
A Framework Accommodating Categorized Multiprocessor
Real-time Scheduling in the RTSJ

Jinsan Kwon
Dept. of Computer and Information

Science
Korea University

South Korea
mrkwon@korea.ac.kr

Hyeonjoong Cho
Dept. of Computer and Information

Science
Korea University

South Korea
raycho@korea.ac.kr

Binoy Ravindran
Dept. of Electrical and Computer

Engineering
Virginia Tech

USA
binoy@vt.edu

ABSTRACT
In this paper, we present a framework for various multiprocessor
scheduling algorithms by minimal modification of current Real-
Time Specification for Java (RTSJ) [6]. Although the current
version of RTSJ provides a secure platform and rich
functionalities for real-time Java applications, it lacks
multiprocessor support mechanisms, e.g., absence of functions to
support processor affinity, to efficiently utilize multiple
processing resources. For this reason, we establish a
multiprocessor-aware scheduling framework by using system
calls of operating systems to make use of processor affinity, FIFO
scheduler, scheduling parameter settings, and precision sleep
timer functions. In addition to the framework, we also take
categorization taxonomy introduced by Carpenter et al. in [1],
which generalizes multiprocessor scheduling algorithms on two
criteria of migration degrees and priority change complexity.
Then our experimental evaluation on the framework with each
scheduler class in the categorization taxonomy shows the
framework’s runtime overhead, which proves the feasibility of
our implementation.

Categories and Subject Descriptors
D.4.1 [Operating Systems]: Process Management – Scheduling;
D.4.7 [Operating Systems]: Process Management – Real-time
systems and embedded systems

General Terms
Algorithms, Design

Keywords
Real-time systems, The Real-Time Specification for Java,
multiprocessors, scheduling framework.

1. INTRODUCTION
The superiority of multiprocessor architecture in terms of low
power consumption and high scalability has made architects to
adopt it for real-time systems widely. Unfortunately, comparing

to single processor systems, scheduling real-time applications on
multiprocessor platforms accompanies complex issues on
utilization of multiple computational resources. In absence of a
dominant solution for this problem, a large number of real-time
scheduling algorithms designed for multiprocessor architectures
have been introduced and it has also increased the need of
efficiently accommodating such multiple algorithms on a system.
This trend leads some operating systems to having functionalities
and extensibility, i.e., modular scheduler structure which treats
schedulers as extension modules, to host new scheduling policies
available.

In single processor architectures, the Real-Time Specification for
Java [6] is one good example having such functionalities in which
several scheduling algorithms are implemented together with real-
time applications. It provides well-defined environment for
running real-time applications including high-precision time
representation facilities with timers and supports for real-time
scheduling parameters for multiple scheduling algorithms. Plus,
as Java is based on very powerful concept of isolation from
underlying architectures, real-time applications built on the RTSJ
and its corresponding Java virtual machine give much easier and
simpler way of implementation and deployment than traditional
OS-based methods which inevitably depends on operating system
and hardware architecture.

With the aforementioned features, the current version of RTSJ
framework clearly shows its well-established foundations for
further extension, however, lacks of features as a general
scheduling framework and elements for multiprocessor
environment are also observed. For this reason, it is needed to
discuss about 1) the general way for a scheduling framework to
relay its scheduling decisions to underlying platform and 2) the
functionalities that have to be offered to scheduling algorithms to
work with multiprocessing model along with the current RTSJ.

To extend the RTSJ as a real-time application platform with
supports of multiprocessor scheduling algorithms, Wellings in [2]
considered five models, i.e., dispatching, allocation, cost
enforcement, affinity of interrupts, and failure model, along with
a suggestion of APIs to support the models. This suggestion was
soon included in JSR 282 [10] and implemented in alpha version
of RTSJ 1.1 [11].

While the multiprocessor scheduling algorithms for real-time
applications vary one another, Carpenter et al. interestingly
categorized those algorithms in [1] using following criteria. The
category itself is a two-dimensional space defined by the
complexity of priority changes and the migration levels. There are

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
JTRES 2012, October 24-26, 2012, Copenhagen, Denmark.
Copyright 2012 ACM 978-1-4503-1688-0 …$15.00.

three different levels for each criterion, which make total 9
different categories present in the taxonomy. The detailed criteria
are:

 The complexity of the priority scheme

With this criterion, algorithms are divided into three groups by
how often they change a task’s priority. In static priority, a task
has unique given priority value, and all jobs created by this task
have the same values. Job-level dynamic priority class has a static
priority within a job, but the job’s priority may differ from
another job within the same task. Unrestricted dynamic priority
class does not specify any restrictions on priority changing
behavior. Well-known scheduling algorithms for these classes are
Rate Monotonic (RM) [7], Earliest Deadline First (EDF) [7], and
Least Laxity First (LLF) [8], respectively.

 The degree of migration allowance

Similar to priority classification, migration level-based
classification differentiates an algorithm by how often a job is
allowed to migrate between processors. No migration scheme
disallows a task from migration at all, and the task must be
associated with a specific processor. Restricted migration
category policies force only a job released from a task set to
execute on one processor. Full migration class does not put any
restrictions on migration policies, therefore even jobs currently
running can migrate to other processors.

Therefore, the Categorized Multiprocessor Real-time scheduling-
supporting Framework (CMRF) that we present in this paper
states about both aforementioned issues by using scheduling
mechanisms of PriorityScheduler in the RTSJ as similar to
the priority band model in the Flexible Middleware Scheduling
Framework (FMSF) introduced in [3] and the categorization
taxonomy introduced by Carpenter et al. in [1]. With the CMRF,
we attempt to construct a framework working on Java virtual
machines (JVM) accommodating Carpenter’s nine categories of
real-time scheduling algorithms on multiprocessor architectures.
This is done by considering the extensions of the RTSJ suggested
by Wellings in [2]. Among the five models addressed in the
suggestion, we adopt dispatching and allocation model to the
framework, which make it possible to handle tasks with several
processors.

The rest of this paper is organized as follows. Chapter 2 reviews
related works divided into operating systems and middleware
approaches. In Section 3, we introduce the core functions of the
CMRF, accommodating multiple scheduling policies on the RTSJ
based system with respect to the categorization of the policies.
The scheduling overhead and overall performance of result
system, with respect to the scheduling algorithms in each category,
is then verified in Section 4. In Section 5, we discuss about the
framework with the result found in the Section 4. Section 6 then
summarizes our conclusion. The API functions introduced with
the CMRF are available in appendix Section 7.

2. RELATED WORKS
Since no certain scheduling algorithm is known for a dominant
solution for multiprocessor system, there have been various
runtime platforms supporting functions to host and employ
multiple algorithms, instead of one, on a system. These can be
grouped into two, i.e., operating system frameworks and
middleware framework, by level of the runtime environment
implemented.

2.1 Operating System Frameworks
Frameworks in this group incorporate itself into existing operating
systems, mostly Linux, and provide its functions as a scheduling
framework in forms of shared libraries and system calls which are
exclusive for the OS which the framework is designed for. The
frameworks in this type are implemented by manipulating
existing OS kernel, or using exported kernel functions which
allow other kernel-space programs to guide the kernel when
scheduling decisions should be made.

Among various OS-level scheduling frameworks, modification of
existing kernel, like what LITMUSRT [4] does, is the most
common way to implement the framework. Developed by
Calandrino et al., LITMUSRT consists of a set of real-time patches
and pluggable scheduler framework which makes traditional non-
real-time Linux kernels to be suitable for scheduling real-time
applications, by allowing in-kernel preemption and other high-
precision time related scheduling events. Under the LITMUSRT,
user-made schedulers are exist in forms of built-in kernel modules
inserted into the kernel at build time, and should be handled by
the APIs shipped with LITMUSRT patch. Once the schedulers are
embedded into kernel during its building stage, LITMUSRT makes
a device node in /proc filesystem which is the main port to
communicate with the schedulers built in. Note that all major
parts in LITMUSRT are embedded into and work in kernel space,
the framework can provide much more choices of functionalities,
i.e., kernel variables, system calls, other in-kernel functions and
methods while making scheduling decisions, in case of that those
functions are not supported by neither the API nor the libraries
shipped with the LITMUSRT itself, to scheduler plug-ins while
other application-level frameworks cannot provide.

Unlike LITMUSRT, which is well fused into the kernel, RESCH
[5] exports kernel functions to deliver events to and relay
scheduling decisions from user-defined algorithms. This makes
RESCH unique among others, although it is still kernel-space
framework. RESCH consists of two parts – the RESCH core and
API libraries for scheduler plugins and both parts are in forms of
external Linux kernel modules. User-implemented scheduler
plugins use RESCH APIs to get scheduling events and make
decisions. The plugins are compiled to kernel modules, which can
be inserted into the kernel later. In prior to use the newly
compiled scheduler, the RESCH core, which is another kernel
module, should be inserted into Linux active kernel first, then the
scheduler modules may be inserted, called, and used through
RESCH libraries. Thanks to the Linux kernel’s external module
handling capability, all these actions the RESCH performs can be
done without the huge effort on modification of the active kernel.

2.2 Middleware Frameworks
Besides OS-level scheduling frameworks, there also has been
works on implementation of middleware frameworks host
multiple scheduling algorithms. With a tremendous effort of JSR-
1 team, the RTSJ [6] defines most the major aspects necessary for
scheduling real-time applications. For basic scheduling service,
RTSJ implementations equip the PriorityScheduler by
default. Fundamentally, this scheduler maps a task’s priority from
middleware, which is a Java virtual machine, to operating system
level, and the one-to-one priority level mapping between the
framework and OS, which the framework is running on, is
preserved. Other schedulers, in addition to the
PriorityScheduler, may be defined and loaded into the

RTSJ framework by extending the Scheduler abstract class.
Although the current official release of the RTSJ does not support
multiprocessor platforms explicitly, the next release of RTSJ 1.1
[11], developed from JSR-282 [10], is currently in alpha stage and
that includes processor affinity and pinning features to support
such platforms by default.

Meanwhile, Zerzelidis et al. in [3] presents Flexible Middleware
Scheduling Framework (FMSF), a scheduling framework based
on the RTSJ environment with accommodation of multiple
application schedulers concurrently on single processor
environments. This is done by dividing priorities into several
scheduling bands, and four priority levels per a band are
distributed which are high, medium, medium-lock, and low
priorities. Entire framework works with the
PriorityScheduler, and essentially mapped to priority
levels supplied by a fixed-priority preemptive scheduler in the
underlying real-time operating system.

While most of middleware frameworks currently work with single
processor platforms, JEOPARD consortium introduces Java
Environment for Parallel Realtime Development [13], a solution
based on JSR-282 [11] for development and operation of
platform-independent applications mainly for multiprocessor
environment. The interesting point with this project is that the
JEOPARD involves not only a scheduling framework as the core
feature, but also runtime environment itself and supporting tools
as its main purpose. This makes the JEOPARD an unusual
middleware solution to run on both traditional hardware platforms
running with operating systems and specially designed Java
optimized processor with virtual machine interfaces implemented
in FPGA code.

3. THE CMRF
From this section we describe design of the CMRF in detail. First,
we discuss about the requirements of underlying platforms, the
task model used for the framework, and then the framework itself
with representative scheduling algorithms for each scheduling
category.

3.1 System Assumptions and Requirements
Although multiprocessor architectures can be further divided into
several types, we use the term, multiprocessors, to primarily
represent the symmetric multiprocessing processors. As RTSJ
defines the cost enforcement model optional, the methods to
estimate the cost of migration and cooperation between processors
are not considered with this architecture.

To support scheduling algorithms for multiprocessor platforms
and to make the framework more general at the same time, we
take the allocation model introduced in [2]. Wellings defined the
model with supporting mechanisms, which we organize system
functions for processor affinity feature from Linux operating
system to support the model. Scheduling decision made by
schedulers using the allocation model then forces a task to use a
processor in order to run. This process is performed using
dispatching model. Although the model introduced in [2] suggests
the allocation process to be free from traditional priority-based
mechanism, the CMRF currently use the notion of priority bands
introduced by Zerzelidis et al. [3], to relay scheduling decisions
from scheduling algorithms in the framework to the global
scheduler running in operating system context, which is
SCHED_FIFO scheduling policy. Since we suppose that there is
only one middleware-level scheduler among various scheduling

algorithm candidates running at a given time, the number of
scheduling bands in our framework is one, instead of many as in
[3]. This difference also affects the number of priority levels a
scheduling algorithm may have, which depends on the number of
levels offered by the underlying operating system in our
framework.

Adopting these models from both [2] and [3] requires several
system calls served by the operating system, and the list 1 shows
the calls required. All the system calls are part of either POSIX.1
standard or its related implementations available in the Linux
kernel 2.6 or above to schedule Native POSIX Thread Library
(NPTL). Since Java uses Native Thread (essentially NPTL when
running the JVM on the kernel version 2.6) to create threads
running in the middleware context, scheduling parameters for the
real-time threads running in the framework context may also be
changed through sched_setparam() directly. Note that this
function also gives an option of changing a thread’s priority to
schedulers under the framework even without using the
PriorityScheduler, and when using with the
aforementioned dispatching model, the sched_setparam()
function makes the framework independent from specific Java
runtime environment, especially the use of real-time JVM built
only for the framework.

3.2 Task Model
As described in [1] and [6], we use a periodic real-time task set τ
having n number of tasks, τ = {τ1, τ2, …, τn} with the CMRF. To
follow task model in [6], we have three parameters for each task τi
instead of two as in [1]. Therefore, each τi = (Ci, Di, Pi), where Ci
of worst-case execution time, Pi of period, and Di of relative
deadline, are assumed with the framework to support both
categorization taxonomy and the current RTSJ release. From this
part, we use a concept of ‘RealtimeThread’ which is
equivalent to the task in the RTSJ.

SCHED_FIFO scheduling policy and related functions:

#include <sched.h>
int sched_setscheduler(pid_t pid,
 int policy,
 const struct sched_param *param);
int sched_get_priority_max(int policy);
int sched_get_priority_min(int policy);
void CPU_SET(int cpu, cpu_set_t *set);
void CPU_ZERO(cpu_set_t *set);

Processor affinity functions:

int sched_setaffinity(pid_t pid,
 size_t cpusetsize, cpu_set_t *mask);
int sched_getaffinity(pid_t pid,
 size_t cpusetsize, cpu_set_t *mask);

Scheduling parameter related functions:

int sched_setparam(pid_t pid,
 const struct sched_param *param);

Thread identification:

#include <sys/syscall.h>
int syscall(SYS_gettid);

List 1. Required system calls

3.3 Framework
As shown in Figure 1, the CMRF consists of two major parts with
supporting libraries, which are native interfaces and RTSJ
extension part. Based on the RTSJ 1.0.2, processor affinity
features have been added to the RealtimeThread class, and
the affinity related operations are also available to subclasses of
Scheduler class. Native interface part works as a helper library
for the RTSJ extensions by providing necessary operating system
level functions described in the Section 3.1. Note that the system
calls identify individual threads by using thread ID (TID), all real-
time thread instances created using RealtimeThread class on
the framework now contains a TID field given by the operating
system. The TID is assigned during the first run of a thread, and
this is used for the rest of the instance’s life time for changing
thread priority and processor affinity. Processor affinity with a
RealtimeThread is represented in a BitSet.

3.3.1 Thread Scheduling Flow
In the CMRF, thread scheduling takes place when 1) a new
RealtimeThread has been created, or 2) a
RealtimeThread has released a next job, or 3) a job of a
RealtimeThread has been finished. Whenever those events
occur, reschedule() method defined in a scheduler, which is
registered to the current RealtimeThread instance, is called
and a thread eligible to run at that time should be chosen within
the reschedule() method. Then, the chosen thread among the
threads in a feasibility set is dispatched to designated processor
using dispatch() call provided by the CMRF. This routine
keeps running on until the entire system terminates.

To make use of the framework, user defined schedulers should be
derived from Scheduler class in esrc.cmrf namespace.
Based on javax.realtime.Scheduler, the framework’s
Scheduler class provides a static dispatcher and a feasibility

set for rescheduling operation. During the rescheduling stage,
which is the essential part for a scheduler, one should assign a
RealtimeThread a proper priority using
PriorityParameters, because we use SCHED_FIFO policy
in the OS kernel to schedule the thread essentially. Due to this
fact, the priority of the eligible thread should be the highest
among the threads running on the same processor, since it is FIFO
we are using, but low enough for future preemption at the same
time. With the proper priority and a choice of processor among
thread’s affinity BitSet, then, the Dispatcher migrates and
signals the thread to continue its execution on the designated
processor. Figure 2 shows the control flow of this rescheduling
stage.

3.3.2 Native Interfaces
With the CMRF, the system calls introduced in the Section 3.1 are
provided as static methods packed in the class NativeHelper.
The unique feature of the CMRF, which is the capability of
running real-time applications without using specially built real-
time JVMs, is effective by using follow native functions:
sched_setscheduler(), sched_setaffinity(),
sched_setparam() and nanosleep(). While using NPTL
for thread creation running on the framework, initialization of
real-time environment with SCHED_FIFO policy and scheduling
parameters are set through these native interfaces.

3.4 Supported Scheduling Algorithms
In the categorization model introduced in [1], it is possible to
reduce the dimension of the category for temporarily by
disallowing task migrations. This simplifies scheduling problems
as a set of uniprocessor ones, which has already been well-
covered by traditional scheduling algorithms, such as RM, EDF
[7], and LLF [8]. Then, each scheduling algorithm can be
extended to the dimension put backed earlier by adopting
different level of migration policies. In this way, Müller et al. in
[12] survey various scheduling algorithms sorted under the
Carpenter’s categorization taxonomy, and find genealogy which
shows RM, EDF, and LLF are the progenitor algorithms for all
classes. For this reason, we focus the design of the CMRF to
support RM, EDF and LLF using a periodic timer which invokes
the scheduler at every time quantum. The framework also equips
restricted and global migration version of RM and EDF by
default.

SCHED_FIFO

System calls (POSIX)

Scheduling Framework + RTSJ

Native Interfaces

Java thread
(schedulable

object)

Java thread
(schedulable

object)

Java thread
(schedulable

object)
…

JVM (RT/NRT)

User‐defined
scheduler

User‐defined
scheduler

User‐defined
scheduler

…

Scheduler
classes

OS‐level
process

Class

libraries

…

Linux Kernel

S
cheduled by S

C
H

E
D

_F
IF

O
through the fram

ew
ork

Figure 1. The structure blocks of the CMRF

reschedule()

Task
arrival

Application

User-
defined

scheduler

Dispatcher

dispatch()

run()

 …

Figure 2. Control flow of the CMRF

4. EVALUATION
In this section, we present experimental benchmark results
performed on the CMRF to show how much scheduling overhead
one should expect with the framework. Test has been done with
typical scheduling algorithms of each category, the RM, EDF, and
LLF, as found out in [12]. We conducted this evaluation on two
different machines and the detailed specifications of each
machine are shown in Table 1. Operating system used for the
benchmark is Ubuntu Linux 10.04.4 with linux kernel version
2.6.31, PREEMPT_RT patch applied. OpenJDK 6 is used for Java
runtime environment.

Table 1. Hardware platform specifications

Processor
Model

Intel Xeon
E5506

AMD Opteron
6176 SE

Total Cores 8 (4 per processor) 48 (12 per processor)

Clock Speed 2.13 GHz 2.3 GHz

Cache 256KB / 4MB 512KB / 12MB

Table 2. Basic task parameters for a task

To perform the test, we use the parameters described in Table 2
for sample task set containing ten RealtimeThread instances.
The results in Figure 3 to 8 show the ratio of missing deadlines of
jobs while scheduled at each utilization factor maximum of the
number of the system’s processor. The processor utilization in the
figures denotes the overall workload considering all participant
processors for entire task set. For example with partitioned
scheduling classes, deadline miss ratio at the maximum processor
utilization should ideally be close to 0% under dynamic priority
scheduling algorithms such as EDF and LLF.

To compare the performance of the framework’s basic
dispatching facility with other real-time Java virtual machines, we
carried out another test which measures time jitters while
scheduling two tasks using the parameters in the Table 2.
Interestingly, analysis on the 160,000 total jobs for each JVM
shows that the CMRF has the lowest arrival time variation in
terms of average jitter for periodic tasks among the three JVMs.
Java RTS, which is commercial real-time JVM implementing the
RTSJ 1.0.2, shows slightly more variation on the arrival times,
and the OVM, developed by Armbruster et al. [14], has the most
swinging arrival time of about twice of other JVMs. The overall
results are shown in Table 3 and 4.

Table 3. Periodic scheduling jitters on JVMs (Xeon E5506) Table 4. Periodic scheduling jitters on JVMs (Opteron 6176)

Cost (Ci) ≤ 10 ms 0 ns

Deadline (Di) 100 ms 0 ns

Period (Pi) 100 ms 0 ns

Total released jobs 800,000

(in nanosec.)

 JRTS OVM CMRF

Jitter, Min. 2,438 2,529 2,823

Jitter, Max. 144,426 190,048 144,438

Average jitter 53,546 62,201 52,404

Deviation 20,286 23,017 14,053

(in nanosec.)

 JRTS OVM CMRF

Jitter, Min. 1,457 58 1,308

Jitter, Max. 2,295,608 7,672,276 2,220,614

Average jitter 302,836 417,186 293,807

Deviation 180,192 359,516 117,969

0

5

10

15

0.8 1.6 2.4 3.2 4 4.8 5.6 6.4 7.2 8

Processor utilization

M
is

s
ra

tio
 (

%
)

P-RM
P-EDF
P-LLF

0

5

10

0.8 1.6 2.4 3.2 4 4.8 5.6 6.4 7.2 8

Processor utilization

M
is

s
ra

tio
 (

%
)

r-RM
r-EDF
r-LLF

0

5

10

15

20

25

0.8 1.6 2.4 3.2 4 4.8 5.6 6.4 7.2 8

Processor utilization

M
is

s
ra

tio

G-RM
G-EDF

Figure 3. Deadline-miss ratio of
 partitioned class policies on 8-processor system

Figure 4. Deadline-miss ratio of
 restricted migration class polices on 8-processor system

Figure 5. Deadline-miss ratio of
 global migration class polices on 8-processor system

Figure 9 depicts the results of a test on the CMRF measuring
absolute time taken to schedule tasks configured same as the jitter
test. As the graph shows, the time consumed for scheduling tasks
is drastically increases along with the increase of the migration
level. Partitioned schemes, which are P-FP, P-RM, P-EDF, and P-
LLF, does not involves task migration operations in the
dispatch() call, therefore, it takes even less time than

dispatch() call itself which takes about 90 and 100µs to
migrate and signal to run a task.

5. DISCUSSION
Although the Categorized Multiprocessor Real-time scheduling-
supporting Framework provides the core functions for scheduling
algorithms on multiprocessor platforms, it is more desirable to
provide more time-accurate interfaces to reduce the scheduling
overheads found in the previous section.

One thing that should be addressed with the CMRF is about
timers. The timers used in the framework are currently based on
the nanosleep() function, which is undesirable for events that
may occur within less than a millisecond interval because of its
accuracy. This issue can be covered by using other OS level
timers and POSIX signal functions, however, it may accompany
other issues involving operating system level signal handling
which may cost a lot for the framework to handle with.

Another aspect that needs to be considered is about job
dispatching model. As Wellings mentioned in [2], the current
PriorityScheduler assumes a single run queue per priority
level, which also applies to the operating system’s FIFO
scheduler. The main feature about the dispatching model is to
relieve the dependencies on the concept of priority based ready
queue therefore the entire dispatching can be more generalized for
execution eligibility rather than traditional priority based
processes. Originally, this model influenced the dispatcher design
in our framework, however, the priority levels we are using in the
scheduling framework have totally no relations from the level
defined in the RTSJ, due to the fact that our framework only
works on the SCHED_FIFO policy in the operating system.
Therefore, the priority level in a RealtimeThread directly
represents the level in the operating system, and this makes the
decoupling relations between priority level and the ready queue of
the framework more difficult. For this reason, although the
dispatcher in the framework partially adopts the dispatching
model in [2], priorities of a RealtimeThread should be
carefully assigned before dispatching a task since this also effects
to preemption behavior of FIFO scheduler.

0

5

10

15

4.8 9.6 14.4 19.2 24 28.8 33.6 38.4 43.2 48

Processor utilization

M
is

s
ra

tio
 (

%
)

P-RM
P-EDF
P-LLF

0

5

10

4.8 9.6 14.4 19.2 24 28.8 33.6 38.4 43.2 48

Processor utilization

M
is

s
ra

tio
 (

%
)

r-RM
r-EDF
r-LLF

119.1

495.1

454.5

643.1 652.4

90.2
105.7

81.3

483.5

130.0 100.2

557.8

789.2
801.5

593.0
628.9

119.8

152.1139.7141.0

0

100

200

300

400

500

600

700

800

900

P-F
P

P-R
M

P-E
DF

P-L
LF

r-R
M

r-E
DF

r-L
LF

G
-R

M

G
-E

DF

Disp
at

ch
()

µs

Xeon E5506 (8)
Opteron 6176SE (48)

0

5

10

15

20

25

4.8 9.6 14.4 19.2 24 28.8 33.6 38.4 43.2 48

Processor utilization

M
is

s
ra

tio

G-RM
G-EDF

Figure 6. Deadline-miss ratio of
 partitioned class polices on 48-processor system

Figure 7. Deadline-miss ratio of
 restricted migration class polices on

48-processor system

Figure 8. Deadline-miss ratio of
 restricted migration class polices on

48-processor system

Figure 9. Execution times of
 schedulers and dispatch() call

6. CONCLUSION
So far we have examined the possibility of extending the current
version of RTSJ to accommodate scheduling algorithms that make
use of multiprocessor platforms. Even with traditional Java
runtime environment, the framework functions supporting both
migration and priority change provide facilities for real-time
thread scheduling on the middleware level without using specific
real-time JVMs. We have shown the processor affinity and
scheduling parameter related system calls support the
categorization model, and as a result, provide necessary functions
for RM, EDF, LLF scheduling algorithms and their descendants.

7. APPENDIX: FRAMEWORK API
Class RealtimeThread:

package javax.realtime;
public class RealtimeThread implements
Schedulable {
private BitSet affinity;
private int cpu;
private int tid;
private AbsoluteTime nextReleaseTime;

public RealtimeThread
(SchedulingParameters scheduling,
…
BitSet affinity);

public int getTID();
public void setTID(int tid);
public BitSet
setAffinity(BitSet affinity);

public BitSet getAffinity()
public boolean setCurrentCPU(int cpu)
public int getCurrentCPU()

}

Class NativeHelper:

package javax.realtime;
public class NativeHelper {
public static native boolean
sched_setscheduler_FIFO(int pid);

public static native boolean
sched_setaffinity(int pid, int cpu);

public static native int
setpriority(int tid, int prio);

public static native int gettid();
public static int getMinRTPriority();
public static int getMaxRTPriority();
//Timers has always the highest priority
public static int getMaxTimerPriority();
public static void nanosleep
(long millis, long nanos);

}

Class Scheduler:

package esrc.cmrf;
public abstract class Scheduler
 extends javax.realtime.Scheduler {
protected static volatile
ArrayList<Schedulable> feasibilitySet;

public abstract void reschedule
(AbsoluteTime theTime,
Schedulable schedulable);

public void addToFeasibilitySet
(Schedulable schedulable);

public void removeFromFeasibilitySet
(Schedulable schedulable);

}
protected static class Scheduler.Dispatcher{
public static void dispatch
(RealtimeThread rtt, int cpu);

}

8. REFERENCES
[1] Carpenter, J., Funk, S., Holman, P., Srinivasan, A., Anderson,

J. and Baruah, S. 2004. A categorization of real-time
multiprocessor scheduling problems and algorithms. In J. Y.
Leung, editor, Handbook on Scheduling Algorithms,
Methods, and Models, page 30.130.19. Chapman Hall/CRC,
Boca Raton, Florida.

[2] Wellings, A. J. 2008. Multiprocessors and the Real-Time
Specification for Java. In Proceedings of the 2008 11th IEEE
Symposium on Object Oriented Real-Time Distributed
Computing (ISORC '08). IEEE Computer Society,
Washington, DC, USA, 255-261.
DOI=10.1109/ISORC.2008.22
http://dx.doi.org/10.1109/ISORC.2008.22.

[3] Zerzelidis, A. and Wellings, A. J. 2010. A framework for
flexible scheduling in the RTSJ. ACM Trans. Embed.
Comput. Syst. 10, 1, Article 3 (August 2010), 44 pages.
DOI=10.1145/1814539.1814542
http://doi.acm.org/10.1145/1814539.1814542.

[4] Calandrino, J., Leontyev, H., Block, A., Devi, U. and
Anderson, J. 2006. LITMUSRT : A Testbed for Empirically
Comparing Real-Time Multiprocessor Schedulers. Real-Time
Systems Symposium, 2006. RTSS '06. 27th IEEE
International, vol., no., pp.111-126, Dec. 2006
DOI=10.1109/RTSS.2006.27
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4
032341&isnumber=4032321.

[5] Kato, S., Rajkumar, R. and Ishikawa, Y. 2009. A Loadable
Real-Time Scheduler Suite for Multicore Platforms,
Technical Report CMU-ECE-TR09-12, December, 2009.

[6] Gosling, J. and Bollella, G. 2000. The Real-Time
Specification for Java. Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA.

[7] Liu, C. L. and Layland, J. W. 1973. Scheduling Algorithms
for Multiprogramming in a Hard-Real-Time Environment. J.
ACM 20, 1 (January 1973), 46-61.
DOI=10.1145/321738.321743
http://doi.acm.org/10.1145/321738.321743.

[8] Mok, A. K. 1983. FUNDAMENTAL DESIGN PROBLEMS of
DISTRIBUTED SYSTEMS for the HARD-REAL-TIME
ENVIRONMENT. Technical Report. Massachusetts Institute
of Technology, Cambridge, MA, USA.

[9] Walter, A. 2008. Multicore Support for Realtime Java.
Technical Report. Aicas GmbH, Karlsruhe, Germany.

[10] Dibble, P. and Wellings, A. J. 2009. JSR-282 status report.
In Proceedings of the 7th International Workshop on Java
Technologies for Real-Time and Embedded Systems (JTRES
'09). ACM, New York, NY, USA, 179-182.

DOI=10.1145/1620405.1620431
http://doi.acm.org/10.1145/1620405.1620431.

[11] Dibble, P. JSR282: RTSJ version 1.1.
http://jcp.org/en/jsr/detail?id=282.

[12] Müller, D. and Werner, M. 2011. Genealogy of Hard Real-
Time Preemptive Scheduling Algorithms for Identical
Multiprocessors. In Central European Journal of Computer
Science, vol.1, no.3, pp.253-265, September, 2011
DOI=10.2478/s13537-011-0023-z
http://dx.doi.org/10.2478/s13537-011-0023-z.

[13] Siebert, F. 2008. JEOPARD: Java environment for parallel
real-time development. In Proceedings of the 6th

international workshop on Java technologies for real-time
and embedded systems (JTRES '08). ACM, New York, NY,
USA, 87-93. DOI=10.1145/1434790.1434804
http://doi.acm.org/10.1145/1434790.1434804.

[14] Armbruster, A., Baker, J., Cunei, A., Flack, C., Holmes, D.,
Pizlo, F., Pla, E., Prochazka, M., and Vitek, J. 2007. A real-
time Java virtual machine with applications in avionics.
ACM Trans. Embed. Comput. Syst. 7, 1, Article 5 (December
2007), 49 pages. DOI=10.1145/1324969.1324974
http://doi.acm.org/10.1145/1324969.1324974.

