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Abstract. Load balancing is one of the main challenges in a Virtual
Machine (VM) Environment in order to ensure equal utilization of all
the available resources while avoiding overloading a subset of machines.
In this paper, we propose an efficient load balancing strategy based on
VM live migration. Unlike previous work, our strategy records the his-
tory of mappings to inform future placement decisions. We also apply
a workload-adaptive live migration algorithm in order to minimize VM
downtime and improve the user experience. The evaluation shows that
our load balancing technique is faster than previous approaches, thus re-
ducing the decision generating latency by as much as 79%. Furthermore,
the results also show that we provide minimal downtime. Compared with
competitors, our proposed migration mechanism reduces the downtime
by up to 73%.

1 Introduction

Virtual machine (VM) environments, where multiple physical machines and VMs
are interconnected via increasingly fast networking technologies, are becoming
extremely popular for providing on-demand computational services and high
availability. One of the most interesting features is that the pool of available
resources (CPU, virtual memory, secondary storage, etc.) can be shared be-
tween all the machines through the available interconnections. Several previous
works [10,13,17] observed that many resources are actually unused for a consider-
able amount of the operational time. Therefore, inter-machine load balancing is
of great interest in order to avoid situations where some machines are overloaded
while others are idle or under-used.

Traditionally, there are several ways to achieve load balancing in networked
systems. One straightforward solution is static load balancing, which assigns
applications at the beginning. The efficiency of this strategy depends on the
accuracy of the prior prediction. A dynamic load balancing strategy can be
exploited by migrating processes at run time among different machines in a net-
worked environment, rather than limiting the applications to run on the machine
where they are first assigned. To overcome the limitations imposed by process
migration, traditionally used in cluster environments, an OS-level methodology
that migrates all the running applications together with their hosting OS was
presented. This methodology attracted more attention than process migration,



especially through a technique called VM live migration [9]. Live migration is
migrating a VM from the source Virtual Machine Monitor (VMM) to the target
VMM (usually running on a different host machine) without halting the migrat-
ing guest operating system. Most state-of-the-art/practice VMMs (e.g., Xen [7],
VMware [22], KVM [1]) provide live migration mechanisms today. Unlike process
migration, VM live migration transfers the virtual CPU and emulated devices’
state and the guest OS memory data all together. Live migration is the enabling
technology behind many beneficial features such as load balancing, transparent
mobility, and high availability services. In addition, because it relies on VMM
to make a clean separation between hardware and software, live migration also
aids in aspects such as fault tolerance, application concurrency, and consolida-
tion management.

VM live migration has several advantages regarding the load balancing prob-
lem. A VM hosting several different running applications on a heavily loaded
machine can be migrated to another VMM laying idle on another machine in
order to exploit the availability of all the resources. Also, adopting live migra-
tion instead of a stop and resume migration mechanism natively ensures minimal
downtime and it minimally interrupts the VM user’s interaction. Here, the down-
time is defined as the waiting time between when the VM is unusable by the
users (stopped on the source VMM) and when the VM is working again (re-
sumed on the target VMM). We believe a good load balancing strategy should
provide minimal downtime for users.
This paper makes the following contributions:

1. We propose a fast and efficient centralized load balancing framework based
on history records. The evaluation shows that our load balancing technique is an
effective method, while it also reduces the decision generating latency as much
as 79% compared with previous approaches.

2. We apply a workload-adaptive approach to provide minimal downtime
for different kinds of applications. Results show that our proposed migration
mechanism reduces the downtime by up to 73% compared to competitors.

The rest of the paper is organized as follows: Section 2 discusses past and
related work. Section 3 presents the design and implementation of our load
balancing and live migration mechanism. Section 4 reports our experimental
environment, benchmarks used, and evaluation results. We conclude and discuss
future work in Section 5.

2 Related Work

The general problem of load balancing in a networked environment has been
examined for decades using different strategies [8,11,21]. In user space, Ansel et.
al. [6] allow dynamic migration of processes by checkpointing and restart. Heo
et. al. [24] rely on the cooperation between the process and the migration subsys-
tem to achieve its migration. The problem in these user space implementations
is that without kernel access, they are unable to migrate processes with location
dependent information and interprocess communication.In kernel space, imple-



mentations like [14, 23] allow the migration process to be done more quickly
and are able to migrate processes with dependencies. Compared with user space
process migration, they provide better performance. Although kernel space pro-
cess migration techniques are more efficient, they require modifications to the
operating system kernel.

Some research has been proposed to improve the load balancing performance
using VM live migration. Different works [12, 15, 16, 18, 20, 25] use a prediction
method to forecast future resource demands based on the current resource uti-
lization. However, in order to get an accurate prediction, these works need to
obtain and analyze the system performance continuously, which introduces over-
head. Our load balancing strategy doesn’t make predictions in advance; instead,
we always update and refer to the history record to assist in generating the final
decision. Furthermore, previous work didn’t consider the migration cost, and
the downtime performance is not evaluated in their experimental results. One of
our contributions is to design an adaptive VM migration mechanism in order to
provide minimal downtime for different kinds of applications. Additionally, we
characterize and quantify the downtime, and present the results in Section 4.2.
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3 Design and Implementation

3.1 Load Balancing Algorithm

Our prototype includes several machines which are linked by a network (Fig-
ure 1a). We choose one machine as the control node running only the load
balancing strategy. The other machines are used as computational nodes with
several VMs running on top of them. The load balancing mechanism is central-
ized: the control node runs the cloud management software that controls all the
nodes running VMs.



From a system-level point of view, when a node is heavily-loaded while others
are lightly-loaded, the imbalance problem emerges and it’s time to generate
a load balancing decision. The dynamic load balancing strategy continuously
attempts to reduce the differences among all the nodes, by migrating VMs from
heavily-loaded to lightly-loaded nodes. Figure 1b breaks down our strategy into
steps, which are explained below.

1. Collect the load values on each computational node. In this paper we
focus on CPU load-balancing and memory load-balancing of different nodes
in a VM environment. We model each node as a gray box, which provides
different interfaces to live record CPU and memory load information for each
node and each running virtual machine.
We use two methods to measure the load value at user level in Linux: by
either using the Linux syscall sysinfo(), or reading the information residing
in the proc file system. For CPU information we check the total jiffies that
the processor spent executing each VM and the physical machine as well, and
compute the utilization percentage for each part. For memory information
we record the page operations per second, for example, the number of page
faults requiring a page to be loaded into memory from disk.

2. Determine whether to trigger the live migration or not. After the
control node collects the load values from all computational nodes, the total
and average utilizations of all the machines involved in load balancing are
computed. We adopt a threshold based strategy for deciding when virtual
machines should be migrated between the nodes. The VM live migration will
be triggered if Cm, the mean value of the sum of the maximum and minimum
distances (respectively Cdiffmax and Cdiffmin) from the average utilization
(Cavg), is greater than a threshold T . Ci is the total CPU utilization of the
ith computational node, i ∈ 1, .., n; n is the current number of nodes in the
VM environment.
Cavg = 1

n

∑n
i=1 Ci

Cdiffi
= Ci − Cavg

Cdiffmax = maxi∈{1,..,n} Cdiffi

Cdiffmin = mini∈{1,..,n} Cdiffi

Cm = (Cdiffmax + Cdiffmin)/2
3. Schedule the live migration by checking the load balancing history

record. Whenever a migration is triggered, the control node checks the
history record for a similar CPUs utilization scenario, i.e. a similar load
distribution on the computational nodes. Note that the same Cavg doesn’t
ensure the same CPU utilizations scenario; the mapping is the key. If a
previous record exists, we can schedule the VM live migration by choosing
the same source and destination nodes. If several similar records exist, we
just follow the latest record and schedule the migration. If we can’t find such
a record, the current situation is totally new and the nodes with Ci value
close to Cdiffmax are used as sources, while the nodes with Ci value close to
Cdiffmin are used as destinations of the live migration. After the migration,
we add such situation (or mapping) as a new entry in the history record.



3.2 Workload Adaptive Live Migration

As opposed to previous works, we aim to provide load balancing with minimal
downtime via virtual machine live migration. We focus on effectively balancing
the usage of two kinds of resources: the CPU and memory. In our preliminary
experiments, however, we found that a general VM live migration mechanism
doesn’t work well in all cases, such as when dealing with a memory-intensive
application. Therefore, we implement a workload-adaptive migration mechanism.

– Generic application live migration. By “generic” we mean that there is
no memory-intensive workload running in the guest VM, but rather a mixed
workload, like Apache [4]. In this case the live migration is implemented
by exploiting the pre-copy technique [9,19], however, we compress the dirty
memory data before transmitting it. Compressed data takes less time to be
transferred through the network. In addition, network traffic due to migra-
tion is significantly reduced when less data is transferred between different
computational nodes. The technique is summarized in the following.
1. After the migration is triggered, all the memory pages of the selected

VM are transmitted from the source node to the target node while the
VM is still running (first migration epoch).

2. For subsequent migration epochs, the mechanism checks the dirty bitmap
to determine which memory pages have been updated during the epoch.
Only the newly updated pages are transmitted. The VM continues to
run on the source node during these epochs.

3. Before transmitting in every epoch, the presence of dirty data is checked
in an address-indexed cache of previously transmitted pages. If there is
a cache hit, the whole page (including this memory block) is XORed
with the previous version, and the differences are Run-Length Encoded
(RLE). Only the differences (delta) from a previous transmission of the
same memory data are transmitted.

4. For the memory data which is not present in the cache we apply a
general-purpose quick compression technique implemented in zlib [5].

5. When this mechanism is no longer beneficial, the VM is stopped on the
source node, the remaining data (left pages, CPU registers and device
states, etc.) is transmitted to the target node, and the VM is resumed
there.

– Memory-intensive applications live migration. When dealing with
memory-intensive applications in which memory is updated at high fre-
quency, the above presented live migration doesn’t work well because it leads
to unacceptable overheads. Assume a memory page is frequently updated by
a memory-intensive application; its updated copy will be compressed and
transferred on each migration epoch. It could be worse considering that
a VM can be assigned up to several gigabytes of memory to run the guest
OS. Therefore, to load balance workloads characterized by memory-intensive
applications, we propose another live migration technique described in the
following.



1. After the migration is triggered, all the memory pages of the selected VM
are compressed and transmitted from source to the target node while the
VM is still active.

2. The VM is then suspended on the source node until a minimal and
necessary execution state (or checkpoint) of the VM (including CPU
state, registers, and some non-pageable data structures in memory) has
been transmitted to the target and resumed there.

3. On the target node, if the resumed VM tries to access a memory page
that has not been updated, a page fault will be generated and redi-
rected towards the source. The source node will respond to the fault by
fetching the corresponding memory pages, then compressing and trans-
mitting them to the target node (we adopt the same compression method
described above).

When the applications running in the VM are mostly memory-intensive,
this design ensures that each memory page is compressed and transmitted
at maximum twice during a migration. Additionally, if the workload is read-
intensive most memory data is only transmitted once.

4 Experimental Evaluation

Our experimental environment includes five machines: one is used as the control
node, and the other four (computational nodes) are running the guest VMs. Each
computational node is configured with an Intel i5 processor running at 2.3GHz
with either 4GB or 6GB of RAM. All machines are connected by a 1Gb Ethernet
switch. Our load balancing strategy and migration mechanisms are based on
Xen(3.4.0). The operating system (installed on each of the five machines and
guest VMs) is Centos 5.2 with the Linux 2.6.18.8 kernel. We refer to our load
balancing framework as DCbalance. Our competitors include OSVD [16] and
DLB [15]. OSVD is also based on VM live migration and integrates performance
prediction mechanism. DLB implements a dynamic load balancing algorithm [15]
deployed into Xen’s original live migration mechanism. We split the performance
evaluation in two: a first section about our load balancing strategy and another
section about the proposed migration mechanism.

4.1 Load Balancing Strategies Comparison

For this evaluation we run the MPI version of the NPB test suite [2]. We present
here the results about the embarrassing parallel (EP) test. EP is a compute-
bound benchmark with few network communications [2]. Initially we let each
computational node run the same number of VMs. The total workload is divided
and assigned to all the VMs on the 4 nodes. We let node1 execute 50% of the total
workload while the remaining 3 nodes execute the rest (16.6% each). Obviously
node1 is overloaded. Each node runs 8 VMs with 256MB assigned as guest
memory. Initially the workload assigned to each node is distributed to the VMs
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Fig. 2: Workload completion time comparison on different problem data sizes.

running on the that node. In this experiment we set the threshold T to 0.1 (see
Section 3.1).

We first compare the three load balancing strategies with the case that no
load balancing strategy is used. Figure 2a shows the completion times when
running the class C problem size of the NPB-EP benchmark, “none-LB” is the
case in which no load balancing strategy is applied to the workload. The x-
axis refers to the node number while the y-axis is the workload completion
time in seconds. As mentioned above, initially each node has 8 VMs on average
and node1 is overloaded with half of the total workload. Without any load
balancing strategy, node1 took close to 220 seconds to complete the workload
while all other nodes took only about 70 seconds each. When applying any
of the three load balancing strategies, however, all the nodes exhibit relatively
consistent completion times because the VM(s) on the overloaded node were
already migrated to other nodes. We observe that compared with other published
load balancing algorithms, DCbalance achieves similar performance. Figure 2b
shows the same evaluation but on a larger dataset. Our load balancing strategy
can still provide comparable performance when dealing with the larger problem.

Table 1: Workload percentage after migration and triggering latency comparison.

LB strategy #1 Load #2 Load #3 Load #4 Load Triggering latency

DLB 24% 25% 26% 25% 2.2s

OSVD 27% 35% 17% 21% 3.1s

DCbalance 28% 26% 23% 21% 0.63s

DCbalance-nh 29% 25% 27% 19% 1.09s

We also compare the triggering latency of each load balancing strategy; i.e.
the elapsed time between the collection of load information and the time when



the decision is generated. We compute the workload percentage as well as the
VMs load values on each node after the migration finish. In this test we used
a history record of (the most recent) 20 entries. To evaluate the benefits of the
history record, we add another competitor: DCbalance-nh, which is our load
balancing design without any history record (we set the number of entries to
zero). Table 1 shows the results under four load balancing strategies. From the
numbers we observe that the DLB algorithm outperforms the others but it needs
longer time to generate the decision. The OSVD system incurs even more time
due to prediction overhead, and we can also observe that its final decision is not
as balanced as DLB. Compared with these two strategies, the main benefit of
our strategy is the short time needed for finding the solution, which reduce the
triggering latency by as much as 79% compared with the OSVD system. We also
observe that it is an efficient method, as the migration decision is comparably
fair. From the differences between DCbalance and DCbalance-nh, we conclude
that by referring to the history record we gain performance improvements by
more quickly generate the migration decision.

4.2 Migration Mechanisms Comparison

We evaluate the performance of migrating VMs running two types of workloads:
“generic”, by runing the Apache [4] webserver and “memory-intensive”, by run-
ning Sysbench [3] (e.g., 25% read operations and 75% write operations). We let
each node run 4 VMs with the same assigned memory size. We conduct the eval-
uation while varying the guest memory size from 128MB to 512MB, in order to
investigate the impact of memory size on the downtime and other performance
characteristics. To verify the effectiveness of our adaptive migration mechanism
we again add another competitor, DCbalance-i. We refer to our migration design
for generic applications as DCbalance, whereas we refer to its improved version
which better handles memory-intensive applications as DCbalance-i.
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Fig. 3: Downtime comparison under different workloads.



Figure 3a shows the downtime results for the Apache benchmark for four
migration mechanisms with three different sizes of assigned guest memory. We
observe that all four mechanisms incur minimal downtime (within 1 second).
However, because our proposed mechanism further reduces the data to be trans-
mitted by compressing it before migration, it leads to lower downtime numbers.
As the assigned guest memory goes up, the gap becomes larger, with a 17% re-
duction under the 512MB case. Another observation is that there is no obvious
difference between the results of DCbalance and DCbalance-i. This is because
the DCbalance-i is designed for memory-intensive applications but the Apache
benchmark is not memory bounded.

Figure 3b shows the downtime results in the same cases as Figure 3a while
running a memory-intensive workload (Sysbench benchmark) which updates the
guest memory at high frequency. The findings are clearly different from the
previous case. DCbalance still performs better than DLB and OSVD, which
incur several seconds each; it reduces the downtime by roughly 35%. However,
the DCbalance-i is by far the best mechanism, as it maintains a downtime around
1s in all cases. The downtime is reduced by 73% compared with DLB and OSVD.

5 Conclusion

Our strategy is proven to be fast and efficient as a load balancing approach.
Instead of making predictions in advance, we refer to a history record to help
schedule the VM migration. Decision generation is up to 79% faster than com-
petitors. Moreover, we apply a workload-adaptive migration mechanism to pro-
vide minimal downtime for different kinds of applications, so as to improve the
user experience. Results show that our proposed migration mechanism reduces
the downtime by up to 73% in comparison to competitors. Future work includes
combining the network topology and network communication monitoring with
our proposed method in order to make network-aware mapping decisions (and
thus reduce the network traffic). Furthermore, we will extend the problem of
load balancing to distributed VM environments.
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