible that these inputs
may have been miscalculated (e.g., due to errors in application profiling)
or that the input values may change over time (e.g., due to changes in
application’s execution context). To understand GCUA’s behavior when this
happens, we assume that the expected execution time demands, E(Yi)’s,
and their variances, V ar(Yi)’s, are erroneous, and develop the sufficient

16 Hyeonjoong Cho, Chewoo Na, Binoy Ravindran, and E. Douglas Jensen

condition under which the algorithm is still able to meet {νi, ρi} for all
mutator tasks Mi.

Let a mutator Mi’s correct expected execution time demand be E(Yi)
and its correct variance be V ar(Yi), and let an erroneous expected demand
E′′(Yi) and an erroneous variance V ar′′(Yi) be specified as the input to
GCUA. Let the mutator’s statistical timeliness requirement be {νi, ρi}. We
show that if GCUA can satisfy {νi, ρi} with the correct expectation E(Yi)
and the correct variance V ar(Yi), then there exists a sufficient condition
under which the algorithm can still satisfy {νi, ρi} even with the incorrect
expectation E′′(Yi) and incorrect variance V ar′′(Yi).

Theorem 5 () Assume that GCUA satisfies {νi, ρi},∀i, under correct, ex-
pected execution time demand estimates, E(Yi)’s, and their correct vari-
ances, V ar(Yi)’s. When incorrect expected values, E′′(Yi)’s, and variances,
V ar′′(Yi)’s, are given as inputs instead of E(Yi)’s and V ar(Yi)’s, GCUA

satisfies {νi, ρi},∀i, if E′′(Yi)+(Ci−E(Yi))
√

V ar′′(Yi)
V ar(Yi)

≥ Ci, ∀i, and the task
execution time allocations, computed using E′′(Yi)’s and V ar′′(Yi), satisfy
the EDF’s timeliness.

Proof We assume that if GCUA has correct E(Yi)’s and V ar(Yi)’s as in-
puts, then it satisfies {νi, ρi}, ∀i. This implies that the Ci’s determined by
Equation 1 are feasibly scheduled by GCUA satisfying all task critical times:

ρ′i =
(Ci − E(Yi))2

V ar(Yi) + (Ci − E(Yi))2
. (2)

However, GCUA has incorrect inputs, E′′(Yi)’s and V ar′′(Yi), and based
on those, it determines C ′′i s by Equation 1 to obtain the probability ρ′i, ∀i:

ρ′i =
(C ′′i − E′′(Yi))2

V ar′′(Yi) + (C ′′i − E′′(Yi))2
. (3)

Unfortunately, C ′′i that is calculated from the erroneous E′′(Yi) and V ar′′(Yi)
leads GCUA to another probability ρ′′i by Equation 1. Thus, although we
expect assurance with the probability ρ′i, we can only obtain assurance with
the probability ρ′′i because of the error. ρ′′ is given by:

ρ′′i =
(C ′′i − E(Yi))2

V ar(Yi) + (C ′′i − E(Yi))2
. (4)

Note that we also assume that tasks with C ′′i satisfy the EDF’s schedu-
lability test; otherwise GCUA cannot provide the assurances. To satisfy
{νi, ρi},∀i, the actual probability ρ′′i must be greater than the desired prob-
ability ρ′i. Since ρ′′i ≥ ρ′i(≥ ρi),

(C ′′i − E(Yi))2

V ar(Yi) + (C ′′i − E(Yi))2
≥ (Ci − E(Yi))2

V ar(Yi) + (Ci − E(Yi))2
.

Scheduling Garbage Collector in Dynamic Real-Time Systems 17

Hence, C ′′ ≥ Ci. From Equations 2 and 3,

C ′′i = E′′(Yi) + (Ci − E(Yi))

√
V ar′′(Yi)
V ar(YI)

≥ Ci. (5)

Corollary 3 () Assume that GCUA satisfies {νi, ρi}, ∀i, under correct, ex-
pected execution time demand estimates, E(Yi)’s, and their correct vari-
ances, V ar(Yi)’s. When incorrect expected values, E′′(Yi)’s, are given as
inputs instead of E(Yi)’s but with correct variances V ar(Yi), GCUA satisfies
{νi, ρi},∀i, if E′′(Yi) ≥ E(Yi),∀i, and the task execution time allocations,
computed using E′′(Yi)’s, satisfy the schedulability test for EDF.

Proof This can be proved by replacing V ar′′(Yi) with V ar(Yi) in Equa-
tion 5.

Corollary 3, a special case of Theorem 5, is intuitively straightforward:
It essentially states that if overestimated demands are schedulable, then
GCUA can still satisfy {νi, ρi}, ∀i. Thus, it is desirable to specify larger
E′′(Yi)s as input to the algorithm when there is the possibility of errors
in determining the expected demands, or when the expected demands may
vary with time.

Corollary 4 () Assume that GCUA satisfies {νi, ρi}, ∀i, under correct, ex-
pected execution time demand estimates, E(Yi)’s, and their correct vari-
ances, V ar(Yi)’s. When incorrect variances, V ar′′(Yi)’s, are given as inputs
instead of correct V ar(Yi)’s but with correct expectations E(Yi)’s, GCUA
satisfies {νi, ρi}, ∀i, if V ar′′(Yi) ≥ V ar(Yi),∀i, and the task execution time
allocations, computed using E′′(Yi)’s, satisfy the schedulability test for EDF.

Proof This can be proved by replacing E′′(Yi) with E(Yi) in Equation 5.

6 Experimental Evaluation

We conducted simulation-based experimental studies to validate our an-
alytical results and to compare GCUA’s performance with Robertz and
Henriksson’s EDF-based GC scheduling [28]. We consider two cases: (1) the
execution time demand of all mutator tasks are constant (i.e., no variance)
and GCUA exactly estimates the execution time allocation, and (2) the de-
mand of all tasks statistically varies and GCUA probabilistically estimates
the execution time allocation for each task. The former experiment is con-
ducted to evaluate GCUA’s generic performance as opposed to EDF, while
the latter is conducted to validate the algorithm’s assurances.

We consider two TUF shape patterns: (1) a homogenous TUF shape
class in which all tasks have step shaped TUFs, and (2) a heterogeneous
TUF shape class, including step, linearly decreasing, and parabolic shapes.

18 Hyeonjoong Cho, Chewoo Na, Binoy Ravindran, and E. Douglas Jensen

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2
50

60

70

80

90

100

C
M

R
 a

nd
 A

U
R

(%
)

Utilization Demand

 M
i, UA

 T
GCUA

(a) GCUA

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2

0

20

40

60

80

100

C
M

R
 a

nd
 A

U
R

(%
)

Utilization Demand

 M
i, EDF

 T
EDF

(b) EDF GC Scheduling [28]

Fig. 3 Performance Under Constant Demand, Step TUFs

6.1 Performance with Constant Demand

We consider mutator tasks Mi with the timing requirement of {νi, ρi} =
{1, 0.96}, i = {1, ..., 5}, and a UA-scheduled garbage collection task, TGCUA.
On the other hand, a EDF-scheduled garbage collection task is TEDF .

Figure 3 and 4 show the accrued utility ratio (or AUR) and the critical-
time meet ratio (or CMR) of each mutator task under increasing utilization
demand (or UD), for homogeneous and heterogenous TUF shape classes,
respectively. AUR is the ratio of the total accrued utility to the maximum
possible total utility, and CMR is the ratio of the number of jobs meeting
their critical times to the total number of job releases. We vary the UD
from 0.2 to 2.0. For tasks with step TUFs, we show AUR and CMR in the
same plot since they are identical, as satisfying the critical time implies the
accrual of a constant utility.

As Figure 3(a) shows, all tasks maintain 100% of CMR during under-
loads (UD ≤ 1.0), since GCUA is equivalent to EDF during this load region.
This validates Theorem 2.

During overloads (UD > 1), the CMR of all tasks gracefully decreases,
except that of TGCUA. GCUA ensures that the CMR of TGCUA does not
drop less than 100% to prevent mutator tasks from running out of memory.
As described in Algorithm 1, when UD > 1, GCUA selects as many, feasible,
high-PUD tasks as possible, instead of selecting earlier deadline tasks. When
TGCUA is not released, the algorithm schedules one of the mutator tasks to
maximize total utility.

In Figure 3(b), the CMR of all tasks drops sharply under EDF during
overloads due to EDF’s domino effect [22].

For the heterogenous TUF class (Figure 4), we observe consistent results:
GCUA ensures 100% CMR (and AUR) for TGCUA at all loads, obtains 100%
CMR and AUR for mutator tasks at UD ≤ 1.0, and gracefully degrades
CMR and AUR of mutator tasks at UD > 1. We also observe that GCUA
outperforms EDF for all TUF shapes considered, as it finds schedules that
yield greater total utility than EDF.

Scheduling Garbage Collector in Dynamic Real-Time Systems 19

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2
-10

0

10

20

30

40

50

60

70

80

90

100

110

C

M
R

(%
)

Utilization Demand

 M
i, UA

 T
GCUA

(a) CMR of GCUA

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2
-10

0

10

20

30

40

50

60

70

80

90

100

110

C
M

R
(%

)

Utilization Demand

 M
i, EDF

 T
EDF

(b) CMR of EDF GC Scheduling

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2
-10

0

10

20

30

40

50

60

70

80

90

100

110

A
U

R
(%

)

Utilization Demand

 M
i, UA

 T
GCUA

(c) AUR of GCUA

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2
-10

0

10

20

30

40

50

60

70

80

90

100

110

A

U
R

(%
)

Utilization Demand

 M
i, EDF

 T
EDF

(d) AUR of EDF GC Scheduling

Fig. 4 Performance Under Constant Demand, Heterogeneous TUFs

6.2 Performance with Statistical Demand

We now evaluate GCUA’s statistical timeliness assurances. For each muta-
tor task Mi’s execution time demand Yi, we generate normally distributed
demands. Task execution times are changed along with the total UD. We
consider both homogeneous and heterogeneous TUF shapes as before. The
task settings used for homogeneous TUFs (including step TUFs only) are
summarized in Table 1.

Table 1 Mutator Task Settings for Step TUFs

Mutators M1 M2 M3 M4 M5

ρi 0.96 0.96 0.96 0.96 0.96

νi 1.0 1.0 1.0 1.0 1.0

V ar(Yi) 0.01 0.01 0.01 0.01 0.01

Umax
i 386 374 386 389 360

20 Hyeonjoong Cho, Chewoo Na, Binoy Ravindran, and E. Douglas Jensen

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2

0

20

40

60

80

100

A

U
R

(%
)

Utilization Demand

 M
1

 M
2

 M
3

 M
4

 M
5

 T
GCUA

(a) GCUA

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2

0

20

40

60

80

100

A
U

R
 (%

)

Utilization Demand

 M
1

 M
2

 M
3

 M
4

 M
5

 T
EDF

(b) EDF GC Scheduling

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2

0

20

40

60

80

100

C
M

R
 a

nd
 A

U
R

(%
)

Utilization Demand

 AUR (GCUA)
 CMR (GCUA)

(c) System-level (GCUA)

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2

0

20

40

60

80

100

C
M

R
 a

nd
 A

U
R

(%
)

Utilization Demand

 AUR (EDF)
 CMR (EDF)

(d) System-level (EDF GC)

Fig. 5 Performance Under Statistical Demand, Step TUFs

Figures 5(a) and 5(b) show AUR of each mutator task under increas-
ing UD, of GCUA and EDF, respectively. Figure 5(c) and 5(d) shows the
system-level AUR and CMR of both algorithms. From Figure 5(a), we ob-
serve that TGCUA obtains 100% of AUR during under-loads and overloads,
implying that no mutator task will run out of memory. On the other hand,
in Figure 5(b), we observe that TEDF ’s AUR is nearly close to 0 during
overloads, implying that memory exhaustion will likely occur (during over-
loads). In Figure 5(a), GCUA achieves higher AUR for M1 over all range of
UD. On the other hand, EDF achieves less AUR for M1. This is because,
M1 has a higher Umax

i (i.e., a step TUF with higher height) and therefore,
GCUA generally favors M1 over others to obtain more utility when it cannot
satisfy the critical time of all tasks.4 EDF cannot make such a scheduling
decision, as it favors only shorter deadline tasks. Thus, in Figure 5(b), we
observe that the algorithm is unable to make utility-sensitive decisions.

As defined in Theorem 4, the system-level AUR under GCUA can be
calculated as 100×0.96×(386+374+386+389+360)/1895 = 96%. (For each

4 Note that GCUA selects that subset of feasible high-PUD tasks (during over-
loads) which can yield a high collective utility. This does not mean that tasks with
high Umax

i ’s will always have high AUR/CMR, but the likelihood is generally high.

Scheduling Garbage Collector in Dynamic Real-Time Systems 21

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2
70

73

75

78

80

83

85

88

90

93

95

98

100

103

105

M
2, Actual = 0.9524

M
2, Desired = 0.92

A

U
R

(%
)

Utilization Demand

 M
1

 M
2

 M
3

 M
4

 M
5

 T
GCUA

(a) GCUA

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2
7070

73

7575

78

8080

83

8585

88

9090

93

9595

98

100100

103

105105

A
U

R
(%

)

Utilization Demand

 M
1

 M
2

 M
3

 M
4

 M
5

 T
EDF

(b) EDF GC Scheduling

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2
70

75

80

85

90

95

100

105

C
M

R
 a

nd
 A

U
R

(%
)

Utilization Demand

 AUR (GCUA)
 CMR (GCUA)

(c) System-level (GCUA)

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2
70

75

80

85

90

95

100

105

C
M

R
 a

nd
 A

U
R

(%
)

Utilization Demand

 AUR (EDF)
 CMR (EDF)

(d) System-level (EDF GC)

Fig. 6 Performance Under Statistical Demand, Heterogeneous TUFs

mutator task Mi, νi = 1, since all TUFs are step-shaped.) From Figure 5(c),
we observe that the AUR of GCUA, under the condition of Theorem 4, are
above 99%. This validates Theorem 4. Further, from Figure 5(c) and 5(d),
we observe that GCUA accrues significantly more system-wide utility than
EDF over all UD range. A similar trend is observed in Figure 6 for hetero-
geneous TUFs. We assign step-shaped TUF to M1, linearly decreasing TUF
to M3 and M4, and parabolic TUF to M2 and M5. The task settings used
for heterogeneous TUFs are summarized in Table 2.

Table 2 Mutator Task Settings for Heterogeneous TUFs

Mutators M1 M2 M3 M4 M5

ρi 0.90 0.92 0.94 0.96 0.98

νi 0.85 0.85 0.85 0.85 0.85

V ar(Yi) 0.01 0.01 0.01 0.01 0.01

Umax
i 360 324 334 332 333

TUFshape Step Parabolic Linear Linear Parabolic

22 Hyeonjoong Cho, Chewoo Na, Binoy Ravindran, and E. Douglas Jensen

Figures 6(a) and 6(b) show the AUR of GCUA and EDF under heteroge-
neous TUFs, respectively, while Figure 6(c) and 6(d) show the system-level
AUR and CMR of both algorithms. From Figure 6(a), we observe that task-
level assurances are ensured under GCUA. For example, ρ2 = 0.92. From
Figure 6(a), we observe that M2’s actual AUR is 95%. The other mutator
tasks similarly meet their desired AURs during under-loads. This validates
Theorem 3.

According to Theorem 4, the system-level AUR must be at least (0.9×360
+0.92×324+0.94×334+0.96×332+ 0.98×333)×0.85×100/1683 = 79.8%. In
Figure 6(c), we observe that the actual system-level AUR of GCUA is above
79.8%. This validates Theorem 4 for non step-shaped TUFs.

7 Conclusions, Future Work

In this paper, we consider garbage collection in dynamic real-time systems.
We consider the time-based GC approach of running the collector as a
separate, concurrent thread, and focus on real-time scheduling to obtain as-
surances on mutator timing behavior, while ensuring that memory is never
exhausted. We present a scheduling algorithm called GCUA. The algorithm
considers mutator tasks that are subject to TUF time constraints, variable
execution time demands, and resource overloads, and allows any fine-grained
incremental GC algorithm. GCUA considers the two-fold scheduling objec-
tive of probabilistically satisfying utility lower bounds for each task and
maximizing the total accrued utility, while ensuring that memory is never
exhausted.

We establish that GCUA achieves optimal total utility for step TUFs
during under-loads, probabilistically satisfies task utility lower bounds, lower
bounds system-wide total accrued utility, and never exhausts memory dur-
ing under-loads and overloads. We also show that the algorithm’s utility
lower bound satisfactions have bounded sensitivity to variations in execution
time demand estimates. When task utility lower bounds cannot be satisfied
during overloads, GCUA maximizes total utility by completing a subset of
tasks which yields high total utility, and thereby gracefully degrades timeli-
ness. Our simulation experiments validate our analytical results and confirm
the algorithm’s effectiveness and superiority.

Several aspects of our work are directions for further research. Examples
include reducing the algorithm overhead, allowing mutator tasks to share
non-CPU resources, and considering multiprocessor and distributed system
architectures.

References

1. A. W. Appel, J. R. Ellis, and K. Li. Real-time concurrent collection on
stock multiprocessors. In PLDI ’88: Proceedings of the ACM SIGPLAN 1988
conference on Programming Language design and Implementation, pages 11–
20, New York, NY, USA, 1988. ACM Press.

Scheduling Garbage Collector in Dynamic Real-Time Systems 23

2. H. Aydin, R. Melhem, D. Mosse, and P. Mejia-Alvarez. Dynamic and aggres-
sive scheduling techniques for power-aware real-time systems. In IEEE RTSS,
pages 95 –105, December 2001.

3. D. F. Bacon, P. Cheng, and V. T. Rajan. A real-time garbage collector
with low overhead and consistent utilization. In POPL ’03: Proceedings of
the 30th ACM SIGPLAN-SIGACT symposium on Principles of programming
languages, pages 285–298, New York, NY, USA, 2003. ACM Press.

4. H. G. Baker. The treadmill: real-time garbage collection without motion
sickness. SIGPLAN Not., 27(3):66–70, 1992.

5. R. A. Brooks. Trading data space for reduced time and code space in real-
time garbage collection on stock hardware. In LFP ’84: Proceedings of the
1984 ACM Symposium on LISP and functional programming, pages 256–262,
New York, NY, USA, 1984. ACM Press.

6. P. Cheng and G. E. Blelloch. A parallel, real-time garbage collector. In PLDI
’01: Proceedings of the ACM SIGPLAN 2001 conference on Programming
language design and implementation, pages 125–136, New York, NY, USA,
2001. ACM Press.

7. R. K. Clark. Scheduling Dependent Real-Time Activities. PhD thesis, Carnegie
Mellon University, 1990.

8. R. K. Clark, E. D. Jensen, et al. An adaptive, distributed airborne tracking
system. In IEEE WPDRTS, April 1999.

9. R. K. Clark, E. D. Jensen, and N. F. Rouquette. Software organization to
facilitate dynamic processor scheduling. In IEEE WPDRTS, April 2004.

10. D. Detlefs. A hard look at hard real-time garbage collection. In IEEE Inter-
national Symposium on Object-Oriented Real-Time Distributed Computing,
pages 23– 32, May 2004.

11. S. Feizabadi and G. Back. Java garbage collection scheduling in utility accrual
scheduling environments. In Workshop on Java Technologies for Real-time
and Embedded Systems, October 2005.

12. R. R. Fenichel and J. C. Yochelson. A lisp garbage-collector for virtual-
memory computer systems. Commun. ACM, 12(11):611–612, 1969.

13. R. Henriksson. Scheduling Garbage Collection in Embedded Systems. PhD
thesis, Lund Institute of Technology, July 1998.

14. J. Henry G. Baker. List processing in real time on a serial computer. Commun.
ACM, 21(4):280–294, 1978.

15. J.-F. Hermant and G. L. Lann. A protocol and correctness proofs for real-
time high-performance broadcast networks. In IEEE ICDCS, pages 360–369,
1998.

16. W. Horn. Some simple scheduling algorithms. Naval Research Logistics
Quaterly, 21:177–185, 1974.

17. E. D. Jensen, C. D. Locke, and H. Tokuda. A time-driven scheduling model
for real-time systems. In IEEE RTSS, pages 112–122, December 1985.

18. M. S. Johnstone. Non-compacting memory allocation and real-time garbage
collection. PhD thesis, University of Texas at Austin, 1997. Supervisor-Paul
R. Wilson.

19. T. Kim, N. Chang, N. Kim, and H. Shin. Scheduling garbage collector for
embedded real-time systems. SIGPLAN Not., 34(7):55–64, 1999.

20. P. Li and B. Ravindran. Fast, best effort real-time scheduling algorithms.
IEEE Transactions on Computers, 53(9):1159 – 1175, 2004.

24 Hyeonjoong Cho, Chewoo Na, Binoy Ravindran, and E. Douglas Jensen

21. P. Li, B. Ravindran, et al. A formally verified application-level framework
for real-time scheduling on posix real-time operating systems. IEEE Trans.
Software Engineering, 30(9):613 – 629, Sept. 2004.

22. C. D. Locke. Best-Effort Decision Making for Real-Time Scheduling. PhD
thesis, Carnegie Mellon University, 1986.

23. D. P. Maynard, S. E. Shipman, et al. An example real-time command, control,
and battle management application for alpha. Technical report, CMU CS
Dept., Dec. 1988. Archons Project TR 88121.

24. S. Nettles and J. O’Toole. Real-time replication garbage collection. In PLDI
’93: Proceedings of the ACM SIGPLAN 1993 conference on Programming
language design and implementation, pages 217–226, New York, NY, USA,
1993. ACM Press.

25. S. C. North and J. H. Reppy. Concurrent garbage collection on stock hard-
ware. In Proc. of a conference on Functional programming languages and
computer architecture, pages 113–133, London, UK, 1987. Springer-Verlag.

26. J. D. Northcutt. Mechanisms for Reliable Distributed Real-Time Operating
Systems – The Alpha Kernel. Academic Press, 1987.

27. B. Ravindran, E. D. Jensen, and P. Li. On recent advances in time/utility
function real-time scheduling and resource management. In IEEE ISORC,
pages 55 – 60, May 2005.

28. S. G. Robertz and R. Henriksson. Time-triggered garbage collection: robust
and adaptive real-time gc scheduling for embedded systems. In LCTES ’03:
Proceedings of the 2003 ACM SIGPLAN conference on Language, compiler,
and tool for embedded systems, pages 93–102, New York, NY, USA, 2003.
ACM Press.

29. L. Sha, R. Rajkumar, and J. P. Lehoczky. Generalized rate-monotonic
scheduling theory. Proceedings of the IEEE, 82(1), 1994.

30. T. Yuasa. Real-time garbage collection on general-purpose machines. J. Syst.
Softw., 11(3):181–198, 1990.

31. X. Zhang, Z. Wang, et al. System support for automated profiling and opti-
mization. In ACM SOSP, pages 15–26, October 1997.

