PrVM: A Multicore Real-Time Virtualization Scheduling
Framework With Probabilistic Timing Guarantees

Kevin Burns®
ECE, Virginia Tech
kevinpb@vt.edu

Antonio Barbalace¥
ECE, Virginia Tech
antoniob@vt.edu

ABSTRACT

We present PrVM, a framework for scheduling real-time VMs on
multicore hardware. It addresses the intersection of the follow-
ing problems: probabilistic real-time scheduling, VM scheduling,
and full virtualization. Though each of these problems have been
studied, their intersection — motivated by the need to consolidate
multiple real-time software stacks, whose applications can be de-
fined via probabilistic timing properties, onto a single embedded
platform - is empty. PrVM uses a probabilistic model and timeli-
ness optimality criterion. Pr'VM schedules VMs as server-like pro-
cesses, computes time budgets using probabilistic methods, and
aggregates task time budgets into VM time budgets. Experimental
evaluations, using simulations and a concrete implementation, con-
firm the framework’s effectiveness for synthetic benchmarks and
multimedia applications.

1 INTRODUCTION

With the introduction of multicore processors among all computer
markets embedded systems faced a paradigm shift: from single-
purpose platforms to platforms that consolidate multiple embedded
systems, each serving a single purpose. Virtualization technologies
enable the mutual isolation of these different embedded systems
on a single platform. Example scenarios in which this is already
the practice or under research are industrial control systems, big-
physics control and data acquisition systems, vehicle control system,
etc. Consolidating multiple software stacks into a single embedded
platform has multiple advantages, such as cost, programmability,
ease of maintenance, drastically reduced communication latencies
between the consolidated embedded systems, etc. However, for real-
time applications, applications’ time constraints must (continue to)
be satisfied even when multiple embedded systems co-run on the
same platform via virtualization. This requires hypervisor-level
“The author is now with Northrop Grumman.

The author is now with Gandi.
#The author is now with Euler, Huawei German Research Center.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

EWiLi, October 2017, Seoul, South Korea

© 2017 Copyright held by the owner/author(s).

ACM ISBN 123-4567-24-567/08/06...$15.00

https://doi.org/10.475/123_4

Vincent Legout ™
ECE, Virginia Tech
vlegout@vt.edu

Binoy Ravindran
ECE, Virginia Tech
binoy@vt.edu

scheduling policies that ensure temporal isolation of the guest VMs,
especially when each VM cannot be exclusively assigned to a subset
of processor cores but multiple VMs share the same subset.

In this paper, we focus on virtualizing real-time systems whose
time constraints include deadlines and whose timing optimization
criterion is probabilistically specified. A motivating example are
multimedia systems, e.g., video encoding/decoding. Occasionally
failing to satisfy the deadline of an encoding or decoding task
will result in a lost frame. This is acceptable, as long as not “too
many" frames are lost. Similar to [21, 24], such a probabilistic timing
requirement can be described as follows: each task T; must satisfy
at least p; percentage of its deadlines. For example, if p; = 0.96,
then T; must satisfy no less than 96% of its deadlines.

We present PrVM, a framework for scheduling VMs with proba-
bilistic timing assurances. The framework considers a virtualization
model, where a set of guest VMs with periodic real-time tasks are
consolidated on a hypervisor that supports full virtualization. PrVM
uses a hierarchical VM scheduling model where VMs are scheduled
such as independent schedulable entities. Each guest VM encapsu-
lates a guest real-time operating system (OS) and a set of (guest)
application real-time tasks, and is modeled as a server with a fixed
budget and period. PrVM targets modern multicore hardware.

Most of the past efforts on VM scheduling in a real-time setting
(e.g. [22]) focus on the timing objective of deterministically meeting
all deadlines. In contrast, while probabilistic real-time scheduling
has been studied in the past (e.g. [16]), studies mostly focused at
the abstraction of task scheduling in a (real-time) OS setting. To the
best of our knowledge, this is the first scheduling work that lies at
the intersection of three spaces: probabilistic real-time scheduling,
VM scheduling, and full virtualization. Similarly to past works
in the space of probabilistic real-time systems (e.g. [16, 21, 24]),
we consider a probabilistic task model, wherein task execution
time is described using a probability density function. This has
multiple advantages. For example, many real-time applications
(e.g., multimedia) exhibit large variation in their actual execution
time demands. Thus, the statistical estimation of task execution
time demand is more stable and hence more predictable than the
actual execution time.

To obtain the collective probabilistic timing assurance, CPU time
must be allocated for each guest task T;’s execution so that its p; is
satisfied. There is an inherent tradeoff in this time allocation: longer
the time allocation, the “stronger” will be the resulting probabilistic
assurance (i.e., more than p; percentage of deadlines will be met),

https://doi.org/10.475/123_4

EWiLi, October 2017, Seoul, South Korea

the greater the total number of required CPUs will be. Toward
this, we present two probabilistic methods, called CH and DI. DI
is more “optimistic" than CH in the sense that, for a given density
function and p;, DI allocates less CPU time than CH. Once task
time allocations are computed, they are aggregated to determine
the respective VM budgets using the compositional scheduling
theory [19]. To understand PrVM’s effectiveness, we evaluated
the framework through simulations using synthetic benchmarks,
as well as by implementation-based experiments using the x264
production code.

2 RELATED WORK

In [19], Shin and Lee introduced the Compositional Scheduling
Framework (CSF). CSF uses servers which provide a method of
representing an application or VM with its own real-time tasks and
scheduler as a single entity to be scheduled by the host OS. CSF
provides an offline method to compute the budget of a periodic
server given a set of guest tasks, the guest scheduler, and the period
of the server on the host. CSF is useful for hierarchical scheduling
because it is fully composable - i.e., a server can schedule servers
which schedules its own servers, and so on. Moreover, CSF supports
many scheduling policies and it is easy to implement. PrVM extends
the same ideas from Shin and Lee by using a probabilistic approach
to reduce the amount of resources needed.

RT-Xen [22] is the most well-known real-time virtualization solu-
tion exploiting hierarchical scheduling using servers and CSF. Based
on the Xen hypervisor, it schedules servers (i.e., virtual CPUs or
vCPUs) according to a fixed-priority algorithm. The same authors
extended this work with overhead, cache awareness, multiprocessor
support and IO devices ([15, 18, 23]). Several other solutions have
been proposed to support hierarchical scheduling (e.g. [9, 11, 14]).
However, none of these target soft real-time systems (e.g. [13]),
and none of these use a probabilistic approach. Thus, they have
to be pessimistic offline while allocating CPU time for each task
to avoid deadline misses. Therefore, they allocate resources that
may not be used during the execution when tasks terminate their
execution earlier than expected. On the other hand, the more ag-
gressive probabilistic approach used by PrVM allows reducing the
number of resources even further than just the benefits gained from
consolidating multiple physical computers’ software stacks into a
virtualized environment.

Other approaches (e.g. [9]) supporting real-time virtualization
use a microhypervisor or micro-kernel, for example NOVA [20].
However, as in Pr'VM and other previous works (e.g. [11]), using the
well-known Linux kernel makes it easier to thorough evaluate the
proposed approach. Furthermore, Kiszka [12] showed that Linux
using KVM and the PREEMPT_RT patch set has promise as a real-
time hypervisor.

Scheduling real-time systems that tolerate deadline misses using
probabilistic guarantees have already been studied (e.g. [16, 21]).
Such as PrVM, they assume that jobs from the same task can have
different execution times modeled using a random variable. Us-
ing a different model than PrVM, where jobs are aborted when a
deadline is missed, [16] derives tardiness bounds when tasks con-
tinue their execution after a deadline miss. Targeting multimedia
applications, AIRS [10] is using Linux and an extended version of

Kevin Burns, Vincent Legout, Antonio Barbalace, and Binoy Ravindran

SCHED_DEADLINE to improve the QoS. HiRes [17] is another sys-
tem to manage resources and improve the QoS. Contrary to PrVM,
these solutions target multimedia applications and use stochastic
approaches but do not target virtual environments.

3 MODEL

In PrVM, a guest VM is a real-time system that used to run on a
single processor. Each guest VM is thus assigned a single vCPU -
future work will consier the case of multiple vCPUs. Guest VMs run
on top of the hypervisor and do not have privileged access to the
processor. A guest VM has a set of real-time tasks with real-time
constraints and schedules tasks using a real-time scheduler that is
fully decoupled from the host scheduler - i.e., the host scheduler
cannot control the guest scheduler decisions. Guest VMs schedule
tasks using the Earliest Deadline First (EDF) algorithm. Although
the model do not applies to a specific type of virtualization we target
full virtualization, thus guest VMs are oblivious of the virtualization
environment. In contrast to paravirtualization, full virtualization
does not force a user to adopt a specific OS, hence easily extending
the applicability of our approach to any OS.

We consider a real-time periodic task model for each VM; tasks
release jobs periodically, and each job must be finished before its
deadline. All tasks are independent and may be released simultane-
ously. The set of all tasks of a guest VM g is called Iy. Inside each
guest, a task 7; is characterized by a period T; and a deadline D;. We
set the deadline of each task equal to its period. The hyperperiod
of Iy is the Least Common Multiple of T; for all 7; € I;;. PrVM uses
the probabilistic task model defined in [24] and [21] to model the
execution time of the tasks: for each task, the distribution of its
execution times is known. Based on this distribution, a task is thus
additionally characterized by its mean execution time E; and the
variance of its execution time V; (see Section 4 and Section 5).

As in [24] and [21], a job is immediately aborted as soon as it
misses its deadline. Therefore, there is no backlogged demand. A
programming model subsuming this abort model, similar to [21,
24], is assumed. Each task has an associated abort handler, which
contains programmer-defined logic for transitioning the system
to a safe state (e.g., release memory, locks, etc.) in the event of an
abort. When a job misses its deadline, the guest OS raises a time
constraint violation exception; the job is terminated and its abort
handler is executed. Such as [21, 24], we assume that abort handlers
have negligible execution time.

The system has multiple identical and independent CPUs, and
each guest OS is only executed on one CPU. We use partitioned
scheduling, thus migrations are not allowed during the execution.
To assign vCPUs to physical CPUs, we use the Best-Fit algorithm.
EDF is used to schedule VMs on each physical CPU. Virtual CPUs
are assigned to physical CPUs before execution and cannot migrate.
We do not take into account preemption costs or cache overheads.
However, as our evaluations are performed on real hardware, such
latencies are included in the evaluation.

We use a hierarchical model with one host OS and multiple
guest OSes. The host OS manages the guests with a hypervisor
or Virtual Machine Monitor (VMM), which in this paper is part of
the host OS (type-2, hosted virtualization). The host is responsible
for scheduling the guest VMs while each guest VM must schedule

PrVM: A Multicore Real-Time Virtualization Scheduling Framework With Probabilistic Timing (E\WidmntEstober 2017, Seoul, South Korea

r

o @) | @)

Guest 1 Guest 2 Guest 3

k J

) [vCPU 1 J [vCPU 2 J [vCPU 3 } i

Hypervisor

[Physical CPU 1 J [Physical CPU 2 }

Figure 1: PrVM task, processor and server model

P¢ 00 0e

[cH| [cH]| |[cH] [cH]| |[cH] [cH]
¥ X
Budget Budget Budget
Allocation Allocation Allocation
’ Schedule VMs using EDF ‘

x

Figure 2: PrVM framework approach

its own periodic real-time tasks using EDF. Servers are used to
schedule the VMs on the host. As each guest is only scheduled on
one vCPU, each vCPU can be seen as a server, like in RT-Xen [22].
Figure 1 summarizes our model.

4 PRVM FRAMEWORK

The PrVM scheduling framework is offline, thus all steps described
in this Section are performed prior to the system execution. PrVM
includes two steps: it first estimates the execution time to allocate
for each task (Subsection 4.1), then uses CSF to schedule the VMs in
the host (Subsection 4.2). Within the CSF theory, a guest can be seen
as a server whose time budget and period can be computed using
the characteristics of the tasks inside the guest and its scheduling
algorithm. Servers provide temporal isolation between guests VMs,
hence a malfunctioning or malicious guest cannot disturb other
guests. Figure 2 summarizes the approach of PrVM with an example
with 3 VMs where each VM contains 2 tasks.

4.1 Task Scheduling

PrVM targets real-time systems for which ensuring that all dead-
lines are met is not a requirement. PrVM takes advantage of this by
allocating less CPU time than what would be required to guaran-
tee that all deadlines are met. This way, the number of processors

needed to schedule the system is reduced. To account for the per-
centage of deadline hits, we introduce p, with p € [0, 1]. Each task
7; must satisfy at least p; percentage of its deadlines.

We propose two different ways to compute the allocated exe-
cution time of tasks according to the known information about
the tasks. If the complete distribution of a task’s execution times
is not known, we can only rely on the mean and the variance of
the execution times. In this case, we use Chebyshev’s inequality to
compute the allocated execution time for the task. If the distribution
is known, it is used to provide a less-pessimistic allocated execution
time, i.e., closer to the probability p given as input. Such solutions
are called CH and DI, respectively.

For each solution, let ¢; be the execution time of task ;. ¢; is the
CPU time allocated to each job inside each guest VM. A job may
require more than c¢; to terminate.

CH. The probability of each job to terminate its execution before
cj is p. ¢; can be computed using the following equation, which is
based on Chebyshev’s inequality [21] (where E; is the mean of the
execution time distribution and V; its variance):
pxVi W

1-p

This equation guarantees that the execution time of each job from
task 7; will have an execution time no larger than ¢; with a proba-
bility no less than p.

ci=FE; +

DI If the distribution of the execution times is known, using
Chebyshev’s inequality is too pessimistic. The distribution can
instead be used to better estimate the amount of CPU time which
must be reserved for each task. Let e; ; be the execution time of the
jth job of 7, ¢; must be such that:

Vj,prob(ei,j > ci) < p (2)
The main difference between CH and DI is that CH can be used
without knowing the exact distribution of the execution times.
Thus, CH is more conservative than DI. On the other hand, DI can
guarantee a deadline satisfaction ratio closer to p.

We use the same value of p among all tasks, among all guests. Fu-
ture work will address tasks with different values of p. The smaller
the value of p, the higher the chance a job will miss its deadline,
because it will have less execution time reserved. However, it will
reduce the number of resources needed to schedule the system.

4.2 Server Scheduling

PrVM treats each VM as a server with a respective time budget
and period and uses CSF to schedule servers. Let IT be the period
of a server and @ its budget (i.e., its execution time). A server can
execute for at most © on each period. The CSF theory allows us to
compute the budget and period of the servers [19] according to the
characteristics of their tasks. For a fixed period, the budget of the
server must respect this inequality:

Y0 <t < H, dbfgpr(T,t) < sbf(t) (3)
The Demand Bound Function db f [4] of a task set ' depends on the
scheduling algorithm used, here EDF. The Supply Bound Function
sbf computes the minimum possible resource supplies during a

EWiLi, October 2017, Seoul, South Korea

time interval of length ¢. First, let k be such that:

k = max (F_(IIII—_@)LI) 4)
Then, if t € [(k + 1)II — 20, (k + 1)II — ©], we have:
sbf(t) =t - (k+1)(I1 - ©) (5)

Otherwise, we have:
sbf(t) = (k-1)© (6)
Equation (3) can be used to compute the budget and the execution
time of the servers, and for each task we use the execution time
computed with Equation (1) or Equation (2). To use this equation,
the period of the server is first fixed arbitrarily. We discuss which
values must be used for the period in Section 5. The budget and
period of servers are used by the host to schedule VMs. We use par-
titioned scheduling so this is equivalent to uniprocessor scheduling
on each processor, EDF being used to schedule each processor.
The CSF framework guarantees that all the deadlines of the tasks
inside each VM are met. However, our model differs from CSF in
that it has probabilistic execution times and thus the schedulability
analysis does not rely on the WCET of tasks. Each task is allocated
a CPU time of c; to execute. If all jobs terminate before using all
their allocated CPU time, CSF guarantees that no deadline is going
to be missed. However, when the execution time of a job i exceeds
ci, a deadline miss can occur. The percentage of deadline misses
will not be above 1 — p. The CH solution being more pessimistic,
the number of deadline misses will be even lower while for the DI
solution, the number of deadline misses is theoretically equal to
1 — p because it uses the exact distribution of the execution times.

4.3 Example

This subsection illustrates how budgets are assigned to VMs using
Madplay, an MP3 decoder. Madplay was patched such that decoding
a frame is a real-time job, playing a song is a real-time task. Figure 3
shows the impact of the distribution of the execution times and
the probability on the actual execution time reserved for the task
during the execution. The two figures represent the probability
density function of the execution times for the CH and DI solutions.
A vertical line represents the amount of CPU time reserved for
different probability p (30%, 50% and 70%) according to Equation 1.
For example, for p = 50%, CH reserves 65us for the task to execute
according to Eq. 1. This figure illustrates the fact that DI is more
aggressive because it allocates less CPU time for the task to execute
compared to CH for the same percentage p. We can also see that
the values of p are the same as the values which can be found on
the y axis.

Figure 4 represents the required CPU time vs. the theoretical
Deadline Satisfaction Ratio (DSR) for our two solutions, CH and
DI, according to the probability p. The first is more conservative
and thus the number of deadline misses is lower, but requires more
CPU time especially when p is close to 100. On the other hand,
the relation between p and the DSR is linear when using DI. Thus,
DI allows more control over the number of deadline misses and
requires less CPUs than CH.

4.4 Complexity

The complexity of PrVM can be divided into offline and online
complexities. Online, during the execution, the complexity of PrVM

Kevin Burns, Vincent Legout, Antonio Barbalace, and Binoy Ravindran

B | = ‘
£ 02 4 F o2 ; |
=1 =1
L %)
= a=}
2 2
= 0.1} <+ = 0.1 " -
= 2
=) ~
2 S
=¥} | =% | |
0 ‘ 0
40 60 80 30 35 40 45 50
Exec. time (us) Exec. time (us)
(a) CH (b) DI

—o—p =30%—=—p =50% p=170%

Figure 3: Distribution of the execution times for Madplay

2 I
3
< o 100 i~
v
£ a
=
2 £ 50|
@) &
= 8
g =
) | £
g 0 L
0 20 40
Probablity p Probablity p
(2) (b)

Figure 4: (a) Required CPU time and (b) Theoretical Deadline
Satisfaction Ratio (DSR) w.r.t. p

on each CPU is the same as EDF. Offline, before execution, the
allocated CPU time of tasks and the budget of servers must be
computed. The former has a complexity of O(1). However, the
complexity of the algorithm for computing the budget of the servers
is higher. Equation (3) must be met for ¢ in]0, LCMr], and so the
complexity thus depends on the hyperperiod of the task set. And
for each t, verifying the equation requires computing the db f and
the sbf. The complexity of dbf is O(n) where n is the number
of tasks in the task set while the complexity of sbf is O(1). This
computation must be done while the budget is not large enough to
guarantee the schedulability of the server. However, as PrVM is an
offline scheduling framework, the offline complexity does not hurt
the performance of the system.

5 EVALUATION

In this section the PrVM algorithm is firstly compared through sim-
ulations to partitioned-EDF and CSF to answer the questions of how
many deadline will be missed, and how many physical processors
can be spared. Secondly, a PrVM implementation is benchmarked
on hardware using synthetic and production applications to demon-
strate that PrVM actually works. We compare the performance
of the PrVM implementation against a non real-time solution to
demonstrate the need for a real-time approach. Then, we compare
the PrVM implementation against the same solution but without
probabilistic execution times.

PrVM: A Multicore Real-Time Virtualization Scheduling Framework With Probabilistic Timing (E\WidmntEstober 2017, Seoul, South Korea

i i}

£ i

T =

U Q)

< <

S Y

[=} o

IS I3

0
1 2 3

Global utilization Global utilization
(a) CH (b) DI

—e— P-EDF —m— CSF —e— K-50 —— K-80

Figure 5: Percentage of deadline misses for CH and DI

5.1 Implementation and Experimental Setup

PrVM extends KairosVM [5], hence we used KVM/QEMU as the
virtualization environment. The current implementation targets
the x86 64-bit architecture but PrVM can be easily ported to any
other architecture supported by KVM. Due to the choice of KVM
we do not compare PrVM to RT-Xen. This is because the evaluation
would not just focus on the differences between the scheduling
approaches but also on the implementation differences in Xen and
KVM.

Each guest VM runs a minimal Ubuntu Server 10.04 with the
Linux kernel 3.0.24, patched with ChronOS 3.0. The choice of the
guest OS is however not critical and other real-time OSes could have
also been chosen. ChronOS Linux [7] is an academic project that
implements a pluggable scheduling framework within the Linux
scheduler.

ChronOS implements the abort model described in Section 3.
In order to force a worst case execution scenario the following
experiments were run without exploiting the abort model. How-
ever, for the applications used (sched_test_app, x264, and Madplay),
potential adverse effects of no-aborts, if any, did not manifest in the
experimental results. As a matter of fact, this no-abort experimental
setting is actually adversarial to our technique. Thus, with aborts,
deadline satisfactions will only improve as the saved cycles will be
used for tasks in-flight. We plan to explore this space with more
applications in future work.

Linux 3.16 is used as the host OS. Guests are scheduled using
SCHED_DEADLINE [8], a Linux scheduling policy implementing
the Constant Bandwidth

Linux 3.16 is used as the host OS. The host OS is scheduling
Guests using SCHED_DEADLINE [8], a Linux scheduling policy
implementing the Constant Bandwidth Server (CBS [2]) to provide
bandwidth isolation among tasks (guests). cpuset is used to pin
tasks (guests) to processors. The host is running Ubuntu Server
10.04 paired with QEMU version 1.6.0. The implementation was
deployed on an Intel Xeon E5520 processor with 4 CPUs at 2.27GHz,
and 16GB of RAM. We dedicated 2GB of RAM to each guest.

The implementation of PrVM is available online [1].

- - 20 [~
£ 4l £
2 P BN Z 10
] O
bl ¢ | Sk
0 20 40 60 80 100 0 20 40 60 80 100
Probability p Probability p
(a) 6 VMs (b) 24 VMs
—— 20% —0— 40% 60% —a— 80%

Figure 6: Number of CPUs required according to p for vari-
ous expected execution times (CH)

5.2 Simulation

A first simulation evaluates the percentage of deadline misses of
PrVM, CSF, and Best-Fit partitioned-EDF. We use 2 different proba-
bilities for this experiment: 50% (K-50) and 80% (K-80). A simulator
was developed to generate random task sets and schedule them for
2 hyperperiods. 5 VMs are scheduled on 2 CPUs. Each VM contains
between 1 and 10 real-time tasks and the overall number of real-
time tasks in all the VMs is 15. For each task set, the utilization
of each task is computed randomly between 0.01 and 0.99 with a
uniform distribution [6]. Execution times are randomly generated
using the normal distribution with a mean execution time set to half
the WCET of the task. The period of each task is chosen randomly
with a uniform distribution. The overall global utilization, i.e., the
sum of all the utilizations of the VMs, varies between 1 and 3.5.

Figure 5 shows the percentage of deadline misses for all the differ-
ent scheduling algorithms and for the CH and DI. While partitioned-
EDF always stays close to zero deadline misses, this number quickly
increases for our solutions when the global utilization is more than
2, especially when p is high. Indeed, as expected, a lower value of p
leads to more deadline misses. For DI, as expected, the number of
deadline misses increases faster than with CH. Indeed, this second
solution is more aggressive and compared to CH allocates less CPU
time to tasks for the same probability p. The percentage of deadline
misses for DI is even larger for p = 50 than for p = 80 because
deadline misses appear for a global utilization of 1.

5.3 Number of Processors

A second simulation presents a static analysis of the scalability
and effectiveness of PrVM by showing the number of processors
required to schedule all the VMs according to the probability p.
This simulation was done using the sched_test_app synthetic bench-
mark [7]. We generated a set of synthetic tasks for our probabilistic
model based on [3]. We chose a uniform distribution because we
believe it is representative of many real-world scenarios. We gener-
ated 100 task sets for each probability on the x axis and took the
average number of CPUs needed to schedule the task sets such that
each VM can execute for the execution time computed by CSF.
Figure 6 shows the number of CPUs required varying the prob-
ability. Each line represents a different expected value for the ex-
ecution time, with regard to the WCET. The variance is set to

EWiLi, October 2017, Seoul, South Korea

(% X WCET)?. The number of CPUs increases when the probability
increases. Moreover, more CPUs are needed when the expected
execution time of tasks increases. This is expected because a larger
execution time is reserved for each task. We can thus conclude
from these plots that PrVM is able to scale as the number of VMs
increases. For the test with 24 VMs, 13 CPUs are on average re-
quired to schedule the task sets when using the WCET instead
of the probabilistic model. Thus, PrVM requires between 10% and
50% less CPUs when p is less than 90% and the expected execution
time is 20% and 40% of the WCET. Compared to actual worst-case
execution time, our probabilistic model yields even larger gains in
terms of the number of CPUs used.

5.4 Deadline Misses

Two different kinds of benchmarks are used in this subsection.
First, the sched_test_app synthetic benchmark is used to generate
random task sets. While generating random task sets, we set their
global utilization between 20% and 30% so that the 6 VMs cannot
be scheduled on one CPU only. To compute the budget for each
VM using CSF, we set the period to 100us. 2 physical CPUs and 6
VMs are used for all the evaluations, unless stated otherwise. Then,
we used two production applications: x264 (video streams encoder),
and Madplay (audio decoder).

We first evaluated the execution times of these applications. The
distribution of the execution times of Madplay follows a normal
distribution while this is not true for x264. However, the larger
the standard deviation of the application, the more pessimistic the
allocation of the execution times will be with CH. We set a different
period for each application according to its mean execution time.

Secondly, we experiment with the default scheduling policy of
Linux, the Completely Fair Scheduler (CFS), which does not aim
to have good real-time performance. 6 VMs running the x264 ap-
plication were scheduled on 2 CPUs, and CFS was responsible for
assigning these VMs to the CPUs and for scheduling them. Results
showed that the average percentage of deadline misses amongst all
the real-time tasks in the VMs was 16%. A real-time policy is thus
needed for acceptable performance.

Using sched_test_app, we first scheduled random real-time tasks
inside different VMs. Execution times are generated using the nor-
mal distribution. The standard deviation is set to é of the WCET
and the expected value is set to: 0.3 X WCET, 0.5 X WCET and

100 S 100

® 9| 1B gl |
e >
2 ol | &
- S 98| B
g g
= 97 -1 = 97| |

I B B I B B

20 40 60 80 100 20 40 60 80 100

Probability p (%) Probability p (%)

(a) 4 VMs (b) 6 VMs
’ —4— 40% —8— 60% —m— 80%
Figure 7: DSR vs expected execution time with

sched_test_app (CH)

Kevin Burns, Vincent Legout, Antonio Barbalace, and Binoy Ravindran

0.7 X WCET. Figure 7 represents the mean DSR of all VMs when
the probability given to Chebyshev’s inequality increases, and for
task sets with three different mean execution times compared to
their WCET. On the figure on the left, 4 VMs are scheduled on 2
CPUs while on the right, 6 VMs are scheduled, still on 2 CPUs. For
Figure 7, the higher the better because a higher DSR means less
deadline misses. As expected, the DSR is reduced when the mean
execution time is larger. We also see that the DSR is always higher
than the probability in the x axis, due to the use of Chebyshev’s
inequality which guarantees a DSR given the probability. For the
CH solution, the DSRs in Figure 7 are significantly larger than the
associated probabilities in the x axis, especially for the lowest prob-
abilities. This is due to Chebyshev’s inequality, which needs to be
conservative because it only knows the expected execution time
and the standard deviation of the execution times and nothing else
about the distribution. The same experiments were also performed
using x264 with similar results. Overall, PrVM provides provable
probabilistic guarantees regarding the number of deadline misses.
The evaluation shows that, as expected, it never goes lower than p
and requires less resources than traditional solutions. In compari-
son, solutions using the WCET require a much higher number of
CPUs while only increasing the DSR by a few percentage.

6 CONCLUSION

Inspired by the practice of consolidating multiple real-time soft-
ware stacks (guests VMs) on a single multicore embedded platform
this paper introduced PrVM, a hierarchical real-time scheduling
framework for virtualized environments which reduces the number
of physical processor cores required — or increases the number of
guest VMs that can be consolidated on a set of processor cores.
PrVM adopts two different probabilistic approaches to reduce the
CPU time allocated to each task according to the amount of in-
formation known about the task sets. We show that even with
partial information probabilistic time guarantees can be met. Eval-
uations show that PrVM allows a greater number of VMs to run
on a single embedded platform than KVM/Linux while providing
VM'’s applications temporal guarantees. PrVM always meets proba-
bilistic guarantees on the number of deadline misses for each VM,
which we demonstrated to be important for certain classes of appli-
cations, such as multimedia, and cannot be guaranteed just with
SCHED_DEADLINE.

ACKNOWLEDGMENTS

This work is supported in part by US NSWCDD under grant N00178-
13-D-1031/0005 and US NAVSEA/NEEC under grant 3003279297.

REFERENCES

[1] 2017. KairosVM. http://www.ssrg.ece.vt.edu/kairos. (2017).

[2] Luca Abeni and Giorgio Buttazzo. 2004. Resource Reservation in Dynamic Real-
Time Systems. Real-Time Systems 27, 2 (2004).

[3] Theodore P. Baker. 2005. Comparison of empirical success rates of global vs.

partitioned fixed-priority and edf scheduling for hard real time. Technical Report.

Sanjoy K. Baruah et al. 1990. Algorithms and Complexity Concerning the Pre-

emptive Scheduling of Periodic, Real-time Tasks on One Processor. Real-Time

Syst. 2, 4 (Oct. 1990).

[5] Kevin Burns, Antonio Barbalace, Vincent Legout, and Binoy Ravindran. 2014.
KairosVM: Deterministic Introspection for Real-time Virtual Machine Hierarchi-
cal Scheduling (VtRES 2014).

[4

PrVM: A Multicore Real-Time Virtualization Scheduling Framework With Probabilistic Timing (E\WidmntEstober 2017, Seoul, South Korea

[6] R Davis et al. 2011. Improved priority assignment for global fixed priority
pre-emptive scheduling in multiprocessor real-time systems. Real-Time Syst. 47,
1 (Jan. 2011).

[7] Matthew Dellinger et al. 2011. ChronOS Linux: A Best-effort Real-time Multipro-
cessor Linux Kernel (DAC 2011).

[8] Dario Faggioli et al. 2009. An EDF scheduling class for the Linux kernel (RTLW
2009).

[9] Stefan Groesbrink et al. 2014. Towards Certifiable Adaptive Reservations for
Hypervisor-based Virtualization (RTAS 2014).

[10] Shinpei Kato, Ragunathan Rajkumar, and Yutaka Ishikawa. 2010. AIRS: Support-
ing Interactive Real-Time Applications on Multicore Platforms (ECRTS 2010).

[11] N.M. Khalilzad, M. Behnam, and T. Nolte. 2013. Multi-level adaptive hierarchical
scheduling framework for composing real-time systems (RTCSA 2013).

[12] Jan Kiszka. 2011. Towards Linux as a Real-Time Hypervisor (RTLW 2011).

[13] YoungWoong Ko et al. 2012. Soft Realtime Xen Virtual Machine Scheduling Using
Compositional Model.

[14] H. Leontyev and J.H. Anderson. 2008. A Hierarchical Multiprocessor Bandwidth
Reservation Scheme with Timing Guarantees (ECRTS 2008).

[15] Xu Meng et al. 2013. Cache-Aware Compositional Analysis of Real-Time Multi-
core Virtualization Platforms (RTSS 2013).

[16] A.F. Mills and J.H. Anderson. 2011. A Multiprocessor Server-Based Scheduler for

Soft Real-Time Tasks with Stochastic Execution Demand (RTCSA 2011).

Gabriel Parmer and Richard West. 2010. HiRes: A System for Predictable Hierar-

chical Resource Management (ECRTS 2010).

[18] LT.X. Phan et al. 2013. Overhead-aware compositional analysis of real-time
systems (RTAS 2013).

[19] Insik Shin and Insup Lee. 2008. Compositional Real-time Scheduling Framework
with Periodic Model. ACM Trans. Embed. Comput. Syst. 7, 3, Article 30 (May
2008).

[20] Udo Steinberg and Bernhard Kauer. 2010. NOVA: A Microhypervisor-based

Secure Virtualization Architecture (EuroSys 2010).

H. Wu, B. Ravindran, E.D. Jensen, and Peng Li. 2004. CPU scheduling for

statistically-assured real-time performance and improved energy efficiency

(CODES + ISSS 2004).

[22] SisuXi, Justin Wilson, Chenyang Lu, and Christopher Gill. 2011. RT-Xen: Towards

Real-time Hypervisor Scheduling in Xen (EMSOFT 2011).

Sisu Xi et al. 2014. Real-time Multi-core Virtual Machine Scheduling in Xen. In

EMSOFT 2014.

Wanghong Yuan et al. 2003. Energy-efficient Soft Real-time CPU Scheduling for

Mobile Multimedia Systems (SOSP 2003).

[17

[21

[23

[24

	Abstract
	1 Introduction
	2 Related Work
	3 Model
	4 PrVM framework
	4.1 Task Scheduling
	4.2 Server Scheduling
	4.3 Example
	4.4 Complexity

	5 Evaluation
	5.1 Implementation and Experimental Setup
	5.2 Simulation
	5.3 Number of Processors
	5.4 Deadline Misses

	6 Conclusion
	Acknowledgments
	References

