
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 0, NO. 0, AUGUST 2016 1

AIRA: A Framework for Flexible Compute Kernel
Execution in Heterogeneous Platforms

Robert Lyerly, Alastair Murray, Antonio Barbalace, and Binoy Ravindran, Member, IEEE

Abstract—Heterogeneous-ISA computing platforms have become ubiquitous, and will be used for diverse workloads which render
static mappings of computation to processors inadequate. Dynamic mappings which adjust an application’s usage in consideration of
platform workload can reduce application latency and increase throughput for heterogeneous platforms. We introduce AIRA, a compiler
and runtime for flexible execution of applications in CPU-GPU platforms. Using AIRA, we demonstrate up to a 3.78x speedup in
benchmarks from Rodinia and Parboil, run with various workloads on a server-class platform. Additionally, AIRA is able to extract up to
an 87% increase in platform throughput over a static mapping.

Index Terms—Heterogeneous architectures, compilers, runtimes, programming models

F

1 INTRODUCTION

IN recent years, diminishing returns in single-core pro-
cessor performance due to the end of the “free lunch”

has pushed hardware design towards increasing levels of
parallelism and heterogeneity [1], [2]. Whether it be out-of-
order latency-oriented multicore CPUs or massively parallel
throughput-oriented GPGPUs, modern hardware is becom-
ing increasingly diverse in order to continue performance
scaling for a wide range of applications. It is clear that
platforms will become increasingly heterogeneous [3], [4],
[5], [6], [7], meaning that developers must embrace this new
hardware diversity to achieve higher performance.

Programming frameworks such as OpenMP and
OpenCL have emerged as industry standards for program-
ming parallel and heterogeneous platforms. These frame-
works are functionally portable in that they allow developers
to parallelize applications to target different types of proces-
sors. In particular, they specify a write-once, run-anywhere
interface that allows developers to write a single compute
kernel (a computationally-intense portion of an application)
that is runnable on many different architectures. However,
the developer is responsible for orchestrating application
execution on processors in the platform, a cumbersome
and error-prone process. The developer must select an ar-
chitecture by extensively profiling the compute kernel on
all available processors (assuming exclusive access to the
system), manually direct data transfers between disjoint
memory spaces and initiate compute kernel execution on
the pre-selected processors.

More importantly, these programming frameworks pro-
vide no mechanisms for flexible execution of compute ker-
nels in platforms with dynamic and variable workloads be-
cause they require developers to hard-code processor selec-

• R. Lyerly and B. Ravindran are with the Bradley Department of Electrical
and Computer Engineering, Virginia Tech, Blacksburg, VA 24061. E-mail:
{rlyerly, binoy}@vt.edu.

• A. Barbalace and A. Murray were with the Bradley Department of
Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA,
24061. E-mail: antoniob@vt.edu, alastairmurray42@gmail.com.

Manuscript received June 12, 2016.

tions at compile-time. Static decisions limit compute kernel
execution efficiency and platform utilization in the face of
diverse platform workloads. Dynamically selecting a set of
processing resources on which to execute computation will
become increasingly important as heterogeneous systems
become ubiquitous in platforms with varying workloads.
Previous works show that concurrently executing multiple
compute kernels increases processor utilization for better
system throughput [8], [9], [10] and energy efficiency [11].
Thus, the question that arises is: how should applications be
refactored and compiled so that their compute kernels can run
across a dynamically-selected set of processors to reduce kernel
execution latency and increase whole-platform throughput?

Not taking into account platform workload can have
disastrous effects on performance. Figure 1a shows the
slowdowns experienced by pairs of applications from the
Rodinia [12], [13] and Parboil [14] running concurrently on
a 16-core CPU, where both applications fork one thread
per core for a total of 32 threads. Figure 1b shows the
slowdowns when the same pairs of applications are exe-
cuted on a GPU. The squares indicate the slowdown of the
benchmark listed on the y-axis when concurrently executed
with the benchmark listed on the x-axis. Several applications
cause severe disruption on the GPU, and applications on
the CPU experience high inter-application conflict due to
frequent context swaps [15]. These problems are exacerbated
as more applications are co-run on the platform. Thus, it
is likely there are performance benefits for being able to
dynamically switch execution to another architecture.

However, naı̈vely switching between architectures can
also lead to severe performance degradation. Table 1 shows
the slowdowns experienced by applications executing com-
pute kernels on the (application-specific) less-performant
architecture in the same CPU/GPU platform. Some applica-
tions experience modest slowdowns on the non-ideal archi-
tecture, e.g. pathfinder and spmv, and could potentially
benefit from execution on an alternate architecture when one
architecture is highly loaded. Other applications, e.g. mri-q
and sad, experience severe performance degradation when
executed on an alternate architecture. These applications

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 0, NO. 0, AUGUST 2016 2

(a) Application Slowdown on AMD Opteron 6376

(b) Application Slowdown on NVIDIA GTX Titan

Fig. 1: Application slowdown when co-executed with an-
other application a 16-core AMD Opteron 6376 or NVIDIA
GTX Titan. Squares indicate the slowdown experienced by
the application on the y-axis when running concurrently
with the application on the x-axis.

might instead benefit from cooperative sharing of process-
ing resources, i.e. spatial partitioning of processor cores with
other applications co-executing on the same architecture.
However, no existing infrastructure provides the ability to
investigate dynamic architecture selection and sharing.

Manually instrumenting applications for flexible execu-
tion in heterogeneous platforms is an intractable solution.
Software costs will rise dramatically as developers try cope
with the increasing number of devices by adding frag-
ile management code that must simultaneously deal with
architecture-specific execution models and architecture-
agnostic scheduling decisions. We argue that developers
need a compiler which automatically instruments applica-
tions and a runtime which drives resource allocation deci-
sions for dynamic workloads in heterogeneous platforms.
This would provide benefits in many contexts. Jobs in a
datacenter could be scheduled to a wider variety of nodes
due to relaxed resource requirements (e.g. removing the
requirement for a node to contain a GPU). Datacenter op-
erators that execute batch workloads (like Google [9]) could
increases server throughput and utilization by concurrently
executing multiple applications. Consolidating multipro-
grammed workloads onto fewer machines could decrease
acquisition and operating costs, e.g. the rCUDA frame-
work [16] helps developers consolidate multiple workloads
onto fewer GPUs to reduce energy consumption.

This work provides a framework for answering ques-
tions that arise when using functionally-portable program-
ming frameworks in dynamic heterogeneous platforms:
1) Architecture Suitability: How performant is a compute

kernel, or how quickly does it execute on each of the

Application Execution Time Increase
backprop 14% (GPU)

bfs 7% (GPU)
hotspot 1% (N/A)
lavaMD 296% (GPU)
lud 97% (x86)
mri-q 688% (x86)

pathfinder 1% (N/A)
sad 711% (GPU)
sgemm 236% (x86)
spmv 12% (GPU)

srad_v1 335% (GPU)
stencil 254% (x86)

TABLE 1: Increase in application execution time when run
on the sub-optimal architecture (in parentheses) in a system
with an AMD Opteron 6376 and NVIDIA GTX Titan.

architectures in a heterogeneous platform? How do we
rank performance on different architectures in order to
automatically drive the mapping of compute kernels to
architectures?

2) Runtime Architecture Selection: In a heterogeneous
platform co-executing multiple applications, does dy-
namic architecture selection provide performance im-
provements (latency, throughput) versus a static archi-
tecture selection?

3) Architecture Shareability: For compute kernels co-
executing on one architecture, does temporal or spa-
tial partitioning of processing resources better minimize
inter-application interference?
In this work, we present AIRA (Application

Instrumentation for Resource Adjustment), a compiler
and run-time system for automatically instrumenting
and analyzing applications for flexible execution in
heterogeneous platforms. AIRA is composed of several
software components which automate selecting and sharing
architectures at runtime, including a compute kernel
analysis tool, a source-to-source compiler and a pluggable
daemon for dynamic mapping of computation onto
processor resources. AIRA targets co-executing OpenMP
applications, and we envision AIRA being built into
OpenMP 4.0, where AIRA would handle orchestrating
execution onto compute resources and the OpenMP
compiler would handle compute kernel code generation for
various architectures. The contributions of this work are:
• We detail the implementation of AIRA’s compiler and

run-time components which provide the infrastructure for
flexible execution in heterogeneous platforms;

• We describe a machine learning methodology for au-
tomatically training performance models from analyzed
compute kernels, which better predicts the most perfor-
mant architecture for the Rodinia and Parboil benchmark
suites on a server-class CPU/GPU platform versus the
state-of-the-art;

• We evaluate several policies that dynamically adjust ar-
chitecture selection and sharing using AIRA’s runtime
daemon, demonstrating up to a 3.78x speedup (higher
than load-balancing across homogeneous GPUs [17]) and
an 87% increase in platform throughput over a static
policy in a high-workload scenario.

The rest of the paper is organized as follows – Section 2
describes related work. Section 3 discusses the design and

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 0, NO. 0, AUGUST 2016 3

implementation of AIRA and its core components. Section 4
describes the methodology for automatically generating
performance prediction models and the policies evaluated
in the results section. Section 5 analyzes the results when
using those policies. Finally, Section 6 concludes the work.

2 RELATED WORK

Application characterization. Lee et al. [18] and Ïpek et
al. [19] present statistical methodologies for predicting
application performance and power usage for CPUs while
varying microachitecture, e.g. functional units, cache sizes,
etc. Thoman et al. present a suite of microbenchmarks
that characterizes the microarchitecture of heterogeneous
processors [20]. Baldini et al. use machine learning to predict
GPU performance based on CPU executions [21]. All of
these works quantify arithmetic throughput, the memory
subsystem, branching penalties and runtime overheads.
Inspired by these methodologies, AIRA predicts compute
kernel performance based on microarchitecture features to
drive architecture selection in heterogeneous platforms.

Frameworks for managing execution. SnuCL [22] is a
framework for executing compute kernels in heterogeneous
clusters, utilizing OpenCL semantics in a distributed con-
text. VirtCL [17] is a framework for load balancing com-
pute kernels in systems with multiple identical GPUs.
Both frameworks require the developer to write low-level
OpenCL, including manual data movement between mem-
ory spaces. Merge [23] is a language, compiler and runtime
that allows users to provide architecture-specific implemen-
tations of common functions to be deployed at runtime.
Merge requires the developer to use a map-reduce model,
whereas AIRA uses general-purpose OpenMP. Additionally,
none of [17], [22], [23] consider the suitability of a compute
kernel for an architecture, but instead either require the
developer to determine suitability [23] or perform naı̈ve
load balancing [17], [22]. Liquid Metal [24] is a language and
runtime for executing compute kernels across architectures
in heterogeneous systems. Similarly, PTask [15] and Dande-
lion [25] are a runtime system and programming framework
for managing compute kernel execution on GPUs. Both
Liquid Metal and PTask automatically manage memory
movement, but require developers to re-write their applica-
tion using a task/data-flow model. OmpSs is a framework
for managing multicore CPUs and GPUs [26] by compos-
ing compute kernels into a task graph, which is executed
asynchronously. However, OmpSs requires developers to
statically map compute kernels to architectures and requires
the developer specify data movement via pragmas. None
of Liquid Metal, PTask and OmpSs consider architecture
suitability for compute kernels, and all assume the appli-
cation being executed has exclusive access to the platform.
However, new platforms will not be restricted to executing
a single application. Instead, AIRA allows developers to
use standard OpenMP, and automatically manages multi-
ple concurrently executing applications using performance
predictions and cooperative resource allocations.

Panneerselvam et al. [27] propose (but do not provide
an implementation for) a framework similar to AIRA
for runtime architecture selection. However, they do not
consider any methodology for deciding resource allocations

at runtime. AIRA provides both an implementation to
automatically instrument applications for dynamic resource
allocations and studies policies for making resource
allocation decisions.

Mapping, scheduling and load balancing. Emani et al.
present a methodology that utilizes machine learning mod-
els to dynamically determine the optimal number of threads
for an OpenMP parallel section in the presence of external
workload [28]. Callisto [29] is a framework that avoids
inter-application interference of co-running parallel applica-
tions on multicore CPUs by mitigating synchronization and
scheduler overheads. HASS [30] is a framework for asym-
metric homogeneous-ISA cores that utilizes architecture sig-
natures (based on memory usage) to map single-threaded
applications to cores that differ in clock frequency. None of
these works consider heterogeneous systems. StarPU [31] is
a system for scheduling numeric compute kernels on het-
erogeneous multicores, but requires developers refactor ap-
plications into a new task programming model, encode data
access characteristics and provide implementations for each
architecture in the system. Grewe et al. present a compiler
that generates OpenCL kernels from OpenMP code and a
methodology for mapping the generated kernels to a CPU or
GPU based on models trained using machine learning [32].
Their compiler does not refactor the application to support
dynamic resource allocation (including automatically man-
aging data transfers) and only considers mapping a single
executing application. Their tool, however, could be used
in conjunction with AIRA to generate device code. Wen et
al. [33] present a scheduling policy which prioritizes applica-
tion execution based on predicted speedup when executing
on a GPU (by predicting the speedup to be either high or
low) and input data size. However, this scheduling policy
strictly time multiplexes the devices in the system, whereas
AIRA also supports partitioning processing resources (e.g.
cores in a CPU) between co-executing applications. Addi-
tionally, AIRA’s design advocates a regression-based perfor-
mance prediction model (instead of a classifier) to support
systems in the future that are highly heterogeneous.

3 DESIGN & IMPLEMENTATION

AIRA consists of three software components that provide
the infrastructure for dynamic selection and sharing of
processing resources between compute kernels in hetero-
geneous platforms. The first of AIRA’s components is a
feature extractor (Section 3.1) that analyzes compute kernels
and extracts execution characteristics offline. The features
extracted from this tool are used to build predictive per-
formance models, which are used as the basis for architec-
ture selection and resource allocation policies. The second
component is a source-to-source compiler, named the parti-
tioner (Section 3.2), which instruments applications for co-
ordination and execution on resource allocations. The final
component is the load balancer (Section 3.3), a daemon that
has a pluggable interface for resource allocation policies. We
describe implementation details of AIRA in Section 3.4.

Figure 2 shows how applications are analyzed and trans-
formed by AIRA’s offline components. An application flows
through the framework starting with the feature extractor,
which characterizes its compute kernels utilizing profiling

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 0, NO. 0, AUGUST 2016 4

Fig. 2: Offline analysis and refactoring process. Application
source is characterized using the Feature Extractor, which
collects a set of compute kernel features. The source and
extracted features are fed to the Partitioner which refactors
the application for dynamic compute kernel execution.

information when available or compiler heuristics when not.
Next, the partitioner refactors the application so that it coor-
dinates with the load balancer to get a resource allocation at
runtime and executes on that resource allocation. Figure 3
shows where AIRA sits in the runtime software stack. At
runtime, the load balancer is started as a user-space daemon
and applications communicate with the load balancer to get
resource allocations through inter-processor communication
before launching compute kernels on processing resources.

3.1 Feature Extractor
The feature extractor is a compiler pass used to accumulate
a set of features from compute kernel source code that can
be used to generate performance prediction models. The
features extracted from a compute kernel are the means
by which the compute kernel is characterized – features
describe how the compute kernel executes and what types
of operations it performs. With an incomplete or inaccurate
set of features, the generated models see an incomplete
picture of the compute kernel’s execution and cannot make
accurate predictions. The feature extractor is a GCC com-
piler pass that is inserted into the compilation process after
optimization so that the extracted features reflect the gener-
ated machine code. The feature extractor iterates over GCC’s
internal intermediate representation, generating a feature
file for each function in the application.

3.1.1 Extracted Features
Similarly to previous work [28], [32], [34], we chose features
that expose underlying architectural details in order to
decide the suitability of a compute kernel for an architecture.
We extracted several categories of features that highlight
different aspects of compute kernel execution:
• General Program Features. Counters for several types of

instructions executed by the compute kernel.
• Control Flow. Control flow instructions and estimations

of divergence.
• Available Parallelism. Amount of independent work

available for a given compute kernel invocation.
• Device Communication. Cost of transferring the compute

kernel’s data to and from an architecture.
Table 2 lists the compute kernel features used for char-

acterization. Features 1-8 are collected per basic block and

Fig. 3: The runtime software stack. Applications communi-
cate with AIRA’s runtime, which predicts compute kernel
performance and selects the resources on which the appli-
cations’ compute kernels should run.

Feature Description
1 num inst # of instructions
2 int ops # of integer math operations
3 float ops # of floating-point math operations
4 logic ops # of bitwise and boolean operations
5 load ops # of memory loads
6 store ops # of memory stores
7 func calls # of function calls
8 cond branches # of conditional branches
9 cycl comp Cyclomatic complexity
10 work items # of work items
11 memory tx # of bytes transferred to device
12 memory rx # of bytes transferred from device

TABLE 2: Kernel features collected by the feature extractor.

scaled according to the number of times the basic block is ex-
ecuted (obtained through profiling or compiler heuristics).
Feature 9 (cyclomatic complexity) is generated once per
function, and features 10-12 are generated at runtime. The
feature set captures the information about a compute kernel
which influences the compute kernel’s execution time.

Features 1-7 are general program features – they describe
the number and type of operations in a compute kernel.
Some architectures may be better suited for certain types of
operations (e.g. the AMD Opteron 6376 contains more inte-
ger arithmetic units than floating-point units [35]). Features
8 and 9 are control flow features used to capture the amount
of divergence in a compute kernel; conditional branches
quantify the number of conditionals encountered, while
cyclomatic complexity is defined as the number of linearly
independent paths through a function’s control flow graph.
These features influence suitability by distinguishing archi-
tectures that perform branch prediction and speculative ex-
ecution (e.g. CPUs) from those that suffer large performance
losses from divergence (e.g. GPUs). Feature 10 quantifies the
amount of available parallelism in a compute kernel. This
feature is equal to the number of loop iterations in a loop
parallelized using an OpenMP for pragma, and helps map
a compute kernel to an architecture with suitable parallel
computational resources. Features 11 and 12 describe the
communication costs of transferring a compute kernel’s data
to a given device1.

As shown in Figure 2, the feature extractor generates a
feature file for each of the analyzed compute kernels. These
files provide the feature vectors for the training corpus used
to generate performance prediction models. Additionally,

1. Compute kernel launch times on GPUs are implicitly factored into
the kernel’s execution time.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 0, NO. 0, AUGUST 2016 5

these files are ingested by the partitioner, which inserts the
collected features into a data structure in the application
source which is passed to the load balancer. The load bal-
ancer feeds the features to the generated models at runtime
to make a performance prediction for the compute kernel.

3.2 Partitioner

The role of the partitioner is to refactor an application so that
it executes compute kernels on a variable set of processing
resources obtained dynamically from the load balancer.
This is achieved by inserting wrapper functions around
compute kernels that handle all communication with the
load balancer and dispatch execution to the appropriate
resources. The partitioner is so named because it creates
source code partitions by duplicating and refactoring each
OpenMP work-sharing construct for each of the available
architectures in the system. During execution, the wrapper
dispatches execution to the appropriate resources by calling
the corresponding source code partition. The partitioner was
built using the ROSE source-to-source compiler infrastruc-
ture [36]. It is composed of several passes, each of which
analyzes and transforms the code [37].

The partitioner must refactor an application so that its
compute kernels can execute on a dynamic allocation of
processing resources. The partitioner automatically inserts
all architecture-specific boilerplate code necessary to launch
a compute kernel on a particular architecture, transfer data
to and from that architecture and even refactor the compute
kernel into an architecture-specific programming model. For
example, Listings 1 and 2 demonstrate how the partitioner
would refactor a vector sum calculation. The partitioner
requires four passes (and one optional pass) through the
abstract syntax tree (AST) of the application for analysis and
refactoring. Each pass builds upon results from previous
passes, but each one can be run separately – information is
stored between passes by inserting pragmas into the source
code so that developers can see how the tool refactors the
code. This also allows developers to tune the results to
help with the conservative nature of static analysis. Figure 2
shows the passes of the partitioner:

Determine Compatible Architectures. The partitioner
traverses the compute kernel AST and looks for incompat-
ible or illegal functions for each architecture. For example,
calls to the I/O API of the C standard library are not allowed
on a GPU. Note that built-in or library math functions, e.g.
sin(x), are compatible for most architectures.

Discover the Kernel Interface. The partitioner traverses
the compute kernel AST to determine what data and defini-
tions are necessary to compile and launch the compute ker-
nel on an architecture. It searches for inputs and outputs that
must be transferred to and from the architecture (function
arguments, global variables, function return values, inputs
with side-effects), functions called by the compute kernel,
and abstract data types used by the compute kernel (e.g.
struct types). In Listing 1, the partitioner discovers inputs
A, B and size and output C as the kernel interface.

Partition the Code. This pass performs the bulk of
the refactoring work – it examines information collected
from previous passes to create the source code partitions.
It performs the following steps:

1) The partitioner transforms the OpenMP compute kernel
into a stub, named the compute kernel wrapper, from which
architecture-specific code partitions are called after coor-
dinating with the load balancer (lines 1-17 in Listing 2).
The original compute kernel is moved to a separate
function, which becomes the CPU partition (lines 18-27).

2) Copies of the kernel code, supporting functions and
ADT definitions are placed into each code partition for
compilation. The vecSum kernel does not use any sup-
porting functions or user-defined structures, so no action
is needed in this step.

3) A per-kernel handshake for each device is inserted,
which coordinates launching a the kernel on that device.
This includes all data transfers and launching execution
on the appropriate resources. Lines 38-41 in Listing 2
implement the GPU handshake for vecSum (memory
management using CUDA APIs has been omitted).

4) The OpenMP compute kernel is refactored into device-
specific code. We use OpenMPC [38], [39] to per-
form OpenMP-to-CUDA translation to execute the com-
pute kernel on NVIDIA GPUs. OpenMPC generates
vecSumKern on line 42 in Listing 2.
Add Memory Management (Optional). AIRA provides

a library which tracks application memory allocation in
order to automate data transfers to and from devices. The
library must maintain locations and sizes of both statically
and dynamically allocated memory in order to automat-
ically handle data transfers. First, the library wraps the
standard C dynamic memory functions (e.g. malloc, free)
using the linker in order to observe dynamic memory man-
agement. Second, the library provides an API that allows the
application to notify the library of statically allocated data
such as global memory and stack variables. The partitioner
inserts calls to this API to index statically allocated non-
scalar variables for later retrieval (scalar variables have a
known size). The library stores data sizes by address using
a red-black tree, which is queried when a compute kernel
is launched on a device that requires data movement. For
example, vecSum_gpu queries the library when allocating
GPU memory (lines 37-39) to find the sizes of vectors
allocated via malloc. Note that if the memory management
pass is not used the developer must specify data sizes for
copying data in and out of compute kernels using AIRA’s
pragmas, similarly to OpenMP 4.0 data clauses.

Add Load Balancer Integration. The partitioner inserts
code to coordinate with the load balancer. The partitioner
embeds the compute kernel features from the feature ex-
tractor into the wrapper function, e.g. vecSum_feat on
lines 4-9. Then, the partitioner inserts calls to a library
to communicate with the load balancer, e.g. the call to
aira_get_alloc on line 10. Before executing the compute
kernel, the application sends the features to the load bal-
ancer to be used in the prediction models and the resource
allocation policies. The load balancer returns a resource
allocation to the application, which is used by the wrapper
to launch the compute kernel on the specified resources
(lines 11-15). After the compute kernel has finished execu-
tion, the application notifies the load balancer so that the
load balancer can keep its internal workload accounting
information accurate (line 16).

The partitioner generates several files (as shown in

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 0, NO. 0, AUGUST 2016 6

1 void vecSum (const double ∗A, const double ∗B ,
2 double ∗C, s i z e t s i z e) {
3 s i z e t i ;
4 #pragma omp parallel for
5 for (i = 0 ; i < s i z e ; i ++)
6 C[i] = A[i] + B [i] ;
7 }

Listing 1: OpenMP vector sum before refactoring.

Figure 2) including the refactored source of the original
application and a file for each partition. These files compiled
together generate a binary that is ready for deployment.

3.3 Runtime Load Balancer

AIRA’s final component is a runtime daemon which applica-
tions query at runtime to obtain resource allocations for ex-
ecuting compute kernels. Applications communicate using
an inter-process communication (IPC) library, implemented
using Unix sockets, to talk to the daemon. Applications
send extracted compute kernel features to the load balancer
and receive a resource allocation in return. The application
blocks until receiving the resource allocation, allowing the
load balancer to control when compute kernels are launched
in the system. The load balancer provides a pluggable inter-
face for resource allocation policies to allocate resources to
applications. Resource allocation policies provide a means
to select an architecture, and for architectures that allow
fine-grained control of processing resources, the number of
processor cores to use for executing the compute kernel (e.g.
the number of CPU cores to use).

Figure 4 shows the interaction between the application
and the load balancer at runtime. When an application
enters the wrapper function inserted by the partitioner, it
sends the compute kernel’s features to the load balancer.
The load balancer feeds the features to the performance
model, and the outputs from the performance model are
fed to the resource allocation policy. The policy generates a
resource allocation which is returned to the application. The
wrapper then launches the compute kernel on the specified
resources. After finishing executing the compute kernel, the
application notifies the load balancer of its completion and
continues normal execution.

The daemon keeps track of which applications are exe-
cuting by maintaining a per-architecture running-list using
check-in/check-out communication. Lists maintain an entry
(including the application’s PID and resource allocation)
for each currently executing compute kernel. Resource al-
location policies utilize this information with performance
predictions to make allocations. Running-lists influence re-
source allocations in an intuitive way – if a given archi-
tecture is experiencing high load (i.e. it has a long running-
list), the policy should adjust resource allocations to account
for this load (e.g. by allocating fewer cores or switching
execution to a different architecture).

Although the information tracked in the running-lists is
simple and may not model complex cross-application inter-
ference, we used this design for several reasons. First, we
wanted the runtime model evaluation to be as lightweight
as possible. Several of the applications have very short
running times, meaning excessive overheads due to evalu-
ating complex policies could cause non-trivial performance

1 /∗ Compute Kernel Wrapper ∗/
2 void vecSum (const double ∗A, const double ∗B ,
3 double ∗C, s i z e t s i z e) {
4 a i r a k e r n e l f e a t u r e s vecSum feat = {
5 . num inst = 500000000 ,
6 . int ops = 100000000 ,
7 . f l o a t o p s = 100000000 ,
8 〈 Other features from Table 2 〉
9 } ;

10 a i r a a l l o c a l l o c = a i r a g e t a l l o c (&vecSum feat) ;
11 switch (a l l o c . device) {
12 case CPU: vecSum cpu (A, B , C, s ize , a l l o c) ; break ;
13 case GPU: vecSum gpu (A, B , C, s ize , a l l o c) ; break ;
14 . . .
15 }
16 a i r a n o t i f y (& a l l o c) ;
17 }
18 /∗ CPU Source Code P a r t i t i o n ∗/
19 void vecSum cpu (const double ∗A, const double ∗B ,
20 double ∗C, s i z e t s ize ,
21 a i r a a l l o c a l l o c) {
22 s i z e t i ;
23 omp set num threads (a l l o c . num procs) ;
24 #pragma omp parallel for
25 for (i = 0 ; i < s i z e ; i ++)
26 C[i] = A[i] + B [i] ;
27 }
28 /∗ GPU Source Code P a r t i t i o n ∗/
29 void vecSum gpu (const double ∗A, const double ∗B ,
30 double ∗C, s i z e t s ize ,
31 a i r a a l l o c a l l o c) {
32 dim3 grid , blocks ;
33 double ∗A d , ∗B d , ∗C d ;
34 s i z e t A size , B size , C size ;
35 A size = a i r a g e t s i z e (A) ;
36 B size = a i r a g e t s i z e (B) ;
37 C size = a i r a g e t s i z e (C) ;
38 〈 Allocate & transfer A, B & C to GPU 〉
39 〈 Calculate launch dimensions based on size 〉
40 vecSumKern<<<grid , blocks>>>(A d , B d , C d , s i z e) ;
41 〈 Copy C back from GPU 〉
42 }

Listing 2: Vector sum after partitioner refactors the code.
Allocations and data movement using standard CUDA
APIs (lines 38-39 and line 41) have been omitted.

Fig. 4: Runtime check-in/check-out communication with the
load balancer to get a resource allocation for compute kernel
execution.

degradation (Section 5 quantifies allocation overheads). Sec-
ond, in the context of this work applications come and
go rapidly, meaning that by the time the load balancer
had evaluated cross-application interference the interfering
application may have finished execution. Hence, simple
running-list information sufficed for our needs.

We implemented communication using sockets because
their client/server semantics are a natural fit for AIRA’s
communication pattern, and because they can be easily

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 0, NO. 0, AUGUST 2016 7

ported to other OSs. However, AIRA could be adapted to
use any mechanism that implements send/receive function-
ality, e.g. AIRA could be extended to clusters using RDMA
verbs [40]. In future work, we plan to integrate the load
balancer into the operating system scheduler to give the
load balancer a more complete view of the system and to
reduce IPC overheads.

3.4 Implementation
AIRA’s components were developed using a combination
of C and C++, and AIRA currently supports C appli-
cations. Features were extracted from applications using
profiling information – applications were compiled using
GCC’s -fprofile-generate switch to collect basic block
execution statistics, which were fed back into the feature
extractor to scale the collected features. OpenCV’s machine
learning module was used as the basis for model generation
and evaluation, described in Section 4. Communication with
the load balancer was implemented using Unix sockets,
which enabled easy synchronization and queuing of re-
quests. Overall, the framework required 13,900 lines of code.
Although AIRA is implemented assuming compute kernels
were written using OpenMP, its design principles could be
applied to other functionally-portable programming frame-
work (e.g. OpenCL, OpenACC, etc.). The feature extractor
was 700 lines of C++, the partitioner was 8,200 lines of C++,
the memory management library was 700 lines of C, the load
balancer was 2,120 lines of C/C++ and the machine learning
tools were 2,250 lines of C++.

4 PERFORMANCE PREDICTION AND RESOURCE
ALLOCATION POLICIES

In order to drive resource allocation policies, a method is
needed to predict an application’ suitability for each of the
available architectures. We chose to use statistical machine
learning methods due to established success in previous
works [18], [32], [34]. Utilizing the extracted compute kernel
features, performance prediction models were generated
using machine learning (Section 4.1) and used as the basis
for the resource allocation policies (Section 4.2). Finally, we
extended these policies to show how AIRA can be leveraged
to prioritize a compute kernel’s execution (Section 4.3).

4.1 Model Generation via Machine Learning
Artificial neural networks (ANN) [41] were used for the per-
formance prediction models because of their flexibility and
because they are regressors. ANNs predict how performant
a compute kernel is on a given architecture (a continuous
value); classifiers (as used in [32]) predict the most perfor-
mant architecture by selecting a class, e.g., GPUs are the best
architecture. Regressors are better suited for heuristic-based
approaches for runtime resource adjustment. OpenCV was
leveraged to provide an ANN implementation, and the
back-propagation [42] algorithm was used to train the
models. Each model was trained using a corpus of data
consisting of the extracted compute kernel features and
compute kernel runtimes from sample benchmark runs. The
models took compute kernel features as inputs and gener-
ated performance predictions for each architecture in the
platform as outputs. Each benchmark was run 80 times on

Policy Core Sharing Arch Selection
Static (baseline) 7 7

Share 3 7

Select 7 3

Share+Select 3 3

TABLE 3: Characteristics of resource allocation policies.

each architecture in order to generate the corpus, requiring
a total of three hours of profiling. This training time is a
one-off cost per platform – the models can be utilized for
previously unseen applications that provide features from
the feature extractor. After collecting training data, leave-
one-out cross validation was used (as described in Section 5)
to generate models, requiring 13.6 seconds per model.

Evaluating the models is computationally lightweight,
as values only propagate through three layers of neurons.
Standard pre-processing was applied to the inputs – all
features were scaled to have similar ranges, and princi-
pal component analysis (PCA) [43] was applied to reduce
the dimensionality of the input data. PCA is a method
for combining inputs into meta-features that extract the
most important feature information. This also improves the
model evaluation time by reducing the number of values
that must propagate through the network. Scaling and PCA
reduction were applied during the training process and
at runtime by the load balancer before feeding inputs to
the trained models. The neural networks were configured
by empirically determining the best PCA and middle-layer
dimensions. The models were configured with a PCA pro-
jection down to seven dimensions (which retained 99% of
the variance) and a hidden layer consisting of nine neurons.

4.2 Resource Allocation Policies

Three resource allocation policies, named Share, Select and
Share+Select, were developed to evaluate resource selec-
tion and sharing in our evaluation. All resource allocation
policies utilized the prediction models to determine the
suitability of each architecture for each compute kernel and
then applied a combination of two heuristics2 to select
processing resources. Table 3 lists each of the evaluated
resource allocation policies and the heuristics used by each.

The core sharing heuristic was used in the Share and
Share+Select policies. This heuristic, designed to exploit
the increasing parallelism of multicore processors, spatially
partitioned an architecture’s available cores between ap-
plications co-executing on that architecture. Note that this
heuristic was applied only on the multicore CPU, as current
GPUs do not allow fine-grained management of GPU cores.
The Share and Share+Select policies first selected an archi-
tecture based on the model predictions (and in the case of
Share+Select, the architecture selection heuristic described be-
low). If the CPU was determined to be the ideal architecture,
the application was given a proportional share of the CPU
cores based on the running-list length:

Coresallocated = d CoresCPU

RunningListCPU
e,

2. The heuristics are simple in nature and were developed to show
the untapped potential of cooperative selection and sharing – future
work will investigate ways to improve them.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 0, NO. 0, AUGUST 2016 8

where Coresallocated is the number of cores allocated to the
application,CoresCPU is the total number of available cores
and RunningListCPU is the number of compute kernels
currently running on the CPU (maintained by the load
balancer’s running-lists). For example, consider a workload
with three arriving applications, A, B and C, all of which
are selected to run on a 16-core CPU. When A arrives, AIRA
instructs it to use all 16 cores. When B arrives (while A is still
running), AIRA instructs it to use 8 cores, and likewise when
C arrives AIRA instructs it to use 4 cores. Although the CPU
is currently oversaturated (28 threads), when A finishes the
system becomes under-saturated (12 threads). On average,
this policy matches the number of threads running in the
system to the number of available CPU cores3.

The architecture selection heuristic was used in the Se-
lect and Share+Select policies. This heuristic let the policies
switch execution from the model-selected best architecture
to a less ideal architecture, depending on the difference
in performance when executing on the alternate architec-
ture and the load on the ideal architecture. This heuristic
achieved this goal by adjusting the performance predictions
of a compute kernel on each architecture based on the num-
ber of applications currently executing on that architecture:

Perfadjusted = Perfarch ×RunningListarch,

where Perfadjusted is the adjusted performance prediction,
Perfarch is the original performance prediction from the
model and RunningListarch is the number of applications
currently executing on the architecture. This heuristic ap-
proximated performance degradation proportionally to the
number of applications currently executing on each architec-
ture, i.e. for an architecture currently executing N compute
kernels, the arriving compute kernel is expected to take N
times as long to complete. These adjusted performance pre-
dictions were then used to select an architecture, e.g. bfs’s
compute kernels could be executed on the GPU instead of
the CPU if the CPU was overloaded.

These three policies were compared against the Static
baseline, which modeled the behavior of a developer assum-
ing exclusive access to the entire platform. Compute kernels
were executed on the most performant architecture for that
compute kernel (as determined from profiling information)
and allocated all processing cores available on that architec-
ture. Architecture selection was never dynamically adjusted.

Currently, none of the policies control when kernels
execute (i.e., no temporal execution control) but rather only
adjust on which resources the kernels execute. Applica-
tions make requests to the load balancer, which returns
allocations immediately. Although the load balancer does
implement the ability to block application execution by
forcing them to wait for an allocation, we leave policies
which exploit this capability as future work.

4.3 Prioritized Allocation Policies
In addition to the previously described policies, three more
policies were developed to prioritize a single application,
i.e. to maximize performance for a single application with
minimal impact on system throughput. These policies are

3. Current OpenMP runtimes do not allow changing the number of
threads while executing a work-sharing region.

useful in instances where certain jobs should have execution
priority over others (e.g. a latency-sensitive job serving a
search query versus maps batch processing in Google’s
systems [9]). These policies, named Naı̈ve, Priority and Prior-
ity+Share, utilized the OS’s capabilities to augment AIRA’s
dynamic resource allocations.

The Naı̈ve policy only utilized the OS scheduler’s capa-
bilities for prioritization. For applications executing with-
out high priority (dubbed regular applications), the Static
baseline described in Section 4.2 was used for resource
allocation. For high-priority applications, the Naı̈ve policy
instructed the application to set its threads to the highest
scheduling priority4. This ensured that the application’s
threads were scheduled first, when either executing the
compute kernel on the CPU or when managing compute
kernel execution on the GPU (i.e. enqueuing data transfers
or kernel launches). Note that because the GPU driver is
close-source the threads cannot adjust the GPU task queue,
meaning kernels enqueued by the high-priority application
cannot jump ahead of previously enqueued kernels in the
GPU driver’s task queue.

The Priority policy utilized AIRA’s capabilities in addi-
tion to setting scheduling priorities. Regular applications
were again allocated resources according to the Static base-
line. When a high-priority application requested a resource
allocation from the load balancer, the load balancer locked
the architecture on which the high-priority application was
mapped. This meant that later-arriving regular applications
were automatically mapped to a non-locked architecture,
e.g. if srad_v1 was the high-priority application, when it
requested a resource allocation it was mapped to the GPU
and subsequently-arriving requests were mapped to the
CPU. After architecture selection, high-priority applications
mapped to the CPU were again told to set their threads to
the highest scheduling priority. When the high-priority ap-
plication had finished compute kernel execution, the device
was unlocked and available for use by regular applications.
Device locking provided a coarse-grained method for tem-
poral reservations, and in particular helped to compensate
for the non-preemptive nature of GPUs.

Finally, the Priority+Share policy operated similarly to the
Priority policy but used the Share policy instead of the Static
baseline to allocate resources for regular applications. This
meant that CPU cores were spatially partitioned among co-
executing regular applications. High-priority applications
mapped to the CPU were, however, allocated all available
CPU cores, regardless of what regular applications were
concurrently executing on the CPU. The load balancer per-
formed device locking, and the high-priority application set
its threads to the highest scheduling priority.

5 RESULTS

We utilized AIRA to quantify application performance and
platform throughput using the resource allocation policies
described in Section 4.2. We evaluated these policies on a
multicore CPU/GPU platform using compute benchmarks.
In order to perform a thorough evaluation, we first tested
the accuracy of the models to predict the most suitable archi-
tecture for a compute kernel versus the state-of-the-art [32].

4. The highest priority of interactive user applications is -20 in Linux
(SCHED OTHER) [44].

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 0, NO. 0, AUGUST 2016 9

AMD Opteron 6376 NVIDIA GTX Titan
of Cores 16 14 (2688 CUDA cores)
Frequency 2.3 GHz 837 MHz

Core Design Superscalar/OoO SIMT
Compiler GCC 4.8 NVCC 6.5

OS Ubuntu 12.04 LTS w/ Linux 3.13

TABLE 4: Architectures in the platform used for evalua-
tion. The GPU executes using a single-instruction/multiple
thread model and is connected via PCIe 2.0, x16.

Feature Description
transfer ÷ communication /

(compute + memory) computation ratio

coalesced/memory % of memory accesses
that are coalesced

(local mem ÷ memory) local/global access ratio ×
× average # work items compute kernel threads

compute/memory computation /
memory ratio

TABLE 5: Features used to train competitor’s decision tree
models, compared to AIRA’s extracted features in Table 2.

After we had verified our models were able to accurately
predict suitability, we tested the resource allocation policies
with varying levels of system load.

For our experimental evaluation, we ran experiments
on a platform containing an AMD Opteron 6376 CPU and
an NVIDIA GeForce GTX Titan GPU (shown in Table 4).
For our experiments, we extracted features, partitioned
benchmarks and trained models using 12 benchmarks from
the Rodinia [12] and Parboil [14] benchmark suites. Some
benchmarks were omitted because AIRA currently cannot
marshal data types with arbitrarily nested pointer types
(e.g., linked list nodes in non-contiguous memory) and
because OpenMPC was not able to correctly handle some
more advanced OpenMP kernels, especially ones with func-
tion calls. Only the OpenMP versions of benchmarks were
used, which were analyzed and refactored using AIRA’s
feature extractor and partitioner. These were then executed
in conjunction with AIRA’s load balancer using the resource
allocation policies described in Section 4.2 and Section 4.3.

5.1 Overhead Analysis
We first sought to verify that resource allocation overheads
(i.e. inter-process communication costs with the load bal-
ancer) were acceptable. Figure 5 shows the mean overhead,
in µs, for coordinating with the load balancer with varying
numbers of co-executing applications. These numbers are
per compute kernel invocation, and are composed of the
time to obtain a resource allocation and the time to cleanup
after compute kernel execution. Resource allocation times
include IPC, model prediction and policy evaluation costs.
Cleanup times include the IPC costs for notifying the load
balancer after execution has completed and any running-
list accounting. As evident in the graphs, these overheads
are minimal compared to application runtime, with total
costs rising to no more than 250 µs. This is several or-
ders of magnitude smaller than the shortest benchmark –
backprop executes in an average of 351 ms on the CPU.

Fig. 5: Mean per-compute kernel coordination overheads
with varying numbers of concurrently executing applica-
tions, in µs.

Thus, the overheads introduced by AIRA are acceptable for
the tested applications. AIRA may not be suitable for ap-
plications which cannot amortize these overheads, such as
applications that launch many short-lived compute kernels.

5.2 Static Architecture Selection

In order to test the ability of our trained models to make
accurate performance predictions for unseen benchmarks
on the architectures in the platform, we used leave-one-out
cross-validation (a standard machine-learning technique) to
test the generalizability of the produced models. During this
process, a single benchmark was designated as the testing
benchmark, and the rest of the benchmarks were designated
as the training benchmarks. A model was generated using
training data from only the training benchmarks. Once the
model was trained, the model was evaluated using the
testing benchmark to determine if the model was able to
make accurate performance predictions. This process was
then repeated in turn for each of the benchmarks.

We tested the ability of the models to predict the best ar-
chitecture for compute kernels running without any external
workload. We trained the models using the methodology
described in Section 4.1. We compared the accuracy of our
models to the methodology described by Grewe et al. [32]
– their approach collects a set of meta-features (shown in
Table 5) formed from raw program features which were
used to train decision trees [45]. Both AIRA’s and Grewe
et al.’s models were trained using the same raw program
features extracted from benchmarks (except for coalesced
memory accesses, which were gathered using NVIDIA’s
profiling tools), and trained using leave-one-out cross val-
idation. The only differences between the approaches were
whether or not the methodology utilized PCA or hand-
crafted meta-features, and the underlying model (ANN vs.
decision tree). Figure 6 shows the results of the comparison.
The bars in the graph show the runtime (in seconds) of the
architecture selected using different methodologies. Note
that Table 1 lists the less-performance architecture for each
of the benchmarks. In our setup, backprop is the shortest-
running benchmark at 351ms, while stencil is the longest
at 14.1s (or 28.5s for the competitor).

Our models are able to accurately predict the best archi-
tecture on which to execute different compute kernels. We
match the oracle for every benchmark except pathfinder,
which has minimal performance loss on the incorrect archi-
tecture. This is because it is both memory throughput-bound
(better for GPUs) and branch-heavy (better for CPUs). How-
ever the competitor does not do as well – the trained
decision trees fail to predict the correct architecture for bfs,

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 0, NO. 0, AUGUST 2016 10

Fig. 6: Runtimes (in seconds) of benchmarks from Ro-
dinia and Parboil on architectures selected using different
methodologies.

mri-q, sgemm and stencil, resulting in significant lost
performance. This is due to the hand-crafted meta-features
versus our use of PCA to statistically combine features.
Additionally, our feature set is slightly more comprehensive,
including details such as individual types of operations and
divergence costs. In general, we believe the user should
provide the machine learning model with a set of detailed
raw features and let machine learning processes determine
how features should be combined.

5.3 Dynamic Selection and Sharing

After analyzing the models offline, we evaluated application
performance with system load using AIRA’s load balancer.
We developed and integrated the resource allocation poli-
cies from Section 4.2 into AIRA’s load balancer. In order
to generate system load for the experiments, we executed
workload launchers. Each workload launcher generated a
randomized list of the training benchmarks for the current
testing benchmark and looped infinitely through the list,
launching the benchmarks as external workload in the sys-
tem while running the testing benchmark. All co-executing
benchmarks, including the testing and training benchmarks
run by workload launchers, communicated with and re-
ceived resource allocations from AIRA’s load balancer at
runtime. Note that because the workload launchers ex-
ecuted randomized external workload, the system ran a
random mixture of benchmarks, modeling a live production
server handling compute job requests [9].

Figure 7 shows the speedups achieved when running
each benchmark with varying numbers of workload launch-
ers for each policy. Speedups indicate the reduction in
application runtime when using each of the policies ver-
sus runtime using the Static policy at the same workload
level. Alternatively, Figure 8 shows the slowdown for each
policy versus running the application on a system with
no external workload. Each benchmark was executed 100
times in each of the workload scenarios in order to mitigate
noise. As shown in Figure 7, the policies demonstrate sizable
improvements for the testing benchmarks versus the static
policy when co-executed with as few as three workload
launchers. Speedups continue to rise with increasing num-
bers of co-executing applications. As expected, Figure 8
shows latency increasing compared to running in an un-
loaded system as more co-executing applications compete

for resources. Clearly, however, a cooperative resource allo-
cation can provide significantly better performance than a
static resource allocation for multiprogrammed systems.

Many of the applications experience significant and
increasing speedups as the amount of external workload
increases, e.g. bfs, pathfinder, sad, spmv, srad_v1 and
stencil. The pathfinder benchmark shows the largest
benefit from AIRA’s load balancer, due to the fact that it
has comparable performance on both architectures and also
because it still achieves good performance with smaller core
allocations on the Opteron. Other benchmarks experience
small or non-existent speedups versus the Static policy, e.g.
backprop, lavaMD and mri-q. As mentioned previously,
backprop is the shortest running benchmark, meaning
there is little inter-application interference and thus less
room for improvement. lavaMD and mri-q are highly
compute bound (versus other benchmarks that are better
balanced between compute and memory), meaning the per-
formance loss from reduced compute resources offsets any
gains from reduced inter-application interference. However,
for the majority of the benchmarks, the policies are able to
provide increased performance with increased workload.

The Share policy shows the best performance improve-
ments out of any of the policies, with mean speedups of
25%, 52%, 67% and 83% for 3, 7, 11 and 15 workload
launchers, respectively. This is due to the high number of
cores in the Opteron – the compute kernels that run on the
CPU still receive a large partition of CPU cores even when
several applications use the Opteron simultaneously. Note
that applications running on the GPU with the Share policy
must time-share the processor due to hardware limitations,
although we expect this restriction to be lifted as GPUs
become more general-purpose. The Select policy is also able
to obtain speedups by switching execution between the two
architectures (4%, 10%, 11% and 16%), albeit at a reduced
level compared to Share. Share+Select maintains most of the
benefits of Share (23%, 47%, 55% and 64%), but does not
successfully exploit switching architectures to gain extra
performance on top of partitioning CPU resources. This is
due to the simple nature of the heuristic – it sometimes
switches architectures (most often from the CPU to the GPU)
when the compute kernels would still execute more quickly
on a partitioned set of CPU cores. However, pathfinder
(which benefits from both dynamic architecture selection
and sharing) experiences a 3.78x speedup with 11 workload
launchers, the highest speedup of any tested benchmark.
Figure 8 shows similar trends – the Share policy has the
smallest slowdown compared to an unloaded system, with
the Share+Select and Select policies following suit (the Select
policy is slightly better but comparable to the Static policy).

Figure 9 shows the average system throughput using
each of the policies for each workload scenario, scaled
to show the number of benchmarks executed per minute.
The trends are consistent with results from the graphs in
Figure 7. The Static policy demonstrates the worst system
throughput, where throughput saturates with only 3 work-
load launchers. The other policies, however, show better
scalability. The Share policy is able to extract the highest sys-
tem throughput, demonstrating increasing scalability with
more system load (an 87% improvement in system through-
put with an external workload of 15). Share+Select achieves

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 0, NO. 0, AUGUST 2016 11

(a) Share Policy (b) Select Policy (c) Share+Select Policy

Fig. 7: Speedup over the Static policy with varying numbers of external workload launchers. Both the specified policy and
the Static policy were run using the same number of workload launchers.

(a) Share Policy (b) Select Policy (c) Share+Select Policy

Fig. 8: Slowdown of different policies versus running in a system with no external workload.

Fig. 9: System throughput for resource allocation policies
with varying numbers of workload launchers. Indicates the
number of benchmarks launched per minute, including both
training and testing applications.

slightly worse performance, but still shows comparable scal-
ability through the highest workload (75% improvement).
Select demonstrates better throughputs than the static policy,
but throughputs saturate at 7 external workload launchers;
it only achieves up to a 14% increase in throughput. By
comparing Figure 8 and Figure 9, it is easy to see how the
system can trade off single-application latency for through-
put; for example, by co-executing 8 applications using the
Share policy the system could increase application latency
by 2.5x in order to increase system throughput by 66%.

5.4 Prioritization

Finally, we integrated and evaluated the prioritized allo-
cation policies presented in Section 4.3. We evaluated the
ability of these policies to prioritize applications using the
previously described performance prediction methodolo-
gies and policies with an experimental setup similar to Sec-
tion 5.3. We launched testing benchmarks with increasing
numbers of workload launchers, where the testing bench-
mark was designated as the high-priority benchmark in all
experiments (i.e. there was at maximum one high-priority
application running at a time).

Figure 10 shows the speedups achieved with prioriti-
zation policies over a static resource allocation, while Fig-
ure 11 shows the slowdowns versus an unloaded system.
The Naı̈ve policy is able to achieve speedups for most
applications, and provides comparable performance to Share
from Section 5.3 – it achieves a 100% average improvement
versus the Static baseline with 15 workload launchers. By
prioritizing through the OS scheduler, applications are able
to get significant improvements in performance. The Priority
policy provides similar benefits, but is able to extract extra
performance improvements through device locking. Kernels
of high-priority applications see reduced interference, ben-
efiting applications on both the CPU and GPU. lud greatly
benefits from this capability because it performs many small
GPU compute kernel launches in succession; by reserving
the GPU, these small launches are not interleaved with
the execution of other compute kernels. The Priority+Share

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 0, NO. 0, AUGUST 2016 12

(a) Naı̈ve Policy (b) Priority Policy (c) Priority+Share Policy

Fig. 10: Prioritization policy speedups over the non-prioritized Static baseline.

(a) Naı̈ve Policy (b) Priority Policy (c) Priority+Share Policy

Fig. 11: Slowdown of different prioritization policies versus running in a system with no external workload.

policy provides the most benefit, with applications experi-
encing up to an average of 2.7 times speedup over the static
resource allocation, and provides much higher speedups
than any of the policies mentioned in Section 5.3. It is able
to reap whole-platform benefits by augmenting the benefits
from partitioning the CPU resources with those from higher
scheduling priorities and device locking. While the Naı̈ve
and Priority policies demonstrate poor slowdowns versus
an unloaded system, the Priority+Share policy shows much
smaller slowdowns, even as the amount of external work-
load increases. Several benchmarks (backprop, mri-q,
srad_v1) experience larger slowdowns because they are
short-running and are highly sensitive to interference.

Table 6 shows the reduction in platform throughput for
each of the policies versus the Static baseline. All prioritiza-
tion policies demonstrate reductions in throughput versus
the baseline; however, this is to be expected given the design
goal of maximizing performance. The Priority+Share policy
never saw more than a 19% reduction in throughput versus
the baseline, but simultaneously managed to achieve sig-
nificant application speedups. This demonstrates that using
AIRA, applications can be prioritized with small tradeoffs
in throughput on heterogeneous platforms.

5.5 Discussion
These results show the benefits obtainable by enabling
dynamic resource adjustment. In particular, we see that
cooperative resource allocations allow applications to better
utilize platforms for increased performance throughput. We
can draw several key insights:

Workload 1 3 7 11 15
Naı̈ve 9% 7% 17% 14% 20%
Priority 31% 29% 25% 31% 32%
Priority+Share 14% 19% 12% 13% 15%

TABLE 6: Reduction in throughput versus the Static policy
due to prioritization.

Automatic architecture selection is crucial for perfor-
mance. The ability of the trained models to accurately pre-
dict performance is crucial for achieving good performance.
Our methodology correctly predicted the most performant
architecture for 11 out of 12 benchmarks (while the mispre-
dicted application experienced minimal performance loss).
Evaluating these models is lightweight, making them suit-
able for use in production systems at runtime. Additionally,
dynamic architecture selection provided additional perfor-
mance improvements. In particular, pathfinder experi-
enced the best performance improvement when leveraging
dynamic architecture selection.

Dynamic architecture selection increases platform flex-
ibility. When using dynamic architecture selection as shown
in Figure 7b, applications can achieve speedups over a static
architecture selection. AIRA is able to gain performance
benefits from switching execution between architectures dy-
namically, and pathfinder experiences the largest latency
reduction of any benchmark when utilizing this ability.

Sharing compute resources provides whole-platform
benefits. Supervising allocation of CPU cores between ap-
plications provided significant performance improvements,

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 0, NO. 0, AUGUST 2016 13

even for applications executing compute kernels on the
GPU. Whole-platform performance was improved by re-
ducing the number of threads competing for CPU time
(consistent with [15]). New mechanisms that allow software-
controlled allocation of GPU resources such as accelOS [46]
would provide additional performance improvements.

Flexible compute kernel execution has a variety of
use cases. It was trivial to add a prioritized resource allo-
cation policy to AIRA’s load balancer. Using this policy in
conjunction with OS scheduling for platform-wide resource
allocations provides significantly better speedups through
CPU core partitioning and device locking. The flexibility
afforded by AIRA has many applications for workloads in
platforms ranging from SoCs to the datacenter.

6 CONCLUSION

As heterogeneous platforms become ubiquitous and in-
creasingly multiprogrammed, it becomes more important
that systems software provides execution management. We
introduced AIRA, a framework to automatically enable
flexible execution of compute kernels in heterogeneous plat-
forms from multiple applications. AIRA provides offline
tools to automatically refactor and analyze applications,
relieving the developer from having to manually instrument
application code. AIRA uses compute kernel features gath-
ered by the feature extractor in conjunction with current
system load to make resource allocation decisions using
several policies. By leveraging AIRA, we demonstrated
that there are significant benefits obtained by dynamic ar-
chitecture selection and spatial partitioning of processing
resources versus a static resource allocation that relies on
time-multiplexing resources among concurrently executing
applications. On a server-class CPU/GPU platform, AIRA
predicts the most suitable architecture for a compute ker-
nel. This was crucial for good performance – applications
experienced a 2.7x slowdown on average when executed
on the wrong architecture. This architecture selection can
be adjusted at runtime to obtain up to a maximum of
3.78x speedup, with an average of 16% speedup. Moreover,
applications experienced up to a mean of 83% speedup and
the platform experienced up to a mean of 87% throughput
improvement when cooperatively sharing the high core
count CPU. This leads us to conclude that in heterogeneous
systems, both dynamic architecture selection and resource
sharing can increase application performance and system
throughput. Additionally, cooperative resource allocation
decisions are advantageous for heterogeneous-ISA plat-
forms. For future work, there are many new platforms and
hardware features which can be utilized by AIRA. Inter-
application interference can be reduced by new hardware
capabilities, e.g. cache partitioning [51]. Additionally as
new shared-memory heterogeneous platforms emerge [4],
[52] AIRA can be extended to better coordinate memory
placement within heterogeneous memory hierarchies. Other
emerging platforms [5] will enable higher execution flexibil-
ity, allowing more fine-grained execution management.

ACKNOWLEDGMENTS

This work is supported by the US Office of Naval Research
under Contract N00014-12-1-0880.

REFERENCES

[1] H. Sutter, “The free lunch is over: A fundamental turn toward
concurrency in software,” March 2005, http://www.gotw.ca/
publications/concurrency-ddj.htm.

[2] ——, “Welcome to the jungle,” August 2012, http:
//herbsutter.com/welcome-to-the-jungle.

[3] A. Putnam, A. M. Caulfield, E. S. Chung, D. Chiou, K. Con-
stantinides, J. Demme, H. Esmaeilzadeh, J. Fowers, G. P. Gopal,
J. Gray et al., “A reconfigurable fabric for accelerating large-
scale datacenter services,” in Computer Architecture (ISCA), 2014
ACM/IEEE 41st International Symposium on. IEEE, 2014.

[4] D. Bouvier, B. Cohen, W. Fry, S. Godey, and M. Mantor, “Kabini:
An AMD accelerated processing unit system on a chip,” Micro,
IEEE, vol. 34, no. 2, pp. 22–33, 2014.

[5] HSA Foundation, “HSA foundation members preview
plans for heterogeneous platforms,” October 2015,
http://www.hsafoundation.com/hsa-foundation-members-
preview-plans-heterogeneous-platforms/.

[6] J. Stuecheli, B. Blaner, C. Johns, and M. Siegel, “CAPI: A coherent
accelerator processor interface,” IBM Journal of Research and Devel-
opment, vol. 59, no. 1, pp. 7–1, 2015.

[7] PCWorld, “Intel’s first processor with performance-
boosting FPGA to ship early next year,” November 2015,
http://www.pcworld.com/article/3006601/components-
processors/intels-first-server-chip-with-performance-boosting-
fpga-to-ship-early-next-year.html.

[8] S. Pai, M. J. Thazhuthaveetil, and R. Govindarajan, “Improving
GPGPU concurrency with elastic kernels,” in Proceedings of the
Eighteenth International Conference on Architectural Support for
Programming Languages and Operating Systems, ser. ASPLOS ’13.
New York, NY, USA: ACM, 2013, pp. 407–418. [Online]. Available:
http://doi.acm.org/10.1145/2451116.2451160

[9] J. Mars and L. Tang, “Whare-map: heterogeneity in homogeneous
warehouse-scale computers,” in Proceedings of the 40th Annual
International Symposium on Computer Architecture. ACM, 2013, pp.
619–630.

[10] J. T. Adriaens, K. Compton, N. S. Kim, and M. J. Schulte, “The case
for GPGPU spatial multitasking,” in IEEE International Symposium
on High-Performance Comp Architecture, Feb 2012, pp. 1–12.

[11] Q. Jiao, M. Lu, H. P. Huynh, and T. Mitra, “Improving GPGPU
energy-efficiency through concurrent kernel execution and DVFS,”
in Proceedings of the 13th Annual IEEE/ACM International Symposium
on Code Generation and Optimization, ser. CGO ’15. Washington,
DC, USA: IEEE Computer Society, 2015, pp. 1–11. [Online].
Available: http://dl.acm.org/citation.cfm?id=2738600.2738602

[12] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H. Lee, and
K. Skadron, “Rodinia: A benchmark suite for heterogeneous com-
puting,” in Proceedings of the International Symposium on Workload
Characterization (IISWC). IEEE, 2009, pp. 44–54.

[13] S. Che, J. W. Sheaffer, M. Boyer, L. G. Szafaryn, L. Wang, and
K. Skadron, “A characterization of the Rodinia benchmark suite
with comparison to contemporary CMP workloads,” in Proceed-
ings of the International Symposium on Workload Characterization
(IISWC). IEEE, 2010, pp. 1–11.

[14] J. A. Stratton, C. Rodrigues, I.-J. Sung, N. Obeid, L.-W. Chang,
N. Anssari, G. D. Liu, and W. Hwu, “Parboil: A revised benchmark
suite for scientific and commercial throughput computing,” Center
for Reliable and High-Performance Computing, 2012.

[15] C. J. Rossbach, J. Currey, M. Silberstein, B. Ray, and E. Witchel,
“PTask: operating system abstractions to manage GPUs as com-
pute devices,” in Proceedings of the Twenty-Third ACM Symposium
on Operating Systems Principles. ACM, 2011, pp. 233–248.

[16] J. Duato, A. J. Pea, F. Silla, R. Mayo, and E. S. Quintana-Ort,
“rCUDA: Reducing the number of GPU-based accelerators in high
performance clusters,” in 2010 International Conference on High
Performance Computing Simulation, June 2010, pp. 224–231.

[17] Y.-P. You, H.-J. Wu, Y.-N. Tsai, and Y.-T. Chao, “VirtCL: a frame-
work for OpenCL device abstraction and management,” in Pro-
ceedings of the 20th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming. ACM, 2015, pp. 161–172.

[18] B. C. Lee and D. M. Brooks, “Accurate and efficient regression
modeling for microarchitectural performance and power predic-
tion,” in ACM SIGPLAN Notices, vol. 41, no. 11. ACM, 2006, pp.
185–194.

[19] E. Ïpek, S. A. McKee, R. Caruana, B. R. de Supinski, and M. Schulz,
Efficiently exploring architectural design spaces via predictive modeling.
ACM, 2006, vol. 40, no. 5.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 0, NO. 0, AUGUST 2016 14

[20] P. Thoman, K. Kofler, H. Studt, J. Thomson, and T. Fahringer,
“Automatic OpenCL device characterization: guiding optimized
kernel design,” in Proceedings of the Euro-Par Parallel Processing
Conference. Springer, 2011, pp. 438–452.

[21] I. Baldini, S. J. Fink, and E. Altman, “Predicting GPU performance
from CPU runs using machine learning,” in 2014 26th International
Symposium on Computer Architecture and High Performance Comput-
ing (SBAC-PAD). IEEE, 2014, pp. 254–261.

[22] J. Kim, S. Seo, J. Lee, J. Nah, G. Jo, and J. Lee, “SnuCL: an OpenCL
framework for heterogeneous CPU/GPU clusters,” in Proceedings
of the 26th ACM International Conference on Supercomputing (ICS).
ACM, 2012, pp. 341–352.

[23] M. D. Linderman, J. D. Collins, H. Wang, and T. H. Meng, “Merge:
A Programming Model for Heterogeneous Multi-core Systems,”
in Proceedings of the 13th international conference on Architectural
support for programming languages and operating systems (ASPLOS
XIII), vol. 36, no. 1. Seattle, WA, USA: ACM, Mar. 2008, pp. 287–
296.

[24] J. Auerbach, D. F. Bacon, I. Burcea, P. Cheng, S. J. Fink, R. Rab-
bah, and S. Shukla, “A compiler and runtime for heterogeneous
computing,” in Proceedings of the 49th Annual Design Automation
Conference. ACM, 2012, pp. 271–276.

[25] C. J. Rossbach, Y. Yu, J. Currey, J.-P. Martin, and D. Fetterly,
“Dandelion: a compiler and runtime for heterogeneous systems,”
in Proceedings of the Twenty-Fourth ACM Symposium on Operating
Systems Principles. ACM, 2013, pp. 49–68.

[26] A. Duran, E. Ayguadé, R. M. Badia, J. Labarta, L. Martinell,
X. Martorell, and J. Planas, “OmpSs: a proposal for programming
heterogeneous multi-core architectures,” Parallel Processing Letters,
vol. 21, no. 02, pp. 173–193, 2011.

[27] S. Panneerselvam and M. M. Swift, “Operating systems should
manage accelerators,” in Proc. of the Second USENIX Workshop on
Hot Topics in Parallelism, Berkeley, CA, 2012.

[28] M. K. Emani, Z. Wang, and M. F. O’Boyle, “Smart, adaptive
mapping of parallelism in the presence of external workload,” in
International Symposium on Code Generation and Optimization (CGO).
IEEE, 2013, pp. 1–10.

[29] T. Harris, M. Maas, and V. J. Marathe, “Callisto: co-scheduling
parallel runtime systems,” in Proceedings of the Ninth European
Conference on Computer Systems. ACM, 2014, p. 24.

[30] D. Shelepov, J. C. Saez Alcaide, S. Jeffery, A. Fedorova, N. Perez,
Z. F. Huang, S. Blagodurov, and V. Kumar, “HASS: a scheduler
for heterogeneous multicore systems,” ACM SIGOPS Operating
Systems Review, vol. 43, no. 2, pp. 66–75, 2009.

[31] C. Augonnet, S. Thibault, R. Namyst, and P.-A. Wacrenier,
“StarPU: a unified platform for task scheduling on heterogeneous
multicore architectures,” Concurrency and Computation: Practice and
Experience, vol. 23, no. 2, pp. 187–198, 2011.

[32] D. Grewe, Z. Wang, and M. F. O’Boyle, “Portable mapping of
data parallel programs to OpenCL for heterogeneous systems,”
in Proceedings of the International Symposium on Code Generation and
Optimization (CGO). IEEE, 2013, pp. 1–10.

[33] Y. Wen, Z. Wang, and M. F. O’Boyle, “Smart multi-task scheduling
for OpenCL programs on CPU/GPU heterogeneous platforms,”
in High Performance Computing (HiPC), 2014 21st International Con-
ference on. IEEE, 2014, pp. 1–10.

[34] K. Kofler, I. Grasso, B. Cosenza, and T. Fahringer, “An automatic
input-sensitive approach for heterogeneous task partitioning,” in
Proceedings of the 27th international ACM conference on International
conference on supercomputing (ICS), 2013, pp. 149–160.

[35] AMD, “Software optimization guide for AMD family
15h processors,” AMD, Tech. Rep., January 2012,
http://developer.amd.com/wordpress/media/2012/03/47414\
15h\ sw\ opt\ guide.pdf.

[36] D. Quinlan, C. Liao, J. Too, R. Matzke, M. Schordan, and P.-
H. Lin, “ROSE compiler infrastructure,” November 2013, http:
//rosecompiler.org/.

[37] R. F. Lyerly, “Automatic scheduling of compute kernels across
heterogeneous architectures,” Master’s thesis, Virginia Polytechnic
Institute and State University, 2014.

[38] S. Lee and R. Eigenmann, “OpenMPC: Extended OpenMP pro-
gramming and tuning for GPUs,” in Proceedings of the 2010
ACM/IEEE International Conference for High Performance Computing,
Networking, Storage and Analysis. IEEE Computer Society, 2010,
pp. 1–11.

[39] C. Dave, H. Bae, S.-J. Min, S. Lee, R. Eigenmann, and S. Mid-

kiff, “Cetus: A source-to-source compiler infrastructure for multi-
cores,” Computer, vol. 42, no. 12, pp. 36–42, 2009.

[40] J. Hilland, P. Culley, J. Pinkerton, and R. Recio, “RDMA protocol
verbs specification,” RDMAC Consortium Draft Specification draft-
hilland-iwarp-verbsv1. 0-RDMAC, 2003.

[41] B. Yegnanarayana, Artificial neural networks. PHI Learning Pvt.
Ltd., 2009.

[42] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning
internal representations by error propagation,” DTIC Document,
Tech. Rep., 1985.

[43] I. Jolliffe, Principal component analysis. Wiley Online Library, 2005.
[44] I. Molnar, “Modular scheduler core and completely fair scheduler

[CFS],” September 2013, http://lwn.net/Articles/230501/.
[45] J. R. Quinlan, “Simplifying decision trees,” International journal of

man-machine studies, vol. 27, no. 3, pp. 221–234, 1987.
[46] C. Margiolas and M. F. P. O’Boyle, “Portable and transparent

software managed scheduling on accelerators for fair resource
sharing,” in Proceedings of the 2016 International Symposium
on Code Generation and Optimization, ser. CGO ’16. New
York, NY, USA: ACM, 2016, pp. 82–93. [Online]. Available:
http://doi.acm.org/10.1145/2854038.2854040

[47] Intel, “Improving real-time performance by utilizing cache
allocation technology,” April 2015, http://www.intel.com/
content/dam/www/public/us/en/documents/white-papers/
cache-allocation-technology-white-paper.pdf.

[48] S. Gupta, “IBM POWER8 CPU and NVIDIA Pas-
cal GPU Speed Ahead with NVLINK,” April 2016,
https://www.ibm.com/blogs/systems/ibm-power8-cpu-and-
nvidia-pascal-gpu-speed-ahead-with-nvlink/.

Robert Lyerly received a BS degree in Com-
puter Science, and BS/MS degrees in Computer
Engineering from Virginia Tech, USA. He is cur-
rently working towards his PhD with the Sys-
tems Software Research Group at Virginia Tech,
led by Professor Binoy Ravindran. His current
research interests include compilers, run-times,
operating systems, and heterogeneous architec-
tures.

Alastair Murray Alastair Murray received BSc
Hons. and PhD degrees in Computer Science
from the University of Edinburgh, Edinburgh,
U.K. in 2006 and 2012 respectively. In 2012 he
started a post-doc with the System Software
Research Group in the ECE Department at Vir-
ginia Tech, Blacksburg, U.S.A. Since 2014 he is
currently a Senior Software Engineer in Compil-
ers at Codeplay Software Ltd, Edinburgh, U.K.
His research interests cover language-design,
language-implementation and compilation tech-

niques for parallel and heterogeneous devices.

Antonio Barbalace received BS/MS degrees
in Computer Engineering, and a PhD in Indus-
trial Engineering from the University of Padova,
Padua, Italy. He is a Research Assistant Pro-
fessor in the ECE Department at Virginia Tech.
His main areas of research are operating sys-
tems, virtualization environments, runtime li-
braries, and compilers for parallel and distributed
computer architectures. He is broadly interested
in performance optimization and energy con-
sumption minimization.

Binoy Ravindran is a Professor of Electrical
and Computer Engineering at Virginia Tech,
where he leads the Systems Software Research
Group, which conducts research on operat-
ing systems, run-times, middleware, compilers,
distributed systems, concurrency, and real-time
systems. Ravindran and his students have pub-
lished more than 230 papers in these spaces.
His group’s papers have won the best paper
award at 2013 ACM ASP-DAC, 2012 USENIX
SYSTOR, and selected as one of The Most In-

fluential Papers of 10 Years of ACM DATE (2008) conferences. Dr.
Ravindran is an ACM Distinguished Scientist.

