
A Distributed Operating System Network Stack and Device Driver for Multicores

Saif Ansary†, Antonio Barbalaceφ, Ho-Ren Chuang, Thomas Lazor, Binoy Ravindran
ECE, Virginia Tech

{bmsaif, antoniob, horenc, tlazor, binoy}@vt.edu

Abstract—With the advances in network speeds a single
processor cannot cope anymore with the growing number of
data streams from a single network card. Multicore processors
come at a rescue but traditional SMP OSes, which integrate
the software network stack, scale only to a certain extent,
limiting an application’s ability to serve more connections
while increasing the number of cores. On the other hand,
kernel bypass solutions seem to scale better, but limit resource
flexibility and control. We propose attacking these problems
with a distributed OS design, using multiple network stacks
(one per kernel) and relying on multi-queue hardware and
hardware flow steering. This creates a single-socket abstraction
among kernels while minimizing inter-core communication. We
introduce our design, consisting of a distributed network stack,
a distributed device driver, and a load-balancing algorithm.
We compare our prototype, NetPopcorn, with Linux, Affinity
Accept, FastSocket. NetPopcorn accepts between 5 to 8 times
more connections and reduces the tail latency compared to
these competitors. We also compare NetPopcorn with mTCP
and observe that for high core counts, mTCP accepts only 18%
more connections yet with higher tail latency than NetPopcorn.

I. INTRODUCTION

Commodity and data center network connectivity is be-
coming increasingly fast. Ethernet is by far the most com-
mon network technology, and network interface card (NIC)
manufacturers are already shipping 200-GbE adapter cards.
A single CPU core cannot handle the high bandwidth traffic
generated by such NICs, but multicore processors do.

Even if CPU frequency is stagnating for physical rea-
sons, the number of cores per machine is increasing. On
a multicore CPU, a parallel software network stack allows
for efficient handling of Ethernet traffic. Together, these two
trends necessitate a rethinking of the design of current SMP
operating systems (OSes), their network stacks, and drivers.

Linux Network Stack Scalability. The software network
stack implemented in traditional SMP OSes, such as Linux,
does not scale well as the number of available cores in
the platform increases. This is notably true for short lived
connections [1] that depend on the setup of shared control
structures in the OS. Experiments using Linux 3.2.14 and
10GbE show that the Apache webserver hardly handles more
connections when the number of CPU cores goes beyond 8,
even if the network bandwidth and the CPU are not fully
used. Figure 1 compares the case of vanilla Linux (Linux),
Linux with dynamic interrupt re-routing (irqbalance), and

† The author is now with Cisco Systems Inc.
φ The author is now with Euler, Huawei German Research Center.

Linux with software receive flow steering [2] (flowsteering).
Each of these solutions shows minimal improvements.

The problem is not new, and it has been attributed to
the semantics and the implementation (based on the shared
memory paradigm) of the TCP/IP stack [1], [3], [4]. This is
important because it affects an entire class of applications
that provide Internet services on a single IP address and port,
including webservers and key/value stores.

Complex Inter-Subsystems Interactions. Traditional
OSes are monoliths where subsystems create a net of
complex interactions. In Linux, for example, the network
stack mainly interacts with the device and filesystem layers.
Hence, the scalability problem is not fully imputable to the
network stack itself. This is captured by Figures 2 and 3.
The first breaks down the execution of all Apache processes
in a system when varying the number of connections. Up to
65% of the execution time is spent in the kernel spinning
on various locks. Figure 3 breaks down the cost associated
with “accept (krn)” (Figure 2) and shows the main sources
of overhead to be the network and the filesystem subsystems.

Unfortunately, in mature monolithic kernels such as
Linux, reimplementing locking for a single kernel subsystem
will not guarantee scalability of the subsystem itself [1].
Thus, this work is based on Popcorn Linux [5], which
already implements different scalable OS services.

Effective Resource Sharing. For latency-critical network
applications, the common practice today is to keep the
kernel in the control-path while removing it from the data-
path (known as “kernel bypass”). This avoids the possible
non-scalability and higher latencies introduced by multiple
software layers. Although this solution is shown to work
well (see Figure 4), removing the kernel from the data path
(i.e., placing the network stack in user-space) prevents any
application other than the one associated with a network
flow from accessing data. This limits hardware resource
shareability, monitoring, network filtering, etc. Additionally,
user-space solutions embody lightweight network stacks,
such as lwip [6], which are feature-poor when compared
to feature-rich UNIX-like kernel network stacks.

In short, there exists a large scalability gap between user-
space and kernel-space network stacks. It follows then that
there is an immediate need for a software network stack
that provides OS-grade resource control, low-latency, and
scalability – what this work seeks to provide.

NetPopcorn. We present NetPopcorn, a new network



stack and device driver based on the Popcorn replicated-
kernel OS [5]. NetPopcorn focuses on the scalability of
short-lived connections management. Specifically, NetPop-
corn enables POSIX network applications to fully exploit
increasingly higher bandwidths while maintaining low laten-
cies, thus removing the scaling and high-latencies limitations
imposed by current state-of-the-art OS designs. It also
does so while avoiding the less-flexible hardware resource
allocation enforced by kernel bypass designs. NetPopcorn
demonstrates that constructing the OS with distributed sys-
tem principles enables network serving applications to serve
up to 8 times more connections than Linux and up to 5 times
more connections than previous work [3], while additionally
providing better tail latency and being no more than 18%
slower than user-space network stacks.

II. DESIGN

NetPopcorn targets modern multicore computers with
multi-queue network cards. In order to scale the number
of connections that the OS can simultaneously handle,
NetPopcorn implements the following design principles:
(1) reduce the usage of shared memory among cores (or
group of cores); (2) minimize the communication among
cores (or group of cores); (3) exploit hardware to re-
duce synchronization when needed; (4) support existing
UNIX/Linux applications. NetPopcorn is implemented atop
Popcorn Linux [5] to exploit the scalable replicated-kernel
OS design – specifically, the distributed filesystem service.
It also introduces the Snap Bean device driver model, which
shares a single (multi-queue) device among different kernel
instances and applies the work-sharing [7] design principle
to hardware-defined entities (flow groups) to load balance
network packet processing among kernels.

Snap Bean Device Driver. A replicated-kernel OS assigns
each device to (and allows access by) a single kernel instance
at a time, which in turn proxies device access to all other
kernels (Figure 6). In [5] the authors show that proxying is
efficient; however, the messaging needed to forward network
packets through software to each of the other kernels can
overload the proxy kernel, which becomes a bottleneck.

The Snap Bean device driver exploits the hardware packet
filtering capabilities available in multi-queue NICS to re-
move software messaging overhead. It also extends the
usual driver interface to expose the multiple queues and
their configuration to the upper software layers. Common
practice in SMP OS device drivers is to equally distribute
queues between CPUs in a system. Snap Bean recreates a
similar assignment in a replicated-kernel OS. It attaches to
a NIC device driver and allows multiple kernel instances in
a replicated-kernel OS to share the hardware queue pairs
(Figure 7). As opposed to the proxy driver (Figure 6), each
kernel receives packets from the hardware (black arrow). In
Figure 7, the orange dotted lines show that a different kernel
memory maps and manages each queue pair.

Opportunistic Load Balancer. We observed that work-
sharing algorithms [7] introduced in de-centralized schedul-
ing can be applied in the context of multi-queue NICs.
Unlike a scheduling queue, a receive queue is not filled in
by the software but by the hardware. While in de-centralized
scheduling a single task moves between queues, here a group
of connections that hash to the same filter value (flow group)
should be reassigned in total between hardware queues.

We designed a load balancer that redistributes flow groups
to queues when there is an imbalance between queues’
load. Although a uniform partition of flow groups to queues
works well when the incoming packets are homogeneously
distributed among flow groups, a non-homogeneous distribu-
tion, creates performance degradation of user-space network
services. As queues are statically partitioned to kernels, this
implies that certain kernels will be overloaded while others
will sit idle. Instead, the load balancer dynamically reassigns
flow groups to queues (kernels) to keep the expected QoS.

In a multiple-kernel OS, each kernel possesses a separate
network stack; this makes moving a flow group challenging
because it can be composed of multiple active connections.
In fact, migrating active connections in a replicated-kernel
OS is very expensive: part of the kernel state, including
the network stack, should migrate. Moreover, with live
connections, the software (via the messaging layer) may
need to move different packets until the hardware changes
the destination queue of packets. To avoid this problem we
introduce a heuristic that avoids messaging: we move a flow
group between kernels only when there are no established
connections through it. Within a single OS, POSIX dictates
that a single ip/port server calling accept() ”extracts the
first connection request on the queue of pending connec-
tions“ – our load balancer guarantees this.

III. IMPLEMENTATION

We implement NetPopcorn on top of Popcorn Linux
(Linux 3.2.14) on x86 multicore hardware and Intel’s
82599EN multi-queue NIC. The prototype targets TCP/IP,
although we implement minimal support for other protocols.

The Snap Bean device driver is implemented as a Linux
kernel module that register itself as a network device driver.
Snap Bean is loaded with the information of which network
device driver it should attach to (in this case ixgbe) on the
kernel that initializes the 82599EN.

IV. EVALUATION

Hardware. The experiments are conducted on a setup
with 3 clients and 1 server interconnected by a dedicated
10Gb/s CISCO Nexus 5010 Ethernet switch, ensuring no
external traffic to interfere with the experiments. Each client
machine has a 4-GHz AMD FX 8350 8-core processor and
12 GB of RAM. The server machine has a dual socket
Intel Xeon E5-2695v2 12-core processor (hyperthreading
disabled) with 96 GB of RAM. We tested that 3 clients
generate enough traffic to push the server to its limits.



 10

 20

 30

 40

2 4 8 16 32 48

k
ilo

 c
o
n
n
e
c
ti
o
n
s
 p

e
r 

s
e
c
o
n
d

cores

Linux
irq

flow


Figure 1. Apache webserver running on
Linux with various network optimizations.
Number of connections varying the number
of CPU cores.

 0

 0.2

 0.4

 0.6

 0.8

 1

10000 40000

lo
c
k
s
 b

re
a
k
d
o
w

n
 (

%
 e

x
c
u
ti
o
n
)

client connections

accept4
tcp_v4_rcv_1

fput
tcp_v4_rcv_2

Figure 2. Apache pro-
cesses locks breakdown in
a system.

 0

 0.2

 0.4

 0.6

 0.8

 1

10000 40000

a
p
p
lic

a
ti
o
n
 b

re
a
k
d
o
w

n
 (

%
 e

x
c
u
ti
o
n
)

client connections

accept (krn)
lock (krn)

usr

Figure 3. Apache’s
“accept4()” locks break-
down.

 0

 100

 200

 300

2 4 8 12 16 20 24

k
ilo

 c
o
n
n
e
c
ti
o
n
s
 p

e
r 

s
e
c
o
n
d

cores

Linux
DPDK
mTCP

Figure 4. Lighttpd webserver running
on Linux, DPDK, and mTCP. Number of
connections varying the number of CPU
cores.

CPU 0 CPU 1 CPU 2

Linux Linux Linux

Multi Processor

Main Memory

Dev A Dev B Dev C Dev D Dev E

CPU 3 CPU 4

Figure 5. Popcorn static hardware partitioning.

CPU 0 CPU 1 CPU 2

Linux Linux Linux

Multi Processor

CPU 3 CPU 4

Dev DDevD 

Driver

Popcorn Communication Layer

Figure 6. Proxy networking.

CPU 0 CPU 1 CPU 2

Linux Linux Linux

Multi Processor

CPU 3 CPU 4

Dev D

DevD 

Driver

Snap Bean 
Driver

Snap Bean 
Driver

Snap Bean 
Driver

Popcorn Communication Layer

Figure 7. Snap Bean networking.

Software. We compare NetPopcorn with vanilla Linux,
Linux Affinity Accept (affinity), mTCP [8] , FastSockets [1],
and Popcorn Linux (proxy driver). However, we do not re-
port Popcorn Linux’s numbers as despite the 2-core setup (as
in [5]), all results are worst than vanilla Linux. Vanilla Linux
is version 3.2.14; Affinity Accept is based on Linux 2.6.24.
NetPopcorn is built on top of Popcorn Linux for multicore
platforms [5], [9], adding about 2k LoC to Popcorn.

We extensively compare NetPopcorn and competitors
using two different web-serving applications: Apache and
lighttpd. Apache starts multiple processes awaiting incoming
connections on the same socket using accept() syscall.
Lighttpd starts multiple processes as well, but each uses the
epoll() syscall on the same listening socket. accept()
sits at a lower layer in the system software than epoll().
We launched 10 webserver processes per core.

We evaluate Apache and Lighttpd with Apachebench. A
webserver is started on the server machine first; then the
client machines coordinate, and each starts 10 instances
of Apachebench in parallel. Each Apachebench instance is
configured with concurrency level set to 1000, connections
to 100000, and fetches a static file of 4 B (similar to [4]).
Such a small file is used to stress the OS and study its
scalability in terms of handled connections.

Connection Scalability. Figures 8, 9, and 10 respectively
report Apache’s average number of requests per second,
number of failed connections per run, and time per re-
quest. Figures 11, 12, and 13 report the same values but
for Lighttpd. Lighttpd evaluation includes FastSocket and
mTCP. These numbers are collected after a warm-up phase.

Comparing Apache’s and Lighttpd’s graphs, the main take
away is that NetPopcorn always serves more requests per

second than Linux and Affinity Accept. Affinity Accept
outperforms Linux (up to 30% more connections), but the
difference between them is larger on epoll() than on
accept(). The Linux network stack behaves better when
the event poll layer handles concurrency; with epoll(),
Linux can handle up to 90k connections per second on
8 CPUs. However, adding more CPUs does not give any
additional benefit – in fact, the number of connections drops
for Lighttpd while plateauing for Apache. Affinity Accept is
affected by the same stagnating effect.

mTCP accepts many more connections than any other
solution. However, while this difference may be relevant for
a low number of cores, the number is no more than 18%
greater than that of NetPopcorn (for 16, 20, and 24 cores).
FastSocket handles a similar number of connections for low
core counts but counter-scales after 12 (in NUMA node).
Both mTCP and FastSocket response times do not scale with
the number of cores (versus NetPopcorn).

NetPopcorn drastically reduces the number of failed con-
nections from 8 CPUs onward. With Lighttpd the number of
failed connections drops down on the order of the tens, while
with Apache on the order of the hundreds. Linux, Affinity
Accept, and FastSocket have 2-3 orders of magnitude more
failed connections than NetPopcorn and mTCP.

The average total time per request from the client side
(Apachebench) includes any software and network over-
heads (and thus the actual value is less important than
the trend itself). NetPopcorn is the quickest at any core
count showing that a replicated-kernel OS already provides
benefits at low core counts. On 2 CPUs, NetPopcorn is up to
23% faster than Linux and 16% faster than Affinity Accept
for Apache and Lighttpd, respectively.



 1000

 10000

 100000

 1e+06

2 4 8 12 16 20 24

re
q

u
e

s
ts

 p
e

r 
s
e

c
o

n
d

cores

NetPopcorn
Affinity


Linux

Figure 8. Apache webserver, number of
requests per second.

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

2 4 8 12 16 20 24

fa
il
e

d
 c

o
n

n
e

c
ti
o

n
s

cores

363,718

Figure 9. Apache webserver, number of failed
connections.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

2 4 8 12 16 20 24

ti
m

e
 p

e
r 

re
q

u
e

s
t 

(m
s
)

cores

Figure 10. Apache webserver, average request
time.

 10000

 100000

 1e+06

2 4 8 12 16 20 24

re
q

u
e

s
ts

 p
e

r 
s
e

c
o

n
d

cores

NetPopcorn
Affinity

Linux

FastSocket
mTCP

Figure 11. Lighttpd webserver, number of
requests per second.

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

2 4 8 12 16 20 24

fa
il
e

d
 c

o
n

n
e

c
ti
o

n
s

cores

Figure 12. Lighttpd webserver, number of
failed connections.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

2 4 8 12 16 20 24

ti
m

e
 p

e
r 

re
q

u
e

s
t 

(m
s
)

cores

Figure 13. Lighttpd webserver, average re-
quest time.

Load Balancer Overhead. To highlight the benefits and
overheads of having an active load balancer we re-run
the Lighttpd experiments without the load balancer. The
comparison between the results with and without the load
balancer shows its benefits especially when the number of
cores is 8. The number of connection serviced increases
by 32k and the number of failed connections drops by
11k (although the time to handle a request increases). For
higher number of CPUs, the load balancer improves the
performance of the applications without any negative effect.

V. CONCLUSIONS

We introduce NetPopcorn, a distributed OS network stack
and device driver based on a replicated-kernel OS. NetPop-
corn exploits hardware features to reduce kernel-to-kernel
communication and handles more network connections as
the number of cores increases without increasing latency.

NetPopcorn shows that an OS fully developed with a
distributed programming model can handle up to 5 times
more connections, with 2 orders of magnitude fewer failed
connections than Affinity Accept, Fast Socket, and Linux,
which are all based on the shared memory programming
model, and within only 18% of mTCP’s maximum. We
show the effectiveness of NetPopcorn’s load balancer that
emulates POSIX semantics. In an imbalanced scenario,
NetPopcorn’s tail latency is up to one order of magnitude
lower than in Affinity Accept, Fast Socket and mTCP.

NetPopcorn is available at popcornlinux.org.

ACKNOWLEDGMENTS

This work is supported in part by grants received by
Virginia Tech including that from ONR (grants N00014-
13-1-0317 and N00014-16-1-2711), AFOSR (grant FA9550-
14-1-0163), and NAVSEA/NEEC (grants 3003279297 and
N00174-16-C-0018).

REFERENCES

[1] X. Lin, Y. Chen, X. Li, J. Mao, J. He, W. Xu, and Y. Shi,
“Scalable kernel tcp design and implementation for short-lived
connections,” in ASPLOS ’16, 2016.

[2] “Scaling in the linux networking stack,” https://www.kernel.
org/doc/Documentation/networking/scaling.txt, 2015.

[3] A. Pesterev, J. Strauss, N. Zeldovich, and R. T. Morris,
“Improving network connection locality on multicore systems,”
in EuroSys ’12.

[4] N. Z. Beckmann, C. Gruenwald III, C. R. Johnson, H. Kasture,
F. Sironi, A. Agarwal, M. F. Kaashoek, and N. Zeldovich,
“Pika: A network service for multikernel operating systems,”
MIT CSAIL.

[5] A. Barbalace, A. Murray, R. Lyerly, and B. Ravindran, “Pop-
corn: a replicated-kernel OS based on Linux,” in OLS, 2014.

[6] A. Dunkels, “Minimal TCP/IP implementation with proxy
support,” 2001.

[7] L. Rudolph, M. Slivkin-Allalouf, and E. Upfal, “A simple load
balancing scheme for task allocation in parallel Machs,” in
SPAA III.

[8] E. Jeong, S. Wood, M. Jamshed, H. Jeong, S. Ihm, D. Han,
and K. Park, “mTCP: a Highly Scalable User-level TCP Stack
for Multicore Systems,” in NSDI 14.

[9] D. Katz, A. Barbalace, S. Ansary, A. Ravichandran, and
B. Ravindran, “Thread Migration in a Replicated-kernel OS,”
in ICDCS XXXV, 2015.


