
FBLT: A Real-Time Contention Manager with
Improved Schedulability

Mohammed Elshambakey
ECE Dept, Virginia Tech

Blacksburg, VA 24060, USA
shambake@vt.edu

Binoy Ravindran
ECE Dept, Virginia Tech

Blacksburg, VA 24060, USA
binoy@vt.edu

Abstract—We consider software transactional memory (STM)
concurrency control for embedded multicore real-time software,
and present a novel contention manager for resolving trans-
actional conflicts, called FBLT. We upper bound transactional
retries and task response times under FBLT, and identify when
FBLT has better real-time schedulability than the previous best
contention manager, PNF. Our implementation in the Rochester
STM framework reveals that FBLT yields shorter or comparable
retry costs than competitor methods.

I. INTRODUCTION

Embedded systems sense physical processes and control
their behavior, typically through feedback loops. Since phys-
ical processes are concurrent, computations that control them
must also be concurrent, enabling them to process multiple
streams of sensor input and control multiple actuators, all
concurrently while satisfying time constraints.

The de facto standard for concurrent programming is the
threads abstraction, and the de facto synchronization abstrac-
tion is locks. Lock-based concurrency control has significant
programmability, scalability, and composability challenges [1].
Transactional memory (TM) is an alternative synchronization
model for shared memory objects that promises to allevi-
ate these difficulties. With TM, code that read/write shared
objects is organized as memory transactions, which execute
speculatively, while logging changes made to objects. Two
transactions conflict if they access the same object and at
least one access is a write. When that happens, a contention
manager (CM) [2] resolves the conflict by aborting one and
allowing the other to commit, yielding (the illusion of) atom-
icity. Aborted transactions are re-started, after rolling back
the changes. In addition to a simple programming model,
TM provides performance comparable to lock-free approach,
especially for high contention and read-dominated workloads
(see an example TM system’s performance in [3]), and is
composable [4]. TM has been proposed in hardware, called
HTM, and in software, called STM, with the usual tradeoffs:
HTM has lesser overhead, but needs transactional support in
hardware; STM is available on any hardware.

Given STM’s programmability, scalability, and compos-
ability advantages, it is a compelling concurrency control
technique also for multicore embedded real-time software.
However, this requires bounding transactional retries, as real-
time threads, which subsume transactions, must satisfy time

constraints. Retry bounds under STM are dependent on the
CM policy at hand.

Past real-time CM research has proposed resolving transac-
tional contention using dynamic and fixed priorities of parent
threads, resulting in Earliest Deadline CM (ECM) and Rate
Monotonic CM (RCM) [5]–[7], which are intended to be used
with global EDF (G-EDF) and global RMS (G-RMS) mul-
ticore real-time schedulers [8], respectively. In particular, [6]
shows that ECM and RCM achieve higher schedulability –
i.e., greater number of task sets meeting their time constraints
– than lock-free synchronization only under some ranges for
the maximum atomic section length. That range is significantly
expanded with the Length-based CM (LCM) in [7], increasing
the coverage of STM’s timeliness superiority. ECM, RCM,
and LCM suffer from transitive retry (Section III) and can-
not handle multiple objects per transaction efficiently. These
limitations are overcome with the Priority with Negative value
and First access CM (PNF) [9], [10]. However, PNF requires
a-priori knowledge of all objects accessed by each transaction.
This significantly limits programmability, and is incompatible
with dynamic STM implementations [11]. Additionally, PNF
is a centralized CM, which increases overheads and retry costs,
and has a complex implementation.

We propose the First Bounded, Last Timestamp CM (or
FBLT) (Section IV). In contrast to PNF, FBLT does not
require a-priori knowledge of objects accessed by transactions.
Moreover, FBLT allows each transaction to access multiple
objects with shorter transitive retry cost than ECM, RCM
and LCM. Additionally, FBLT is a decentralized CM and
does not use locks in its implementation. Implementation of
FBLT is also simpler than PNF. We establish FBLT’s retry
and response time upper bounds under G-EDF and G-RMA
schedulers (Section V). We also identify the conditions under
which FBLT’s schedulability is better than PNF (Section VI).
We implement FBLT and competitor CM techniques in the
Rochester STM framework [12] and conduct experimental
studies (Section VII). Our results reveal that FBLT has shorter
retry cost than ECM, RCM, LCM and lock-free. FBLT’s retry
cost is comparable to that of PNF, especially in case of non-
transitive retry, but it doesn’t require a-priori knowledge of
objects accessed by transactions, unlike PNF.

Thus, the paper’s contribution is the FBLT contention
manager with superior timeliness properties. FBLT, thus allows
programmers to reap STM’s significant programmability and
composability benefits for a broader range of multicore em-
bedded real-time software than what was previously possible.978-3-9815370-0-0/DATE13/ c⃝2013 EDAA

II. PRELIMINARIES

We consider a multiprocessor system with m identical pro-
cessors and n sporadic tasks τ1, τ2, . . . , τn. The kth instance
(or job) of a task τi is denoted τki . Each task τi is specified by
its worst case execution time (WCET) ci, its minimum period
Ti between any two consecutive instances, and its relative
deadline Di, where Di = Ti. Job τ ji is released at time rji and
must finish no later than its absolute deadline dji = rji +Di.
Under a fixed priority scheduler such as G-RMA, pi determines
τi’s (fixed) priority and it is constant for all instances of τi.
Under a dynamic priority scheduler such as G-EDF, a job τ ji ’s
priority, pji , differs from one instance to another. A task τj
may interfere with task τi for a number of times during an
interval L, and this number is denoted as Gij(L).

Shared objects. A task may need to read/write shared, in-
memory data objects while it is executing any of its atomic
sections (transactions), which are synchronized using STM.
The set of atomic sections of task τi is denoted si. ski is the
kth atomic section of τi. Each object, θ, can be accessed by
multiple tasks. The set of distinct objects accessed by τi is θi
without repeating objects. The set of atomic sections used by
τi to access θ is si(θ), and the sum of the lengths of those
atomic sections is len(si(θ)). ski (θ) is the kth atomic section
of τi that accesses θ. ski can access one or more objects in θi.
So, ski refers to the transaction itself, regardless of the objects
accessed by the transaction. We denote the set of all accessed
objects by ski as Θk

i . While ski (θ) implies that ski accesses an
object θ ∈ Θk

i , ski (Θ) implies that ski accesses a set of objects
Θ = {θ ∈ Θk

i }. s̄ki = s̄ki (Θ) refers only once to ski , regardless
of the number of objects in Θ. So, |s̄ki (Θ)|∀θ∈Θ = 1. ski (θ)
executes for a duration len(ski (θ)). len(s

k
i) = len(ski (θ)) =

len(ski (Θ)) = len(ski (Θ
k
i)) The set of tasks sharing θ with τi

is denoted γi(θ).

Atomic sections are non-nested (supporting nested STM
is future work). The maximum-length atomic section in τi
that accesses θ is denoted simax

(θ), while the maximum one
among all tasks is smax(θ), and the maximum one among tasks
with priorities lower than that of τi is simax(θ). s

i
max(Θ

i
h) =

max{simax(θ) : ∀θ ∈ Θi
h}.

STM retry cost. If two or more atomic sections conflict,
the CM will commit one section and abort and retry the
others, increasing the time to execute the aborted sections.
The increased time that an atomic section spi (θ) will take to
execute due to a conflict with another section skj (θ), is denoted
W p

i (s
k
j (θ)). If an atomic section, spi , is already executing, and

another atomic section skj tries to access a shared object with
spi , then skj is said to “interfere” or “conflict” with spi . The job
skj is the “interfering job”, and the job spi is the “interfered
job”.

Due to transitive retry (introduced in Section III), an
atomic section ski (Θ

k
i) may retry due to another atomic section

slj(Θ
l
j), where Θk

i ∩ Θl
j = ∅. θ∗i denotes the set of objects

not accessed directly by atomic sections in τi, but can cause
transactions in τi to retry due to transitive retry. θexi (= θi+θ∗i)
is the set of all objects that can cause transactions in τi to retry
directly or through transitive retry. γ∗

i is the set of tasks that
accesses objects in θ∗i . γex

i (= γi + γ∗
i) is the set of all tasks

that can directly or indirectly (through transitive retry) cause

transactions in τi to abort and retry.

The total time that a task τi’s atomic sections have to retry
over Ti is denoted RC(Ti). The additional amount of time by
which all interfering jobs of τj increases the response time
of any job of τi during L, without considering retries due to
atomic sections, is denoted Wij(L).

III. MOTIVATION

ECM [6], RCM [6], and LCM [7] suffer from transitive
retry. Transitive retry is illustrated by the following example:

Consider three atomic sections sx1 , sy2 , and sz3 belonging to
jobs τx1 , τy2 , and τz3 , with priorities pz3 > py2 > px1 , respectively.
Assume that sx1 and sy2 share objects, and sy2 and sz3 share
objects. sx1 and sz3 do not share objects. Now, sz3 can cause sy2
to retry, which in turn will cause sx1 to retry. This means that
sx1 will retry transitively because of sz3, which will increase the
retry cost of sx1 . Now, consider another atomic section sf4 with
a priority higher than that of sz3. Suppose sf4 shares objects
only with sz3. Thus, sf4 can cause sz3 to retry, which in turn
will cause sy2 to retry, and finally, sx1 to retry. Thus, transitive
retry will move from sf4 to sx1 , increasing the retry cost of
sx1 . The situation gets worse as more higher priority tasks are
added, where each task shares objects with its immediate lower
priority task. τz3 may have atomic sections that share objects
with τx1 , but this will not prevent the effect of transitive retry
due to sx1 .

Definition 1: Transitive retry. A transaction ski suffers
from transitive retry when ski retries due to a higher priority
transaction shz , and Θh

z ∩Θk
i = ∅.

Therefore, the analysis in [6] and [7] extends the set of
objects that can cause an atomic section of a lower priority
job to retry. This is done by initializing the set of conflicting
objects, γi, to all objects accessed by all transactions of τi.
We then cycle through all transactions belonging to all other
higher priority tasks. Each transaction slj that accesses at least
one of the objects in γi adds all other objects accessed by
slj to γi. The loop over all higher priority tasks is repeated,
each time with the new γi, until there are no more transactions
accessing any object in γi. The final set of objects (tasks) that
can cause transactions in τi to retry is θexi (γex

i), respectively1.

PNF [9], [10] is designed to avoid transitive retry by
concurrently executing at most m non-conflicting transactions
together. These executing transactions are non-preemptive.
Thus, executing transactions cannot be aborted due to direct or
indirect conflict with other transactions. However, with PNF,
all objects accessed by each transaction must be known a-
priori. Therefore, this is not suitable with dynamic STM im-
plementations [11]. Additionally, PNF is implemented in [10]
as a centralized CM that uses locks. This increases overhead.

Thus, we propose the First Bounded, Last Timestamp
contention manager (or FBLT) that achieves the following
goals:

1) reduce the retry cost of each transaction ski due to
another transaction slj , just as LCM [7] does compared to
ECM [6] and RCM [6].

1However, note that, this solution may over-extend the set of conflicting
objects, and may even contain all objects accessed by all tasks.

2) avoid or bound the effect of transitive retry, similar
to PNF [9], [10], without prior knowledge of accessed
objects by each transaction, enabling dynamic STM.

3) decentralized design and avoid the use of locks, thereby
reducing overhead.

IV. THE FBLT CONTENTION MANAGER

ALGORITHM 1: The FBLT Algorithm
Data: ski : interfered transaction;
slj : interfering transactions;
δki : the maximum number of times ski can be aborted during Ti;
ηki : number of times ski has already been aborted up to now;
m set: contains at most m non-preemptive transactions. m is number
of processors;
m prio: priority of any transaction in m set. m prio is higher than
any priority of any real-time task;
r(ski): time point at which ski joined m set;
Result: atomic sections that will abort

1 if ski , s
l
j ̸∈ m set then

2 Apply LCM [7];
3 if ski is aborted then
4 if ηki < δki then
5 Increment ηki by 1;
6 else
7 Add ski to m set;
8 Record r(ski);
9 Increase priority of ski to m prio;

10 end
11 else
12 Swap ski and slj ;
13 Go to Step 3;
14 end
15 else if slj ∈ m set, ski ̸∈ m set then
16 Abort ski ;
17 if ηki < δki then
18 Increment ηki by 1;
19 else
20 Add ski to m set;
21 Record r(ski);
22 Increase priority of ski to m prio;
23 end
24 else if ski ∈ m set, slj ̸∈ m set then
25 Swap ski and slj ;
26 Go to Step 15;
27 else
28 if r(ski) < r(slj) then
29 Abort slj ;
30 else
31 Abort ski ;
32 end
33 end

Algorithm 1 illustrates FBLT. Each transaction ski can be
aborted during Ti for at most δki times. ηki records the number
of times ski has already been aborted up to now. If ski and
slj have not joined the m set yet, then they are preemptive
transactions. Preemptive transactions resolve conflicts using
LCM [7] (step 2). Thus, FBLT defaults to LCM when no
transaction reaches its δ. If only one of the transactions is
in the m set, then the non-preemptive transaction (the one in
m set) aborts the other one (steps 15 to 26). ηki is incremented
each time ski is aborted as long as ηki < δki (steps 5 and 18).
Otherwise, ski is added to the m set and its priority is
increased to m prio (steps 7 to 9 and 20 to 22). When the

priority of ski is increased to m prio, ski becomes a non-
preemptive transaction. Non-preemptive transactions cannot be
aborted by other preemptive transactions, nor by any other
real-time job. The m set can hold at most m concurrent
transactions because there are m processors in the system.
r(ski) records the time ski joined the m set (steps 8 and 21).
When non-preemptive transactions conflict together (step 27),
the transaction with the smaller r() commits first (steps 29
and 31). Thus, non-preemptive transactions are executed in
FIFO order of the m set.

V. RETRY COST AND RESPONSE TIME BOUNDS

We now derive an upper bound on the retry cost of any
job τxi under FBLT during an interval L ≤ Ti. Since all tasks
are sporadic (i.e., each task τi has a minimum period Ti), Ti

is the maximum study interval for each task τi.

Claim 1: The total retry cost for any job τxi under FBLT
due to 1) conflicts between its transactions and transactions of
other jobs during an interval L ≤ Ti and 2) release of higher
priority jobs is upper bounded by:

RCto(L) ≤
∑

∀ski ∈si

δki len(s
k
i) +

∑
∀skiz∈χk

i

len(skiz)

+RCre(L)

(1)
where χk

i is the set of at most m − 1 maximum length
transactions conflicting directly or indirectly (through transitive
retry) with ski . Each transaction skiz ∈ χk

i belongs to a distinct
task τj . RCre(L) is the retry cost resulting from the release of
higher priority jobs which preempt τxi . RCre(L) is calculated
by (6.8) in [10] for G-EDF, and (6.10) in [10] for G-RMA
schedulers.

Proof: By the definition of FBLT, ski ∈ τxi can be aborted
a maximum of δki times before ski joins the m set. Before
joining the m set, ski can be aborted due to higher priority
transactions, or transactions in the m set. The original priority
of transactions in the m set can be higher or lower than pxi .
Thus, the maximum time ski is aborted before joining the
m set occurs if ski is aborted for δki times.

Transactions preceding ski in the m set can conflict directly
with ski , or indirectly through transitive retry. The worst case
scenario for ski after joining the m set occurs if ski is preceded
by m − 1 maximum length conflicting transactions. Hence,
in the worst case, ski has to wait for the previous m − 1
transactions to commit first. The priority of ski after joining
the m set is higher than any real-time job. Therefore, ski is
not aborted by any job. If ski has not joined the m set yet,
and a higher priority job τyj is released while ski is running,
then ski may be aborted if τyj has conflicting transactions with
ski . τyj causes only one abort in τxi because τyj preempts τxi
only once. If ski has already joined the m set, then ski cannot
be aborted by the release of higher priority jobs. Thus, the
maximum number of times transactions in τxi can be aborted
due to the release of higher priority jobs is less than or equal
to the number of interfering higher priority jobs to τxi . Claim
follows.

Claim 2: Under FBLT, the blocking time of a job τxi due

to lower priority jobs is upper bounded by:

D(τxi) =
∑(

maxm(sjmax,∀τ l
j , p

l
j<px

i
)
)

(2)

where sjmax is the maximum length transaction in any job τ lj
with original priority lower than pxi . The right hand side of (2)
is the sum of the m maximum transactional lengths in all jobs
with lower priority than τxi .

Proof: The worst case blocking time for τxi occurs when
the maximum length m transactions in lower priority jobs
than τxi are executing non-preemptively. After commit of each
transaction in the m set, a higher priority job τyj than τxi is
released. So, τyj allocates the released processor instead of τxi .
Consequently, τxi has to wait for the whole maximum length
m transactions of lower priority jobs. Claim follows.

Claim 3: The response time of any job τxi during an
interval L ≤ Ti under FBLT is upper bounded by:

Rup
i = ci +RCto(L) +D(τxi) +

 1

m

∑
∀j ̸=i

Wij(R
up
i)

 (3)

where RCto(L) is calculated by (1), D(τxi) is calculated by
(2), and Wij(R

up
i) is calculated by (11) in [6] for G-EDF,

and (17) in [6] for G-RMA schedulers. (11) and (17) in [6]
inflates cj of any job τyj ̸= τxi , p

y
j > pxi by the retry cost of

transactions in τyj .

Proof: The response time of a job is calculated directly
from FBLT’s behavior. The response time of any job τxi is the
sum of its worst case execution time ci, plus the retry cost
of transactions in τxi (RCto(L)), plus the blocking time of τxi
(D(τxi)), and the workload interference of higher priority jobs.
The workload interference of higher priority jobs scheduled by
G-EDF is calculated by (11) in [6], and by (17) in [6] for G-
RMA. Claim follows.

VI. SCHEDULABILITY COMPARISON

We now (formally) compare the schedulability of FBLT
against PNF [9], [10]. Toward this, we compare the total uti-
lization under FBLT with that under PNF. In this comparison,
we use the inflated execution time of the task, which is the
sum of the worst-case execution time of the task and its retry
cost, in the utilization calculation of the task.

Let RCA(Ti) and RCB(Ti) denote the retry cost of a
job τxi during Ti using the synchronization methods A and
B, respectively. Let DA(τi) and DB(τi) be the maximum
blocking time of any job τxi due to lower priority jobs by
methods A and B respectively. Now, schedulability of A is
comparable to B if:∑
∀τi

ci +RCA(Ti) +DA(τi)

Ti
≤

∑
∀τi

ci +RCB(Ti) +DB(τi)

Ti∑
∀τi

RCA(Ti) +DA(τi)

Ti
≤

∑
∀τi

RCB(Ti) +DB(τi)

Ti
(4)

Claim 4: Schedulability of FBLT is equal or better than
PNF if: 1) For each transaction ski , maximum abort times δki
equals at most the ratio between difference of total length of
all transactions that can conflict only with ski and total length

of at most m−1 longest transactions that can conflict directly
or transitively with ski to length of ski . 2) For any job τxi , ratio
between longest transaction in τxi or lower priority jobs to
smallest transaction in lower priority jobs equals at most the
ratio between minimum number of times τxi can be blocked
due to non-conflicting transactions in all lower priority jobs to
maximum release time of all jobs not belonging to τi.

Proof:

Substitute RCA(Ti) and RCB(Ti) in (4) with (1) and
(3) in [9] respectively. Substitute DA(τi) and DB(τi) by
(2) and (4) in [9] respectively. Substituting RCre(Ti) =∑

∀τj∈ζi

(⌈
Ti

Tj

⌉
+ 1

)
simax , covers RCre(Ti) given by (6.8)

and (6.10) in [10] and maintains correctness of (4). zetai is
the set of higher priority tasks than any job of τi.

Let β1
i =

∑
∀ski ∈si

(
δki len(s

k
i) +

∑
skiz∈χk

i
len(skiz)

)
,

β2
i =

∑
∀τj∈ζi

(⌈
Ti

Tj

⌉
+ 1

)
simax +

∑
max m

{
sjmax,∀τ̄ l

j

}
,

β3
i =

∑
∀τj∈γi

∑
θ∈θi

((⌈
Ti

Tj

⌉
+ 1

)∑
∀s̄hj (θ)

len
(
s̄hj (θ)

))
and β4

i =
⌊

1
m

∑
∀τ̄ l

j

((⌈
Ti

Tj

⌉
+ 1

)∑
∀s̈hj

len
(
s̈hj

))⌋
. So, (4)

holds if ∑
∀τi

β1
i + β2

i

Ti
≤

∑
∀τi

β3
i + β4

i

Ti
(5)

(5) holds if ∀ τi
β1
i + β2

i ≤ β3
i + β4

i (6)

or ∀ τi

β1
i ≤ β3

i and β2
i ≤ β4

i (7)

According to first part of (7)∑
∀ski ∈si

(
δki len(s

k
i) +

∑
skiz∈χk

i
len(skiz)

)
(8)

≤
∑

∀τj∈γi

∑
θ∈θi

((⌈
Ti

Tj

⌉
+ 1

)∑
∀s̄hj (θ)

len
(
s̄hj (θ)

))
For each ski ∈ si, there are a set of zero or more s̄hj (Θ) ∈
τj , ∀τj ̸= τi that are conflicting with ski . Assuming this set
of conflicting transactions with ski is denoted as ηki (j) ={
s̄hj (Θ) ∈ τj : (Θ ∈ θi) ∧ (τj ̸= τi) ∧

(
s̄hj (Θ) ̸∈ ηli, l ̸= k

)}
.

The last condition s̄hj (Θ) ̸∈ ηli, l ̸= k in definition of ηki
ensures that common transactions s̄hj that can conflict with
more than one transaction ski ∈ τi are split among different
ηki (j), k = 1, .., |si|. This condition is necessary because
in PNF, no two or more transactions of τxi can be aborted
by the same transaction of τhj . Let γk

i be subset of γi that
contains tasks with transactions conflicting directly with ski .
By substitution of ηki (j) and γk

i in (8), (8) holds if ∀ ski :

∴ δki ≤

∑
∀τj∈γk

i

((⌈
Ti

Tj

⌉
+ 1

)∑
∀s̄hj (Θ)∈ηk

i (j)
len

(
s̄hj (θ)

))
len(ski)

−
∑

skiz∈χk
i
len(skiz)

len(ski)
(9)

By definition of ηki (j), if s̄hj (Θ) can conflict with ski and
sli, then s̄hj (Θ) belongs either to ηki or ηli, but not both. Let

η̄ki (j) = ηki (j)−
{
s̄hj (Θ)|s̄hj (Θ) can belong to ηli, l ̸= k

}
. So,

η̄ki (j) equals ηki (j) excluding any transaction that can belong
to another ηli(j), l ̸= k. (9) holds if

δki ≤

∑
∀τj∈γk

i

((⌈
Ti

Tj

⌉
+ 1

)∑
∀s̄hj (Θ)∈η̄k

i (j)
len

(
s̄hj (θ)

))
len(ski)

−
∑

skiz∈χk
i
len(skiz)

len(ski)
(10)

Now, we consider the second part of (7). Let si,jmax =
max∀ τ̄ l

j
(simax , sjmax). So, si,jmax is the maximum transac-

tional length in any job of τi or any lower priority job.
Let sjmin = min

{
len(shj), ∀shj ∈ τ̄ lj

}
. So, sjmin is the

smallest transactional length in any job of τj with lower
priority than any job of τi. ∵

∑
max m

{
sjmax,∀τ̄ l

j

}
≤∑

∀τ̄ l
j

(⌈
Ti

Tj

⌉
+ 1

)
si,jmax , ∴ the second part of (7) holds if∑

∀τj∈ζi

(⌈
Ti

Tj

⌉
+ 1

)
si,jmax +

∑
∀τ̄ l

j

(⌈
Ti

Tj

⌉
+ 1

)
si,jmax

≤
⌊

1
m

∑
∀τ̄ l

j

((⌈
Ti

Tj

⌉
+ 1

)
|s̈hj | sjmin

)⌋
(11)

∵ ζi includes all jobs with higher priority than τi, and τ̄ lj
includes all jobs with lower priority than τi, ∴ (11) holds if
∀ τi

∴ si,jmax

sjmin

≤

⌊
1
m

∑
∀τ̄ l

j

((⌈
Ti

Tj

⌉
+ 1

)
|s̈hj |

)⌋
∑

∀τj ̸=τi

(⌈
Ti

Tj

⌉
+ 1

) (12)

From (10) and (12), Claim follows.

VII. EXPERIMENTAL EVALUATION

We now would like to understand how FBLT’s retry cost
compares with competitors in practice (i.e., on average). Since
this can only be understood experimentally, we implement
FBLT and the competitors and conduct experiments.

We used the ChronOS real-time Linux kernel [13] and the
Rochester STM (RSTM) library [12] in our implementation.
We implemented G-EDF and G-RMA schedulers in ChronOS,
and modified RSTM to include implementations of FBLT,
ECM, RCM, LCM, and PNF. For the retry-loop lock-free
synchronization, we used a loop that reads an object and
attempts to write to it using a CAS instruction. The task
retries until the CAS succeeds. We used an 8 core, 2GHz
AMD Opteron platform. The average time taken for one write
operation by RSTM on any core is 0.0129653375µs, and the
average time taken by one CAS-loop operation on any core
is 0.0292546250 µs. We used four task sets consisting of 4,
5, 8, and 20 periodic tasks. Each task runs in its own thread
and has a set of atomic sections. Atomic section properties
are probabilistically controlled using three parameters: the
maximum and minimum lengths of any atomic section within
a task, and the total length of atomic sections within any task.
Since lock-free synchronization cannot handle more than one
object per atomic section, we first compare FBLT’s retry cost
with that of lock-free (and other CMs) for one object per

-500

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

0.2,0.2,0.2

0.5,0.2,0.2

0.5,0.5,0.2

0.5,0.5,0.5

0.8,0.2,0.2

0.8,0.5,0.2

0.8,0.5,0.5

0.8,0.8,0.2

0.8,0.8,0.5

0.8,0.8,0.8

R
C

(m
se

c)

total,max,min

ECM

RCM

LCM/EDF

LCM/RMA

PNF/EDF

PNF/RMA

LF/EDF

LF/RMA

FBLT/EDF

FBLT/RMA

(a) ECM, RCM, LCM, PNF, FBLT, Lock-Free

-20

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

0.2,0.2,0.2

0.5,0.2,0.2

0.5,0.5,0.2

0.5,0.5,0.5

0.8,0.2,0.2

0.8,0.5,0.2

0.8,0.5,0.5

0.8,0.8,0.2

0.8,0.8,0.5

0.8,0.8,0.8

R
C

(m
se

c)

total,max,min

ECM

RCM

LCM/EDF

LCM/RMA

PNF/EDF

PNF/RMA

FBLT/EDF

FBLT/RMA

(b) ECM, RCM, LCM, PNF, FBLT

Fig. 1. Average retry cost (one object/transaction).

transaction. We then compare FBLT’s retry cost with that of
other CMs for multiple objects per transaction.

Figure 1 shows the average retry cost for the 5 task set
sharing one object. On the x-axis of the figures, we record 3
parameters x, y, and z. x is the ratio of the total length of
all atomic sections of a task to the task WCET. y is the ratio
of the maximum length of any atomic section of a task to
the task WCET. z is the ratio of the minimum length of any
atomic section of a task to the task WCET. The confidence
level of all data points is 0.95. While Figure 1(a) includes
all synchronization methods, Figure 1(b) excludes lock-free.
From these figures, we observe that lock-free has the largest
retry cost, as it provides no conflict resolution. FBLT has the
largest retry cost among CMs, because transactions share only
one object in this case. For multiple objects per transaction,
PNF has an advantage over FBLT. However, PNF requires a-
priori knowledge of all objects accessed by each transaction,
whereas FBLT does not. Consequently, retry cost under PNF
is a little shorter than that under FBLT. Experiments show
that FBLT’s retry cost can be shorter than that under ECM,
RCM, and LCM, and can be comparable to that of PNF’s as
shown in Figure 2. PNF was designed to avoid transitive retry.
Previous experiments compares retry cost of different CMs

-50

 0

 50

 100

 150

 200

0.2,0.2,0.2

0.5,0.2,0.2

0.5,0.5,0.2

0.5,0.5,0.5

0.8,0.2,0.2

0.8,0.5,0.2

0.8,0.5,0.5

0.8,0.8,0.2

0.8,0.8,0.5

0.8,0.8,0.8

R
C

(m
se

c)

total,max,min

ECM

RCM

LCM/EDF

LCM/RMA

PNF/EDF

PNF/RMA

FBLT/EDF

FBLT/RMA

Fig. 2. Average retry cost (40 shared objects, 20 tasks).

-50

 0

 50

 100

 150

 200

0.2,0.2,0.2

0.5,0.2,0.2

0.5,0.5,0.2

0.5,0.5,0.5

0.8,0.2,0.2

0.8,0.5,0.2

0.8,0.5,0.5

0.8,0.8,0.2

0.8,0.8,0.5

0.8,0.8,0.8

R
C

(m
se

c)

total,max,min

ECM

RCM

LCM/EDF

LCM/RMA

PNF/EDF

PNF/RMA

FBLT/EDF

FBLT/RMA

Fig. 3. Average retry cost (40 shared objects, 20 tasks).

in case of transitive retry. Figure 3 compares retry costs of
different CMs in case of non-transitive retry. FBLT achieves
shorter or comparable retry cost to other CMs including PNF.
Similar trends were observed for the other task sets; those are
omitted here due to space limitations.

VIII. CONCLUSIONS

Transitive retry increases transactional retry costs under
ECM, RCM, and LCM. PNF avoids transitive retry by avoiding
transactional preemptions. It avoids transitive retry cost by
concurrently executing non-conflicting transactions, which are
non-preemptive. However, PNF requires a-priori knowledge
about objects accessed by each transaction. This is incompat-
ible with dynamic STM implementations. Thus, we introduce
the FBLT contention manager. Under FBLT, each transaction
is allowed to abort for a no larger than a specified number of
times. Afterwards, the transaction becomes non-preemptive.
Non-preemptive transactions have higher priorities than other
preemptive transactions and real-time jobs. Non-preemptive
transactions resolve their conflicts using FIFO order. By proper
adjustment of the maximum abort number of each transaction,
we showed that FBLT’s schedulability is equal to or better than
PNF.

Our experimental results show that FBLT has equal or
shorter retry cost than ECM, RCM, and LCM. PNF requires
a-priori knowledge of all objects accessed by each transaction.
This is an advantage for PNF over FBLT. Consequently, retry
cost under PNF is shorter than that under FBLT in case of
transitive retry. Still, FBLT’s retry cost can be comparable to
PNF’s. In case of no or low transitive retry, FBLT achieves
shorter retry cost than other CMs including PNF. Future work
includes choosing another criterion to resolve conflicts of
non-preemptive transactions. Also, using feedback from the
system to adjust maximum abort number of each transaction.
Consequently, retry cost can be reduced over time.

ACKNOWLEDGMENTS

This work is supported in part by US National Science
Foundation under grants CNS 0915895, CNS 1116190, CNS
1130180, and CNS 1217385.

REFERENCES

[1] M. Herlihy, “The art of multiprocessor programming,” in PODC, 2006,
pp. 1–2.

[2] R. Guerraoui, M. Herlihy, and B. Pochon, “Toward a theory of trans-
actional contention managers,” in PODC, 2005, pp. 258–264.

[3] B. Saha, A.-R. Adl-Tabatabai et al., “McRT-STM: a high performance
software transactional memory system for a multi-core runtime,” in
PPoPP, 2006, pp. 187–197.

[4] T. Harris, S. Marlow, S. P. Jones, and M. Herlihy, “Composable memory
transactions,” Commun. ACM, vol. 51, pp. 91–100, Aug 2008.

[5] S. Fahmy and B. Ravindran, “On STM concurrency control for mul-
ticore embedded real-time software,” in International Conference on
Embedded Computer Systems, July 2011, pp. 1 –8.

[6] M. El-Shambakey and B. Ravindran, “STM concurrency control for
multicore embedded real-time software: time bounds and tradeoffs,” in
Proceedings of the 27th SAC. ACM, 2012, pp. 1602–1609.

[7] ——, “STM concurrency control for embedded real-time software with
tighter time bounds,” in Proceedings of the 49th DAC. ACM, 2012,
pp. 437–446.

[8] R. I. Davis and A. Burns, “A survey of hard real-time scheduling for
multiprocessor systems,” ACM Comput. Surv., vol. 43, no. 4, pp. 35:1–
35:44, Oct. 2011.

[9] M. Elshambakey and B. Ravindran, “On real-time STM concurrency
control for embedded software with improved schedulability,” 18th
ASP-DAC, 2013, (to appear).

[10] M. El-Shambakey, “Real-time software transactional memory: Con-
tention managers, time bounds, and implementations,” PhD Pro-
posal, Virginia Tech, 2012, available as http://www.real-time.ece.vt.edu/
shambakey prelim.pdf.

[11] M. Herlihy et al., “Software transactional memory for dynamic-sized
data structures,” in Proceedings of the 22nd PODC. ACM, 2003, pp.
92–101.

[12] Marathe et al., “Lowering the overhead of nonblocking software
transactional memory,” in Workshop on Languages, Compilers, and
Hardware Support for Transactional Computing, 2006.

[13] M. Dellinger, P. Garyali, and B. Ravindran, “ChronOS Linux: a best-
effort real-time multiprocessor linux kernel,” in Proceedings of the 48th
DAC. ACM, 2011, pp. 474–479.

