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Abstract

This paper presents a uni-processor real-time scheduling algorithm called the Generic

Utility Scheduling algorithm (which we will refer to simply as GUS). GUS solves a previously

open real-time scheduling problem—scheduling application activities that have time con-

straints specified using arbitrarily shaped time/utility functions, and have mutual exclusion

resource constraints. A time/utility function is a time constraint specification that describes

an activity’s utility to the system as a function of that activity’s completion time. Given

such time and resource constraints, we consider the scheduling objective of maximizing the

total utility that is accrued by the completion of all activities. Since this problem is NP-

hard, GUS heuristically computes schedules with a polynomial-time cost of O(n3) at each

scheduling event, where n is the number of activities in the ready queue. We evaluate the

performance of GUS through simulation and by an actual implementation on a real-time

POSIX operating system. Our simulation studies and implementation measurements reveal

that GUS performs close to, if not better than, the existing algorithms for the cases that they

apply. Furthermore, we analytically establish several properties of GUS.
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I. Introduction

Real-time computing is fundamentally concerned with satisfying application time con-

straints. The most widely studied time constraint is the deadline. A deadline time con-

straint for an application activity essentially implies that completing the activity before

the deadline implies the accrual of some “utility” to the system and that utility remains

the same if the activity were to complete anytime before the deadline. With deadline time

constraints, one can specify the hard timeliness optimality criterion of “always meet all

hard deadlines” and use hard real-time scheduling algorithms [1] to achieve the criterion.

In this paper, we focus on dynamic, adaptive, embedded real-time control systems

at any level(s) of an enterprise—e.g., devices in the defense domain such as multi-mode

phased array radars [2] and battle management [3]. Such embedded systems include“soft”

time constraints (besides hard) in the sense that completing an activity at any time will

result in some (positive or negative) utility to the system, and that utility depends on

the activity’s completion time. Moreover, they often desire a soft timeliness optimality

criterion such as completing all time-constrained activities as close as possible to their

optimal completion times—so as to yield maximal collective utility—is the objective.

Jensen’s time/utility functions [4] (or TUFs) allow the semantics of soft time con-

straints to be precisely specified. A TUF, which is a generalization of the deadline

constraint, specifies the utility to the system resulting from the completion of an activity

as a function of its completion time. Figure 1 shows example soft time constraints specified

using TUFs.
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Fig. 1: Soft Timing Constraints Specified Using Jensen’s Time-Utility Functions

When time constraints are expressed with TUFs, the scheduling optimality criteria are

based on factors that are in terms of maximizing accrued utility from those activities—



e.g., maximizing the sum [5], or the expected sum [6], of the activities’ attained utilities.

Such criteria are called Utility Accrual (or UA) criteria, and sequencing (scheduling,

dispatching) algorithms that consider UA criteria are called UA sequencing algorithms. In

general, other factors may also be included in the criteria, such as resource dependencies

and precedence constraints.

Scheduling tasks with non-step TUFs has been studied in the past, most notably

in [6] and [7]. However, to the best of our knowledge, Locke’s Best Effort Scheduling

Algorithm [6], called LBESA, is the only algorithm that considers almost arbitrarily

shaped TUFs.

Besides arbitrarily shaped TUFs, dependencies often arise between tasks due to the

exclusive use of shared non-CPU resources. Sharing of resources that have mutual ex-

clusion constraints between deadline-constrained tasks has received significant attention

in the past [8], [9]. However, little work has been done for sharing resources (that have

mutual exclusion constraints) between tasks that have time constraints expressed using

TUFs. In [5], Clark considers mutual exclusion resource dependencies, but for tasks with

only step TUFs. Furthermore, none of the prior research on step TUFs [10], [11] and

non-step TUFs [7], [6], [12] consider resource dependencies.

In this paper, we encompass these two task models. That is, we consider the problem

of scheduling tasks that have their time constraints specified using arbitrarily shaped

TUFs, and have mutual exclusion resource dependencies. This scheduling problem can

be shown to be NP-hard. We present a heuristic algorithm for this problem, called the

Generic Utility Scheduling algorithm, which we will refer to simply as GUS. GUS has

a polynomial-time complexity of O(n3) at every scheduling event, given n tasks in the

ready queue.

We study the performance of GUS through simulation and implementation. The sim-

ulation studies reveal that GUS performs very close to, if not better than, the best

existing algorithms for the cases to which they apply (subsets of the cases considered by

GUS). Furthermore, we implement GUS and several other existing algorithms on top of

the QNX Neutrino real-time operating system using POSIX API’s. Our implementation

measurements reveal the strong effectiveness of the algorithm.

The rest of the paper is organized as follows. We first overview a real-time application



to provide the motivating context for soft time constraints in Section II. In Section III, we

introduce our task and resource models, and the scheduling objective. Section IV discusses

the heuristics employed by GUS and their rationale. Before describing the GUS algorithm,

we introduce notations used in the descriptions and GUS’ deadlock handling mechanism

in Section V. We describe the GUS algorithm in Section VI. Section VII analyzes the

computational complexity of GUS. We establish several non-timeliness properties of the

algorithm in Section VIII. Performance evaluations through simulation and implemen-

tation are presented in Sections IX and X, respectively. We compare and contrast past

and related efforts with GUS in Section XI. Finally, the paper concludes by describing

its contributions and future work in Section XII.

II. Motivating Application Examples

As an example of real-time control systems requiring the expressiveness and adaptabil-

ity of soft yet mission-critical time constraints, we summarize an application from the

defense domain: a coastal air defense system [13] that was built by General Dynamics

(GD) and Carnegie Mellon University (CMU).

Time constraints of two application activities in the GD/CMU coastal air defense

system—called radar plot correlation and track database maintenance—have similar se-

mantics. The correlation activity is responsible for correlating plot reports that arrive

from sensor systems against a tracking database. The maintenance activity periodically

scans the tracking database, purging old and uncorrelated reports so that stale informa-

tion does not cause errors in tracking.
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Fig. 2: TUFs of Three Activities in GD/CMU Coastal Air Defense

Both activities have “critical times” that correspond to the radar frame arrival rate:

It is best if both are completed before the arrival of next data frame. However, it is



acceptable for them to be late by one additional time frame under overloads. Furthermore,

the correlation activity has a greater utility to the system during overloads. TUFs in

Figure 2(a) reflect these semantics.

The missile control activity of the air defense system provides timely course updates

to guide the intercepter such that the hostile targets can be destroyed. However, the

frequency and importance of course updates at the desired time depend upon several

factors.

As the distance between the target and the interceptor decreases, more frequent course

corrections are needed (see arrow 1 in Figure 2(b)). In the meanwhile, it is best to abort

a late update and restart course correction calculations with fresh information. Arrow 2

in Figure 2(b) illustrates how this requirement is reflected by a decrease in the utility

obtained for completing the course correction activity after the critical time.

The utility of successfully intercepting a target depends upon the “threat potential” of

the target. The threat potential depends upon changing parameters such as the distance

of the target from the coastline. For example, intercepting a target that has deeply

penetrated inside the coastline yields higher utility than a target that is farther away

from the coastline. This is reflected by arrow 3 in Figure 2(b) that shows how the function

is scaled upward as the threat increases. Figure 2(c) shows how the shape of the TUF

dynamically changes.

A more recent application, called AWACS (Airborne WArning and Control System)

surveillance mode tracker system [14] was built by The MITRE Corporation and The

Open Group, and used similar TUFs for describing time constraints and scheduling (see

Figure 3).
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Fig. 3: Track Association TUF in MITRE/TOG AWACS



III. Models and Objectives

This section describes the task and resource models, and the optimization objectives

of GUS. In describing the models, we outline the scope of the research.

A. Task and Resource Models

1) Threads and Scheduling Segments: We consider the “thread” abstraction—a single

flow of execution—as the basic scheduling entity in the system. Thus, the application is

assumed to consist of a set of threads, denoted as Ti, i ∈ {1, 2, ..., n}, where the number

of threads n is unrestricted. In this paper, a “thread” is equivalent to a “task” or a “job”

in the literature. Threads can arrive arbitrarily and can be preempted arbitrarily.

A thread can be subject to time constraints. Following [15], a time constraint usually

has a “scope”—a segment of the thread control flow that is associated with a time

constraint. We call such a scope a “scheduling segment.” As in [15], we call a thread

a “real-time thread” while it is executing inside a scheduling segment. Otherwise, it is

called a “non-real-time thread.” TUF scheduling is general enough to schedule non-real-

time and real-time threads in a consistent manner: the time constraint of a non-real-time

thread is modeled as a constant TUF whose utility represents its relative importance.

Fig. 4: Example Scheduling Seg-

ments

GUS allows disjointed and nested scheduling segments

(see Figure 4 for an example). Thus, it is possible that

a thread executes inside multiple scheduling segments. If

that is the case, GUS uses the“tightest” time constraint for

scheduling, which is application-specific (e.g., the earliest

deadline for step TUFs). Therefore, for a real-time thread,

the scheduler only uses one time constraint for scheduling

purpose at any given time. From the perspective of the

scheduler, a scheduling segment corresponds to a real-time

thread. Thus, the terms “scheduling segment,” “thread,”

and“task”are used interchangeably in the rest of the paper,

unless otherwise specified.

2) Basic Assumptions on Resource Model: To model non-CPU resources and resource

requests, we make the following assumptions: (A.1) Resources are reusable and can be



shared, but have mutual exclusion constraints. Thus, only one thread can be using a

resource at any given time; (A.2) Only a single instance of a resource is present in the

system; and (A.3) A resource request (from a thread) can only request a single instance

of a resource.

Assumption A.1 applies to physical resources, such as disks and network segments,

as well as logical resources such as critical code sections that are guarded by mutexes.

Assumption A.2 implies that if multiple identical resources or multiple instances of the

same resource are available, each identical instance of a resource should be considered as

a distinct resource.

Furthermore, Assumption A.2 requires that a thread explicitly specifies which resource

it wants to access. This is exactly the same resource model as assumed in protocols such

as Priority Inheritance Protocol [8] and Priority Ceiling Protocol [8].

Without loss of generality, we make Assumption A.3 mainly for practical reasons. If

multiple resources are needed for a thread to make progress, the thread must acquire all

the resources through a set of consecutive resource requests.

3) Resource Request and Release Model: During the life time of a thread, it may request

one or more shared resources. In general, the requested time intervals of holding resources

may be overlapped.

We assume that a thread can explicitly release resources before the end of its execution.

Thus, it is necessary for a thread that is requesting a resource to specify the time to

hold the requested resource. We refer to this time as HoldT ime. The scheduler uses the

HoldT ime information at run time to make scheduling decisions.

4) Abortion of Threads: There are several reasons to abort a thread. First a thread

may have to be aborted to resolve a deadlock. Secondly and more commonly, in case of

resource requests, the scheduler may decide to abort the current owner thread and grant

the resource to the requesting thread. The motivation for doing so is that executing the

latter thread (that became eligible to execute with the granting of the resource) may

lead to greater total timeliness utility than executing the former owner thread, in spite

of the overhead associated with doing so.

Aborting a thread usually involves necessary cleanup operations by both the system

software (e.g., operating system or middleware) and one or more exception handlers in the



application (in that order of execution). We refer to the time consumed by this cleanup

as AbortT ime 1, and say that the thread is executing in ABORT mode during that time.

Otherwise, the thread is executing in NORMAL mode.

Furthermore, some threads cannot necessarily be aborted at arbitrary times, or even

cannot be aborted at all. Often, application-specific properties of the controlled physical

environment require that the environment’s state be transitioned to a physically safe

and stable state before a thread can be aborted. We refer to this aspect of a thread as

its “abortability.” For those threads that can be aborted, an application can specify the

allowable abortion points.

As an example, the POSIX specification allows two types of abortions (or“cancellation”

in POSIX terminology): (1) a thread abortion can take effect any time during the

execution of the thread, called “asynchronous cancellation”; and (2) a thread abortion

can only happen at some well defined cancellation points, called “deferrable cancellation.”

If a thread can be asynchronously cancelled (or aborted), execution time of its cleanup

handler(s) is measured as AbortT ime in our model. In case that abortions can only

happen at well-defined cancellation points, AbortT ime consists of the execution time

of the thread cleanup handler(s) and the execution time from acquiring the resource

until the nearest cancellation point. 2 The exception is for the case where the nearest

cancellation point happens after the resource is released. For this case, AbortT ime should

be set to infinity, to indicate that the thread cannot be aborted while it is holding the

resource. Likewise, the infinite AbortT ime can be used for other cases where it simply

means that a thread is not abortable, holding a resource or not.

B. Precedence Constraints

Threads can also have precedence constraints. For example, a thread Ti can become

eligible for execution only after a thread Tj has completed, because Ti may require Tj’s

1The POSIX specification [16] uses pthread_cancel() to force a thread terminate. Thread cancellation handlers

(similar to exception handlers) should be invoked before the designated thread terminates. Thus, execution times

of the cleanup handlers are measured as AbortT ime in our model.
2This time interval only measures the upper bound on the time needed to reach the nearest cancellation point.

At run-time, a thread may need less time to reach the nearest cancellation point, because the thread may have

held the resource for some amount of time.



results.

Precedence constraints between tasks can also be modeled as resource dependencies.

The precedence constraint that Tj precedes Ti is equivalent to the situation where Ti

requires a logical resource (before it can start its execution) that is available only after

Tj has completed its execution. Thus, if Tj has completed its execution before Ti arrives,

then this logical resource is immediately available for Ti and Ti becomes eligible to

execute upon arrival. This respects the precedence relation semantics. Furthermore, if

Tj has not completed its execution when Ti arrives, then the logical resource is not

available, and therefore Ti is conceptually blocked upon arrival. Later, when Tj competes

its execution, the logical resource becomes available and Ti is unblocked. This again

respects the semantics of the precedence relation. This technique requires both Ti and

Tj share a binary semaphore S with an initial value zero. The first operation of Ti is to

execute P (S) and the last operation of Tj is to execute V (S).

Thus, by allowing resource dependencies in the task model, we also allow, albeit

indirectly, precedence constraints between tasks.

C. Time-Utility Functions and A Soft Timeliness Optimality Criterion

A thread’s time constraints are specified using TUFs. A TUF is always associated

with a thread scheduling segment. The TUF associated with the scheduling segment of

a thread Ti is denoted as Ui (·); thus completion of Ti’s associated scheduling segment at

a time t will yield a utility Ui (t).

A TUF Ui, i ∈ [1, n] has an initial time Ii and a termination time TMi. Initial time

is the earliest time for which the function is defined and termination time is the latest

time for which the function is defined. That is, Ui(·) is defined in the time interval of

[Ii, TMi]. Beyond that, Ui(·) is undefined. If the termination time of Ui is reached and

the thread has not finished execution (of the scheduling segment) or has not begun to

execute, an exception is raised. Usually, the exception causes abortion of the thread. We

discuss details of how GUS handles this exception in Section VI-C.

Furthermore, a TUF is allowed to take arbitrary shapes, as shown in Figure 5. For

t ∈ [Ii, TMi], Ui(t) could be positive, zero, or negative. However, Ui does not need to

have zero or negative values—i.e., it may never “touch” the time axis. This kind of TUFs
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Fig. 5: Example Time-Utility Functions

implies that completion of an activity can always yield some utility to the system no

matter when the activity finishes, which is particularly useful for describing non real-time

activities. For example, a constant TUF (see Figure 5(c)) can be used for representing

a non-time constrained activity: the height of the constant TUF could be used as a way

for expressing the activity’s relative importance.

Note that our model does not use the “deadline” notation as in hard real-time comput-

ing. However, a deadline time constraint can be specified as a step time/utility function

(see Figure 5(b)). That is, completing the activity before the deadline accrues some

uniform utility and accrues zero utility otherwise.

D. Utility Accrual Scheduling Criterion

Given time/utility functions to describe the time constraints of dependent threads, we

consider the soft timeliness optimality criterion of maximizing the total timeliness utility

that is accrued by the completion of all threads, i.e., maximize
∑n

i=1 Ui(fi), where fi is

the finishing time of thread Ti.

This scheduling problem is NP-hard, as it subsumes the problems of: (1) scheduling

dependent tasks with step-shaped time/utility functions; and (2) scheduling indepen-

dent tasks with non step-shaped, but non-increasing time/utility functions. Both these

scheduling problems have been shown to be NP-hard in [5], and in [7], respectively. The

GUS algorithm presented here is therefore a heuristic algorithm that seeks to maximize

the total accrued utility while respecting all thread dependencies.



IV. Algorithm Rationale

The key concept of GUS is the metric called Potential Utility Density (or PUD), which

was originally developed in [5]. 3 The PUD of a thread simply measures the amount of

value (or utility) that can be accrued per unit time by executing the thread and the

thread(s) that it depends upon; it essentially measures the “return on investment” for

the thread. Furthermore, by considering the dependent threads in computing the PUD,

we explicitly account for the dependency relationships among the threads.

Since we cannot predict the future, the scheduling events that may happen later cannot

be considered at the time when the scheduler is invoked. The scheduler is invoked at

the following scheduling events: task arrival, task departure, resource request, resource

release, and the expiration of a time constraint. Thus, a reasonable heuristic is to use a

“greedy” strategy, which means selecting a thread and the threads that it is dependent

on (i.e., its predecessors), whose execution will yield the maximum PUD over others.

To deal with an arbitrarily shaped TUF, our philosophy is to regard it as a user-

specified “black box” in the following sense: The black box (or the function) simply

accepts a thread completion time and returns a numerical utility value. Thus, we ignore

the information regarding the specific shape of TUFs in constructing schedules.

Therefore, to compute the PUD of a task Ti at time t, the algorithm considers the

expected completion time of Ti (denoted as tf ), and the expected finishing times of

Ti’s predecessors as well. For each task Tj in Ti’s dependency chain that needs to be

completed before executing Ti, its expected finishing time is denoted as tj. PUD of task Ti

is calculated as Utotal/(tf−t), where the expected utility Utotal = Ui(tf )+
∑

Tj∈Ti.Dep Uj(tj).

GUS does not mimic a deadline-based scheduling algorithm such as EDF, unlike

many overload scheduling algorithms such as Dependent Activity Scheduling Algorithm

(referred to as DASA here) [5], who mimics EDF to reap its optimality during under-

loads. This is because, for a task model with arbitrarily shaped TUFs, the deadline

of a thread (with an associated TUF) may neither specify its timing urgency4 nor its

relative importance with respect to other threads. Thus, an “optimal” schedule—one

that accrues the maximal possible utility—may not be directly related to the thread

3In [5], this metric was called Potential Value Density (or PVD) then.
4“Urgency” generally means how much time left for a task to be completed in a timely manner.



deadlines. Furthermore, for non-step TUFs, the notion of an under-load situation in terms

of timeliness feasibility does not make sense, as threads can yield different timeliness

utility depending upon their completion times.

GUS can be used as a dispatching and a scheduling algorithm. The purpose of a

dispatching algorithm is to determine the next task to run whereas a scheduling algorithm

concerns about a complete schedule. If used as a dispatching algorithm, GUS outputs

the next task to run without producing a complete schedule.

V. Preliminaries: State Components and Deadlocks

This section first introduces the state components of the algorithm and a set of auxiliary

functions used in the description of GUS. We then discuss GUS’ deadlock handling

mechanism in the subsection that follows.

A. State Components and Auxiliary Functions

The following state components are used to facilitate the algorithm description.

1) Resource requests and assignments

Each resource in the system is associated with an integer number, denoted as

ResourceId. It serves as the identifier of the resource and is used by the scheduler

and application threads. For each resource R, R.Owner denotes the thread that is

currently holding it. If R is not held by any thread (i.e., is free), R.Owner = ∅.
Function Owner(R) returns the task that is currently holding the resource R.

A request for a resource is a triple, called ResourceElement that is defined as

〈ResourceId, HoldT ime, AbortT ime〉, where ResourceId refers to the identifier

of the requested resource; HoldT ime is the time for holding the resource; and

AbortT ime is the time for releasing the resource by abortion. The ResourceElement

triple can also apply to the resource that is currently held by a thread. In that case,

ResourceId is the identifier of the resource that is being held and HoldT ime is the

remaining holding time for the resource.

Let function holdTime(T, R) return the holding time that is desired for a resource

R by a thread T . Similarly, function abortTime(T, R) returns the time that is

needed to release the resource R by aborting the thread T holding R.



2) State components of threads

The current execution mode of a thread is denoted by Mode ∈ {NORMAL, ABORT}
(see Section III). ExecT ime denotes the currently remaining execution time of

a thread. Recall that we assume that a thread will release all resources it ac-

quires before it ends. Thus, it follows that for any resource R held by a thread T ,

holdTime(T, R) ≤ T.ExecT ime.

AbortT ime denotes the currently remaining time to abort a thread. As discussed

previously, AbortT ime is always associated with shared resources. Thus, whenever a

thread acquires a shared resource, which is requested as 〈R, HoldT ime,AbortT ime〉,
the thread’s AbortT ime is increased. Furthermore, we assume that resources are

released in the reverse order that they are acquired if the owner thread is aborted. 5

ReqResource is a ResourceElement triple that describes the resource requested by

a thread. Note that our resource request model does not allow multiple resources to

be requested as part of a single resource request. Thus, for any thread, there is only

one ReqResource component. A thread not requesting any resource is described

as ReqResource = 〈∅, ∅, ∅〉. We use the function reqResource(T) to denote the

identifier of the resource that is currently requested by a thread T .

HeldResource = {〈Ri, HoldT imei, AbortT imei〉} denotes the set of resources that

is currently held by a thread, meaning zero or more resources are held by the thread.

3) The schedule

The output of the scheduling algorithm is an ordered sequence of triples, called

a “schedule.” A schedule consists of zero or more triples of SchedElement =

〈ThreadId, Mode, T ime〉, where ThreadId is the identifier of a thread; Mode is

the execution mode of the thread (either NORMAL or ABORT); and Time is the CPU

time allocated to the thread for the current execution.

It is possible that one thread appears at several positions within a schedule. This

is because the scheduler may decide to execute a thread just long enough (either in

NORMAL mode or in ABORT mode) to release the resource requested by other threads.

5POSIX specification requires maintaining a stack of cleanup handlers for each thread. These cleanup

handlers are pushed into the stack by invoking pthread_cleanup_push() and can be popped out by using

pthread_cleanup_pop().



The remaining portion of that thread may be scheduled to execute later.

B. Deadlock Handling

The deadlock handling mechanism is invoked upon a scheduling event and before the

GUS algorithm is executed. We consider a deadlock detection and resolution strategy,

instead of a deadlock prevention or avoidance strategy. Our rationale for this is that

deadlock prevention or avoidance strategies normally pose extra requirements e.g., re-

sources are always requested in ascending order of their identifiers. Furthermore, some

resource access protocols make assumptions on the resource requirements. For example,

the Priority Ceiling Protocol [8] assumes the highest priority of the threads that will

access a resource, called “ceiling” of the resource, is known. Likewise, the Stack Resource

Policy [9] assumes “preemptive levels” of threads a priori. Such requirements or assump-

tions, in general, are not practical, due to the dynamic nature of the real-time applications

that we are focusing in this paper.

There can be different strategies for deadlock detection and resolution. We present one

such mechanism in Algorithm V.1, which considers the loss of utility.

For a single-unit resource request model, the presence of a cycle in the resource graph

is the necessary and sufficient condition for a deadlock. Thus, the complexity of detecting

a deadlock can be mitigated by a straightforward cycle-detection algorithm. For a system

with n tasks, the worst case complexity of detecting a deadlock is O(n).

The deadlock handling mechanism is therefore invoked by the scheduler whenever a

thread requests a resource. Initially, there is no deadlock in the system. By induction, it

can be shown that a deadlock can occur if and only if the edge that arises in the resource

graph due to the new resource request lies on a cycle. Thus, it is sufficient to check if

the new edge produces a cycle in the resource graph.

However, the main difficulty here is to determine a thread to abort such that the

loss of utility resulting from the abortion is minimized. Our strategy for this follows:

For any thread Tj that lies on a cycle in the resource graph, we compute the utility

that the thread can potentially accrue by itself if it were to continue its execution. If

the thread Tj were to be aborted, then that amount of utility is lost. Thus, the loss of



input : requesting task Ti; the current time t;1:

/* deadlock detection */
Deadlock := false;2:

Tj := Owner(reqResource(Ti) );3:

while Tj 6= ∅ do4:

if Tj .Mode = NORMAL then5:

Tj .LossPUD := Uj (t + Tj .ExecT ime) /Tj .ExecT ime;6:

else7:

Deadlock := false;8:

break;9:

if Tj = Ti then10:

Deadlock := true;11:

break;12:

else13:

Tj := Owner(reqResource(Tj) );14:

/* deadlock resolution if any */
if Deadlock = true then15:

abort(The minimal LossPUD task Tk in the cycle);16:

Algorithm V.1: Deadlock Detection and Resolution in GUS

utility per unit time by aborting a thread Tj called LossPUD, can be determined as

Uj (t + Tj.ExecT ime) /Tj.ExecT ime. Once the LossPUD’s of all threads that lie on the

cycle are computed, the algorithm then aborts the thread whose abortion will result in

the smallest loss of utility. Note that here LossPUD cannot be calculated by taking into

account Tj’s predecessors in the graph, since Tj lies on a cycle.

VI. The GUS Algorithm

The scheduling events of GUS include the arrival of a thread, the completion of a

thread, a resource request, a resource release, and the expiration of a time constraint

such as the arrival of the termination time of a TUF.

A description of GUS at a high level of abstraction is shown in Algorithm VI.1. The

algorithm accepts an unordered task list and produces a schedule. The format of the

GUS schedule differs a simple ordered list of thread (or task) identifiers in the following

two ways: (1) any given thread must execute in a certain mode, either NORMAL or ABORT;

and (2) a thread may be split into several segments within the same schedule, where each

segment executes for some designated time Time.

When the GUS scheduler is invoked at time tcur, it first builds the chain of dependencies

for each task (line 5-6). Then, each task’s PUD is computed (line 7-8) by considering

the task and all tasks in its dependency chain, called a PartialSchedule. Note that



Ti.T otalT ime and Ti.T otalUtility (line 7) are the total execution time and the utility of

Ti’s partial schedule, respectively. createPartialSched() returns a triple. The first element

of the triple is the partial schedule, the second element is total execution of the partial

schedule, and the third element is the utility accrued by executing the partial schedule.

Finally, the maximum PUD task and its dependencies are added into the current schedule

(line 9-12), if they can produce a positive utility.

input : An unordered task list UT ;1:

output : An ordered schedule Sched;2:

Initialization: t := tcur, Sched := ∅;3:

while UT 6= ∅ do4:

for ∀Ti ∈ UT do5:

Build dependency list of Ti: Ti.Dep := buildDep(Ti);6:

〈Ti.PartialSched, Ti.T otalT ime, Ti.T otalUtility〉 := createPartialSched(Ti, Ti.Dep);7:

Ti.PUD :=
Ti.T otalUtility

Ti.T otalT ime
;8:

Pick the largest PUD task Tk among all tasks left in UT ;9:

if Tk.PUD > 0 then10:

Sched := Sched · Tk.PartialSched;11:

UT := delPartialSched(UT, Tk.PartialSched);12:

t := t + Tk.T otalT ime;13:

else14:

break;15:

return Sched;16:

Algorithm VI.1: A High-level Description of the GUS Algorithm

Note that a partial schedule is appended to the existing schedule (Algorithm VI.1,

line 11), instead of being inserted. This is because of the way we compute the PUD

for each task, where we assume that the tasks are executed at the current position in

the schedule. If the selected partial schedule is inserted into the existing schedule, the

previously computed PUDs become void. Furthermore, the algorithm does not consider

the deadline order, due to the reasons we discussed in Section IV.

Once a partial schedule is appended to the schedule, GUS updates the time t, which

is the starting time of the next partial schedule if there exists one. We call this time

variable t as virtual time in the rest of the paper, because it denotes time in the future.

GUS repeats the procedure until either it exhausts the unordered list, or no tasks can

produce any positive utility.

Note that in line 9, GUS picks the task with the maximum PUD. Since this dispatching

decision affects the completion time (and thus, utility) of all the other tasks in the system,



we also consider the approach of checking the k largest PUD tasks to make the dispatching

decision. We permute the k largest PUD tasks to find their best order, and append the

k tasks at the end of the output schedule. Our goal is to minimize the utility loss for the

other (delayed) tasks. We call this additional heuristic as k-step PUDs, and picking the

largest PUD task becomes a special case of 1-step PUD. The heuristic of k-step PUDs

(k > 1) yield no better performance than 1-step PUD. This is elaborated and evaluated

in Section X.

We discuss details of creating and deleting partial schedules in Section VI-A. A sub-

problem of creating a partial schedule is to determine the execution mode of tasks in the

dependency chain, and it is addressed in Section VI-B.

A. Manipulating Partial Schedules

A partial schedule is part of the complete schedule, containing a sequence of SchedEle-

ment’s. We use Ti.PartialSched to denote the partial schedule that is computed for task

Ti. Ti.PartialSched consists of task Ti, and all of, or portions of Ti’s predecessors. We

show how GUS computes the partial schedule for Ti in Algorithm VI.3.

Before GUS computes task partial schedules, the dependency chain of each task must

be determined. This procedure is shown in Algorithm VI.2. The algorithm simply follows

the chain of resource request/ownership. Each task Tj in the dependency list has a

successor task that needs a resource that is currently held by Tj. A successor cannot

be scheduled to execute until its predecessor completes. For convenience, the input task

Ti is also included in its own dependency list, so that all other tasks in the list have a

successor task. The buildDep algorithm stops either because a predecessor task does not

need any resource, or the requested resource is free.

Note that we use the operator“¦”to denote an append operation. Thus, the dependency

list starts with the farthest predecessor of Ti (which can be retrieved by the function

Head(Ti.Dep) and ends with Ti itself.

The createPartialSched() algorithm accepts a task Ti, its dependency list Ti.Dep,

and a virtual time t. The virtual time t is the time to execute the partial schedule to

be created. On completion, the createPartialSched() algorithm produces a partial

schedule for Ti, the total execution time of the partial schedule called TotalT ime, and



input : task Ti;1:

output : dependency list of Ti: Ti.Dep;2:

Initialization : Ti.Dep := Ti;3:

PrevT := Ti;4:

while reqResource(PrevT) 6= ∅V Owner( reqResource(PrevT) ) 6= ∅ do5:

Ti.Dep :=Owner(reqResource(PrevT) ) ·Ti.Dep;6:

PrevT := Owner(reqResource(PrevT) );7:

Algorithm VI.2: buildDep(): Build Dependency List

the aggregate utility that can be obtained by executing the partial schedule at time

t, called TotalUtility. The algorithm computes the partial schedule by assuming that

tasks in Ti.Dep are executed from the current position (at time t) in the schedule while

following the dependencies.

The total execution time of task Ti and its predecessors consists of two parts: (1) the

time needed to release the resources that are needed to execute Ti; and (2) the remaining

execution time of Ti itself. The order of executing the corresponding tasks or portions of

tasks, in their particular modes, together becomes the partial schedule.

Lines 4-14 of Algorithm VI.3 compute the time for Ti to acquire its requested resources.

Lines 15-21 account for the remaining execution time of Ti itself. Note that, to release

a resource R, a task Tj can either execute in NORMAL mode for holdTime(Tj, R) or in

ABORT mode for abortTime(Tj, R). These two alternatives are accounted for in lines 6-14

of the algorithm by calling the algorithm determineMode().

Since our application model requires explicit release of resources before the end of a

thread, it is possible that a task is selected to execute for only a portion of its remaining

execution time, after which one or more of the resources that it holds are released. The

remaining portion of that task may be scheduled to execute later.

If a task Tj is scheduled to complete it’s execution after it releases resources that

are needed by its successor, then Tj may accrue some utility. This is accounted for in

lines 10-11. Finally, task Ti itself may be executed in either NORMAL or ABORT mode, which

has been determined before the current scheduling event. If Ti is executing in NORMAL

mode, naturally, it may accrue some positive utility (line 18). Otherwise, no utility can

be accrued from the execution of Ti.

If the selected partial schedule contains the remaining portion of a task T , either in

NORMAL mode or in ABORT mode, task T needs to be removed from the unordered task



input : task Ti and its dependency list Ti.Dep; t: the time to start executing the partial schedule;1:

output : a partial schedule PartialSched; the total execution time of PartialSched, called2:

TotalT ime; the total utility accrued by executing PartialSched, called TotalUtility;
Initialization: PartialSched := ∅; TotalT ime := 0; TotalUtility := 0;3:

/* consider tasks in Ti’s dependency chain */

for ∀Tj ∈ Ti.Dep
V

Tj 6= Ti, starting from the immediate dependency task do4:

R := reqResource(Tj → Next);5:

Mode :=determineMode(Tj , T otalUtility, TotalT ime, t);6:

if Mode = NORMAL then7:

PartialSched := PartialSched · 〈Tj , NORMAL, holdTime(Tj , R)〉;8:

TotalT ime := TotalT ime+ holdTime(Tj , R);9:

if holdTime(Tj , R) = Tj .ExecT ime then10:

TotalUtility := TotalUtility + Uj (t + TotalT ime);11:

else12:

PartialSched := PartialSched · 〈Tj , ABORT, abortTime(Tj , R)〉;13:

TotalT ime := TotalT ime+ abortTime(Tj , R);14:

/* consider Ti itself */

if Ti.Mode = NORMAL then15:

PartialSched := PartialSched · 〈Ti, NORMAL, Ti.ExecT ime〉;16:

TotalT ime := TotalT ime + Ti.ExecT ime;17:

TotalUtility := TotalUtility + Ui (t + TotalT ime);18:

else19:

PartialSched := PartialSched · 〈Ti, ABORT, Ti.AbortT ime〉;20:

TotalT ime := TotalT ime + Ti.AbortT ime;21:

return 〈PartialSched, TotalT ime, TotalUtility〉22:

Algorithm VI.3: The createPartialSched() Algorithm

list UT . Consequently, if the selected partial schedule only contains a portion of task T ’s

remaining part, state components of T need to be updated to reflect this.

The GUS algorithm uses another algorithm called delPartialSched to delete a partial

schedule from an unordered task list, as shown in Algorithm VI.4. The delPartialSched

algorithm examines the partial schedule, from the head to the tail. If a task T has been

determined to execute in NORMAL mode, then its remaining execution time is updated

(line 11). Moreover, T may release one or more resources during the allocated time.

Therefore, the HoldT ime’s of the resources that are currently held by T are also updated

(lines 6-10). In the event that T is selected to complete its execution such that it can

release the resources, then T is completely removed from RUT (lines 12-13). Furthermore,

we consider the abortion of a task as the execution of a different piece of code segment

for the task. Thus, the same procedure applies to those tasks that have been determined

to execute in the ABORT mode (lines 15-22).

If a task T is not the tail of a partial schedule, it must release at least one resource.

This is because, the only reason for executing the task T , either in NORMAL mode or



in ABORT mode, is to release the requested resource, so that the successor of task T is

able to execute. However, task Ti (recall that the partial schedule is due to task Ti)must

complete in the partial schedule. Therefore, it is completely removed from RUT (line 23).

input : a partial schedule Ti.PartialSched and an unordered task list UT ;1:

output : a reduced task list RUT ;2:

Copy UT into RUT : RUT := UT ;3:

for ∀ 〈T, Mode, T ime〉 ∈ PartialSched
V

T 6= Ti from head to tail do4:

if Mode = NORMAL then5:

for ∀ 〈R, HoldT ime, AbortT ime〉 ∈ T.HeldResources do6:

Update HoldT ime: HoldT ime := HoldT ime− Time;7:

if HoldT ime := 0 then8:

T.HeldResource := T.HeldResource− 〈R, HoldT ime, AbortT ime〉;9:

R.Owner := ∅;10:

Update T.ExecT ime, T ∈ RUT : T.ExecT ime := T.ExecT ime− Time;11:

if T.ExecT ime = 0 then12:

Remove T from RUT : RUT := RUT − T ;13:

else14:

for ∀ 〈R, HoldT ime, AbortT ime〉 ∈ T.HeldResources do15:

Update AbortT ime : AbortT ime := AbortT ime− Time;16:

if AbortT ime = 0 then17:

T.HeldResource := T.HeldResource− 〈R, HoldT ime, AbortT ime〉;18:

R.Owner := ∅;19:

Update T.AbortT ime, T ∈ RUT : T.AbortT ime := T.AbortT ime− Time;20:

if T.AbortT ime := 0 then21:

Remove T from RUT : RUT = RUT − T ;22:

Remove Ti from RUT ;23:

return RUT ;24:

Algorithm VI.4: Removing a Partial Schedule from a Task List delPar-
tialSched()

B. Determining Task Execution Mode

Besides resolving deadlocks, abortions can also be used to improve the aggregate utility.

The intuition for doing so is that the time to abort a task may be different from the

normal resource hold time, which in turn may affect the timeliness of the tasks that

depend upon it. Thus, determining the execution mode of the tasks in a dependency list

is necessary to achieve better performance.

Algorithm VI.5 determines the execution mode of a task Tj in the dependency list of

task Ti. In case that task Tj is running in ABORT mode, the determineMode() algorithm

immediately returns ABORT mode (lines 3). If a thread cannot be aborted (i.e., AbortT ime

is infinity), the algorithm immediately returns NORMAL mode (line 4).



In other cases, to determine which execution mode is better, the algorithm compares

the PUD’s of Ti, when Tj is executed in the two modes—NORMAL mode (lines 5-6) and

ABORT mode (lines 7-8). The required time and accrued utility are computed under the

two execution modes (called NormalT ime and NormalUtility for the first scenario;

AbortT ime and AbortUtility for the second scenario). The algorithm then follows the

dependency chain to examine Tj’s successors in Ti.Dep except Ti, assuming that all

of them execute normally (lines 5-20) if they are not currently in ABORT mode. This

assumption is reasonable even though the execution modes of those tasks have not yet

been determined when Tj is examined, because a task’s initial mode is NORMAL, unless

changed by the scheduler.

Finally, the algorithm considers task Ti itself (lines 21-28), whose mode has been

determined before the current scheduling event. If Ti is in NORMAL mode, it requires

Ti.ExecT ime to finish the execution of the task. This may or may not produce some

positive utility. On the other hand, if Ti is being aborted, it needs Ti.AbortT ime to

complete the abortion. However, this will not produce any utility.

Once total execution times and total utilities under the two scenarios are computed,

the algorithm computes the two different PUD’s. If executing Tj in NORMAL mode will

yield a higher PUD for Ti, then the algorithm decides to execute Tj normally (lines 29-30).

Otherwise, Tj is aborted (lines 31-32).

Note that our approach to determine a task execution mode is different from that

of the DASA algorithm [5]. DASA seeks to acquire the requested resource as soon as

possible. Thus, if the abort time of a task is shorter than its execution time, the task is

aborted. Otherwise, the task executes normally. This simple criterion works well for step

time/utility functions, because the timeliness of a task will not be negatively affected

if the task finishes earlier than its deadline. However, this is not true for arbitrarily

shaped time/utility functions. In fact, for non-increasing time/utility functions, the GUS

determineMode() algorithm can simply return the NORMAL mode if a task’s abort time

is longer than its execution time; otherwise it can return the ABORT mode.



input : task Tj ∈ Ti.Dep, the current accumulative utility of Ti, TotalUtility; the current1:

accumulative execution time of Ti, TotalT ime, the current virtual time t;
output : the execution mode of Tj ;2:

/* Tj is currently running in ABORT mode */

if Tj .Mode = ABORT then return ABORT;3:

/* Tj is not abortable */

if Tj .AbortT ime = ∞ then return NORMAL;4:

/* scenario I: assuming Tj executes normally */

NormalT ime := TotalT ime+ holdTime(Tj, reqResource(Tj → Next) );5:

NormalUtility := TotalUtility + Uj (t + NormalT ime);6:

/* scenario II: assuming Tj aborts execution */

AbortT ime := TotalT ime+ abortTime(Tj, reqResource(Tj → Next) );7:

AbortUtility := TotalUtility;8:

NextT := Tj → Next;9:

while NextT 6= ∅ do10:
/* consider tasks in Ti’s dependencies */

if NextT.Mode = NORMAL then11:

NormalT ime := NormalT ime+ holdTime(NextT , reqResource(NextT → Next) );12:

NormalUtility := NormalUtility + UNextT (t + NormalT ime);13:

AbortT ime := AbortT ime+ holdTime(NextT , reqResource(NextT → Next) );14:

AbortUtility := AbortUtility + UNextT (t + AbortT ime);15:

NextT := NextT → Next;16:

else17:

NormalT ime := NormalT ime+ abortTime(NextT , reqResource(NextT → Next) );18:

AbortT ime := AbortT ime+ abortTime(NextT , reqResource(NextT → Next) );19:

NextT := NextT → Next;20:

/* consider Ti itself */

if Ti.Mode = NORMAL then21:

NormalT ime := NormalT ime + Ti.ExecT ime;22:

NormalUtility := NormalUtility + Ui (t + NormalT ime);23:

AbortT ime := AbortT ime + Ti.ExecT ime;24:

AbortUtility := AbortT ime + Ui (t + AbortT ime);25:

else26:

NormalT ime := NormalT ime + Ti.AbortT ime;27:

AbortT ime := AbortT ime + Ti.AbortT ime;28:

/* determine the execution mode of Tj */

if NormalUtility/NormalT ime ≥ AbortUtility/AbortT ime then29:

Mode := NORMAL;30:

else31:

Mode := ABORT;32:

return Mode;33:

Algorithm VI.5: determineMode(): Determining Task Execution Mode

C. Handling Termination Time Exceptions

Each TUF Ui has a termination time TMi (see Section III). If the termination time is

reached and thread Ti has not finished execution or even not yet started execution, an

exception should be raised. Normally, this exception causes abortion of Ti, which implies

execution of the thread’s cleanup handlers, if any.

In this paper, we assume that an handler for a termination time exception is associ-

ated with an application-specific time constraint—i.e., a time/utility function. Thus, the



termination handler is scheduled in the same way as other threads. In fact, execution of

the exception handler is simply part of the thread itself.

VII. Complexity of GUS

To analyze the complexity of the GUS algorithm (Algorithm VI.1), we consider n

tasks and a maximum of r resources in the system. Observe that, in the worst case,

each task may hold up to r resources and may be split into (2r + 1) partial schedules.

Thus, the while-loop starting at line 4 in Algorithm VI.1 may be repeated O (nr) times.

Each execution of the loop body examines up to n tasks (or portions of the tasks)

that remain in the unordered task list. Clearly, complexity of the while-loop body is

dominated by the complexity of creating a partial schedule (Algorithm VI.1, line 7),

which in turn is dominated by the cost of determining execution modes of up to n tasks

in the dependency chain. Since Algorithm VI.5 costs O(n) for each task, the worst-case

complexity of Algorithm VI.3 is n×O(n) = O(n2). Therefore, the worst-case complexity

of the GUS algorithm is nr × (n×O (n2)) = O (n4r).

Note that dispatching using the GUS algorithm is sufficient, unlike most other schedul-

ing algorithms. This is because, a new partial schedule is appended by GUS only at the

tail of the existing schedule, and cannot affect the partial schedule at the head (of the

existing schedule) by any means. Thus, for GUS to work as a dispatching algorithm

instead of a scheduling algorithm, the while-loop starting at line 4 in Algorithm VI.1

can be eliminated. In this case, the complexity of GUS as a dispatching algorithm can

be reduced to O(n3).

VIII. Non-Timeliness Properties of GUS

This section presents a class of non-timeliness properties of GUS, including resource

safety and task execution mode assurance.

Property VIII.1. A task within a partial schedule is either ready to execute, or becomes

ready after its predecessor task within the same partial schedule executes. We call a partial

schedule “self-contained.”

Proof. This property can be shown to be true by examining the createPartialSched

algorithm (Algorithm VI.3). Consider a task Ti within a partial schedule PS. If Ti lies



at the head of PS, then it must also lie at the head of the dependency chain. Thus, it is

ready to execute and the resource that it needs is available.

If Ti does not lie at the head of PS, then let Tj be the immediate predecessor task

of Ti in PS. Let R be the resource requested by Ti. If Tj is added into the partial

schedule in NORMAL mode, then it must execute for holdTime(Tj, R) time units (line 8).

On the other hand, if Tj is selected to execute in ABORT mode, then Tj is aborted after

abortTime(Tj, R) (line 13) time units, releasing resource R. Thus, resource R must be

free when Ti is scheduled to execute.

Property VIII.2. A complete schedule is self-contained if every partial schedule within

it is self-contained.

Proof. We consider a task T within a complete schedule. Since a complete schedule is

a concatenation of a set of partial schedules, T must also belong to a partial schedule

PS. By Property VIII.1, this property is therefore true.

Property VIII.3. When a task Ti that requests a resource R is selected for execution by

GUS, the resource R will be free at the time of execution of Ti.

Proof. The property can be proved using Property VIII.1 and Property VIII.2.

Property VIII.4. If a task Ti is executing in ABORT mode, GUS will not later schedule

Ti to execute in NORMAL mode.

Proof. This property is a natural requirement, because our task model assumes that an

aborted task cannot execute in NORMAL mode in the future, although the abort operation

may be split into several stages. The correctness of this property can be seen from lines 3-

3 of the determineMode() algorithm (Algorithm VI.5). This mode information is further

used in the createPartialSched() algorithm. If a task is executing in ABORT mode,

the algorithm will append the task in ABORT mode at the tail of the partial schedule

(lines 12-14 and lines 19-21).

Recall that a non-abortable thread is associated with infinite abortion time. Thus, by

similar argument (see line 4-4 of Algorithm VI.5), we can prove the following property

Property VIII.5. If a task Ti is not abortable, GUS will not schedule it to execute in



ABORT mode.

IX. Simulation Results

We performed two sets of experiments. The first set of experiments were “static”

simulations in the sense that each experiment examines a task ready queue at a particular

scheduling event and produces a schedule. The major advantage of conducting such static

simulations is that we can compare the schedule produced by GUS with that obtained

by exhaustive search. The second set of experiments were “dynamic” simulations, as we

randomly generated streams of tasks at run time and measured the aggregate utility

produced by various scheduling algorithms.

For performance comparison, we considered DASA [5], LBESA [6], CMA (named after

the authors of the algorithm, i.e., Chen and Muhlethaler’s Algorithm) [7], and Dover [10]

algorithms. Each input to a static simulation experiment is a randomly generated 9-task

set with certain distributions, including uniform distribution, normal distribution, and

exponential distribution. Moreover, we normalize the accrued utility with that acquired

by the schedule that is produced by exhaustive search. Note that the exhaustive search

knows the resource request patterns in advance, but unlike GUS, it does not split a thread

into several segments within the same schedule. We call such a performance metric as

normalized accrued utility or “normalized AU” for short. Furthermore, a single data point

was obtained as the average of 500 independent experiments.

TABLE I: Simulation Parameters

Distribution ExecTime Static Deadline InterArr Time Laxity

uniform U[0.05, 2Cavg] U[0.01, 2Davg] U[0.01, 2Cavg/ρ] N[0.25, 0.25]

normal N[Cavg, Cavg] N[Davg, Davg] N[Cavg/ρ, 0.5] N[0.25, 0.25]

exponential E[Cavg] E[Davg] E[Cavg/ρ] N[0.25, 0.25]

Let Cavg be the average task execution time and let Davg be the average task“deadline”

that is defined as the latest time point after which the task utility is always zero 6. Given a

9-task set, the average load ρ can be determined as ρ = 9CAvg/Davg. In all the simulation

6We assume that a deadline point is the same as the termination time of a TUF. This deadline definition is

used through all our experimental results presented in Sections IX and X.



experiments, we chose Cavg as 0.5 sec. In Table I, we show the simulation parameters 7,

where parameters for the static simulations are shown in columns 2 and 3 of the table.

Excluding the Dover algorithm, our first static simulation experiments involve all other

four scheduling algorithms for independent tasks with step time/utility functions. The

maximum values of the TUFs abide normal distribution N[10, 10]. The Dover algorithm

requires a timer for Latest Start Time [10]. Thus, it can only be dynamically simulated.

In Figure 6(a), we show the performance of the algorithms under uniform distributions.

As shown in the figure, DASA and GUS have very close performance for the entire

load range and perform the best. On the other hand, CMA and LBESA exhibits the

worst performance among all algorithms. Our experiments with normal and exponential

distributions showed consistent results. Thus, we conclude that GUS, in general, has close

performance to DASA for independent task sets with step TUFs.

(a) Without Dependencies (b) With Dependencies

Fig. 6: Normalized Performance of Algorithms Under Step TUFs and Uniform Distributions

For dependent task sets in the static simulation, we randomly generate resource de-

pendency graphs. Once a generated graph is verified to be deadlock-free, it is sent as the

input of the simulator. We show the simulation results of DASA and GUS schedulers

for uniform distributions in Figure 6(b), as an example. Observe that GUS performs

worse than DASA in the figure. Furthermore, the performance gap increases when more

resources are present in the system. We attribute this worse performance of GUS to the

7U[a, b] denotes a random variable that is uniformly distributed between a and b. N[a, b] specifies a normal

distribution with mean value of a and variance of b. E[a] is an exponential distribution with mean value of a.



fact that GUS ignores tasks deadlines in making scheduling decisions. Though deadline

order may not be appropriate for arbitrarily shaped TUFs (see Section IV), it can be

beneficial for tasks with step TUFs. On the other hand, DASA only outperforms GUS

by no more than 10% in terms of normalized AUR, even if the system is overloaded and

has five shared resources.

(a) Without Dependencies (b) With Dependencies

Fig. 7: Performance of GUS Under Arbitrarily Shaped TUFs and Uniform Distributions

In Figures 7(a) and 7(b), we show the performance of GUS for tasks with arbitrarily

shaped TUFs, which are represented by 3rd-order polynomials in the experiments. 8 The

coefficients of the 3rd-order polynomials are randomly generated between [-10, 10], which

we believe can provide good approximation of “arbitrary” TUFs. As shown in the two

figures, GUS does not suffer abrupt performance degradation with or without shared

resources. Furthermore, if the system is not heavily overloaded, GUS can accrue most of

the utility (over 80%) that can be accrued by the exhaustive-search scheduler. Simulation

results for normal and exponential distributions are similar.

Our major objective in conducting dynamic simulations is to compare the performance

of GUS with the Dover algorithm, which cannot be investigated in static simulations. Each

dynamic simulation experiment generates a stream of 1000 tasks.

Given the task average execution time Cavg and a load factor ρ, the average task inter

arrival time can be calculated as Cavg/ρ. This average task inter arrival is applied for

8The error bar around each data point represents the 90% confidence interval of that data point, and each

single data point is an average of 500 independent experimental results.



different distributions, as shown in column 4 of Table I. Furthermore, the task laxity is

modeled as a random variable with normal distribution N[0.25, 0.25] (Table I, column 5).

Note that Laxity is defined as StaticDeadline − ExecT ime. To compare the algorithm

performance, we consider independent tasks with step TUFs. Again, the maximum values

of the TUFs abide normal distribution N[10, 10].

Fig. 8: Algorithm AURs: Step TUFs, No Dependencies,

and Uniform Distributions

We show the performance of the five

scheduling algorithms for step TUFs in

terms of Accrued Utility Ratio (AUR) in

Figure 8. AUR is defined as the accrued

utility divided by the maximal utility that

can possibly be accrued from the tasks.

As shown in the figure, the Dover algo-

rithm performs the worst among all six

algorithms, while DASA, CMA, and GUS

have close performance. The poor perfor-

mance of Dover is because the algorithm

rejects more high utility tasks than it should, to guarantee the worst-case performance

(see Chapter 8, Section 8.4.2 in [17]). Furthermore, the optimality of Dover only applies

to tasks whose utilities are proportional to their execution times, which is not the case

in our experiments.

X. Implementation Results

We implemented GUS and several other scheduling algorithms (used in the simulation

studies) in a scheduling framework called meta-scheduler [18]. The meta-scheduler is an

application-level framework for implementing utility accrual scheduling algorithms on

POSIX-compliant operating systems [16], without modifying the operating system. Our

major motivation for considering the meta-scheduler framework (as opposed to using an

OS kernel environment) is because, it is significantly easier to implement and debug

scheduling algorithms in the meta-scheduler framework. In the meanwhile, the meta

scheduler maintains reasonably small overhead (from 10 usec to a few hundred usec in a

common hardware platform). The experimental system is a Toshiba Satellite 1805-S254



laptop (one 1GHz Intel Pentium III processor, 256KB L2 cache, and 256MB SDRAM)

running QNX Neutrino 6.2.1 real-time operating system.

During each experiment, 100 tasks are generated with randomly distributed parameters

such as task execution times and deadlines. For example, the worst-case execution times

(WCETs) of tasks 9 are exponentially distributed with a mean of 500 msec. Given a

workload ρ, we calculate the mean inter-arrival time as the mean execution time divided

by ρ. In addition, the laxity of a task is uniformly distributed between 50 msec and 1

sec. The task relative deadline is then the sum of the task execution time and laxity.

Moreover, TUFs of the tasks may be step, linear, parabolic, or combinations of these

basic shapes. In our experiments, the maximal utility of tasks are uniformly distributed

between 10 and 500. We use uniform distributions to define resource request parameters

in our experimental study. These parameters include the number of resources requested

by a task, resource hold times, and resource abort times.

We implemented four scheduling algorithms including DASA, LBESA, Dover, and GUS

as part of our experimental study. The CMA algorithm that we had considered in the

simulation studies was not implemented because it requires significant amount of memory

space and CPU time for median number of ready tasks.

Fig. 9: Algorithm AURs: Step TUFs, No Dependencies,

and Exponential Distributions

Fig. 10: Algorithm AURs: Arbitrary TUFs, No Depen-

dencies, and Exponential Distributions

Since all algorithms with the exception of GUS, have certain restrictions, e.g., can only

handle certain shapes of TUFS, we only compare performance of the algorithms for the

9WCETs are equal to exact execution times in our experiments.



cases that they apply to. For example, Figure 9 shows the AURs of all four scheduling

algorithms for task sets with step TUFs but no dependencies. From the figure, we observe

that the performance of the four algorithms do not significantly differ for light load and

medium load conditions (workload is less than 0.8). However, DASA and LBESA show

superior performance for heavy and overloaded situations. Figure 10 shows the AURs of

GUS and LBESA for task sets with arbitrary TUFs but no dependencies. As shown in

the figure, GUS performs very close to LBESA during both under-loads and overloads.

Fig. 11: Algorithm AURs: Step TUFs, With Depen-

dencies, and Exponential Distributions
Fig. 12: Average Scheduling Overhead

In addition, we show the performance comparison of DASA and GUS for task sets

with step TUFs and dependencies in Figure 11. Our experiments in this class used three

shared resources as an example scenario. We would expect DASA to outperform GUS for

this class of experiments, because GUS neither conducts a feasibility test, nor considers

the deadline order for scheduling the feasible task subset. The figures, however, show that

GUS actually performs better than DASA during light workload situations. Performance

of the two schedulers are very close during overloaded situations. We conjecture that the

better performance of GUS is because of its lower actual computational cost (for this par-

ticular implementation), in spite of its O(n3) complexity (DASA’s complexity is O(n2)).

In Figure 12, we provide further evidence for our conjecture by measuring scheduling

overheads. Note that “R-N” in the figure stands for step TUFs without dependencies;

“R-D” is for step TUFs with dependencies. Similarly, “ARB-N” and “ARB-D” are for



arbitrary TUFs without dependencies and with dependencies, respectively.
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Fig. 13: Algorithm AURs: Comparison of k-step PUDs

with Arbitrary TUFs and Uniform Distributions

We also conduct experiments to evaluate

the heuristic of k-step PUDs as described

in Section VI. When k = 1, this heuristic

is equal to that of GUS to pick the task

with the largest PUD. The heuristic of k-

step PUDs is applicable only at situations

without resource dependencies among tasks,

since only in this case the output tasks are

ordered by non-increasing PUDs. We choose

arbitrary TUFs and vary k from 1 to 5.

Figure 13 shows the AURs of GUS with

different values of k. From the figure, k-step PUDs (k > 1) yield no better performance

than 1-step PUD. Specifically, during very low loads, k-step PUDs (k > 1) perform

almost the same as 1-step PUD, because only very short task queues are generated

during very low loads, and often the task queue length is less than k. This makes the

k-step permutation meaningless. During high loads, k-step PUDs (k > 1) can check

more possible orders of tasks, so as to minimize the utility loss for the other (delayed)

tasks. But k-step PUDs require additional CPU overhead for the permutation operation,

which imposes negative effects on the performance. Thus, during high loads, k-step PUDs

(k > 1) perform no better than 1-step PUD; especially when k = 5, the additional

overhead degrades the performance to be worse than the others. Therefore, the heuristic

of GUS to pick the largest PUD task is both performance-effective and cost-effective.

XI. Related Work

Uni-processor real-time scheduling algorithms can be broadly classified into two cat-

egories: (1) deadline scheduling and (2) overload scheduling. Algorithms in the first

category generally seek to satisfy all hard deadlines, if possible. Examples of deadline

scheduling algorithms include the RMA algorithm [1] and the EDF scheduling algo-

rithm [19]. These algorithms are extended and varied to deal with other deadline-based

optimality criteria, such as the (m, k) firm guarantee presented in [20], lock-based real-



time resource access using the Priority Inheritance Protocol [8], the Priority Ceiling

Protocol [8], and the Stack Resource Policy [9]. In contrast, algorithms in the second

category deal with deadlines as well as non deadline time constraints such as non-step

TUFs, wherever proper.

Many existing algorithms for overload scheduling consider step TUFs, and mimic

the behavior of EDF during under-loads as closely as possible. Furthermore, they seek

to optimize other performance metrics during overloads, since all deadlines cannot be

satisfied during overloads. One important metric is the sum of utility (or “value”) that

is accrued by all tasks. In [21], the authors show that, for restrictive task sets (i.e., task

utilities are proportional to task execution times), the upper bound on the competitive

factor of any on-line scheduling algorithm is 1/(1+
√

k)2, where k is the importance ratio

of the task set. This upper bound is achieved by the Dover algorithm [10]. However, the

optimal competitive ratio does not imply the best performance for Dover for a broad

range of workload we considered in the experiments.

Besides the optimal Dover algorithm, heuristic algorithms have also been developed

for effective scheduling during overloaded situations. In [6], Locke presents the LBESA

algorithm that uses the notion of value density, which is complemented with feasibility

tests. Locke’s work is extended by several others including [11], [22]. Performance of the

algorithms presented in [11] may be better than LBESA’s, but in general, is very close.

Apart from the step TUF model with one segment of execution per task, the concept of

“imprecise computations”has also been proposed in the literature as an effective technique

to handle overloads [23]. For example, the algorithm presented in [24] consider this model.

Furthermore, the work on feedback control theory scheduling assumes the presence of N

versions of the same task (N ≥ 2) [25].

Our work fundamentally differs from all the aforementioned algorithms in that we con-

sider arbitrarily-shaped time/utility functions and mutual exclusion resource constraints.

All the previously mentioned algorithms, except for the LBESA algorithm, only consider

step TUFs. Furthermore, LBESA does not consider mutual exclusion constraints.

In [26], the authors present the concept of “timeliness-functions.” In [22], the same au-

thors show that scheduling the task with the highest Dynamic Timeliness-Density (DTD)

is more effective than scheduling the highest value density task. The DTD heuristic is



echoed in a special case of GUS, where tasks do not share resources.

Non-increasing TUFs have been explored in the context of non-preemptive scheduling

of independent activities, such as CMA [7]. We show the comparison of GUS with CMA

in Section IX. Again, GUS allows preemption, arbitrary time/utility functions (including

non-increasing functions), and mutual exclusion resource dependencies.

In [12], Strayer presents a framework for scheduling using “importance functions.”

An importance function can take arbitrary shapes, and has the similar meaning as

a time/utility function. However, no new scheduling algorithms are presented in [12].

Furthermore, the task model considered in [12] do not consider resource dependencies.

In the context of overload scheduling, little work considers shared resources that have

mutual exclusion constraints. DASA [5] considers shared resources with mutual exclusion

constraints, but only for step time/utility functions. However, GUS allows arbitrarily

shaped TUFs, whereas DASA is restricted to step functions. To the best of our knowledge,

DASA and GUS are the only two algorithms that schedule both CPU cycles and other

shared resources while allowing time constraints to be expressed using TUFs.

There are however, a significant number of algorithms that can simultaneously man-

age multiple shared resources (either multiple units of the same resource or multiple

resources). An example algorithm is the Q-RAM model [27]. Similar to the imprecise

computation, the Q-RAM model assumes that each task can be executed in a number

of ways, where different executions require different amount of shared resources, but

yield different utilities. Furthermore, it assumes that the utility of a task depends on

the resources allocated to it, which is fundamentally different from our UA model. In

Section II, we provide motivation for our TUF/UA model by summarizing two significant

demonstration applications that were successfully implemented using our UA model.

XII. Conclusions and Future Work

Our simulation results and implementation measurements show that the GUS algo-

rithm has comparable performance with algorithms such as DASA, LBESA, CMA and

Dover for all the application scenarios that they apply to. Experiments reveal that the

accrued utility ratio of GUS is within roughly 5% of that of any other algorithm if not

better. However, GUS can handle task sets with arbitrarily shaped TUFs and mutual



exclusion resource constraints; none of the existing algorithms can schedule such a task

set. This is the major contribution of the GUS algorithm. Furthermore, we establish

several fundamental timeliness and non-timeliness properties of GUS.

Several aspects of GUS are interesting directions for further study. One direction is to

develop a stochastic version of GUS—one that considers task models with stochastically

specified task properties including that for execution times. Another very interesting

future direction is to extend GUS for distributed scheduling for satisfying end-to-end

time constraints in real-time distributed systems.
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