Transparent Fault-Tolerance using Intra-Machine Full-Software-Stack Replication
on Commodity Multicore Hardware

Giuliano Losa?, Antonio Barbalace”, Yuzhong Wen”, Marina Sadini’, Ho-Ren Chuang, Binoy Ravindran
ECE, Virginia Tech
{giuliano.losa, antoniob, wyz2014, sadini, horenc, binoy}@vt.edu

Abstract—As the number of processors and the size of the
memory of computing systems keep increasing, the likelihood
of CPU core failures, memory errors, and bus failures increases
and can threaten system availability. Software components can
be hardened against such failures by running several replicas of
a component on hardware replicas that fail independently and
that are coordinated by a State-Machine Replication protocol.
One common solution is to replicate the physical machine to
provide redundancy, and to rewrite the software to address
coordination. However, a CPU core failure, a memory error,
or a bus error is unlikely to always crash an entire machine.
Thus, full machine replication may sometimes be an overkill,
increasing resource costs.

In this paper, we introduce full software stack replica-
tion within a single commodity machine. Our approach runs
replicas on fault-independent hardware partitions (e.g., NUMA
nodes), wherein each partition is software-isolated from the
others and has its own CPU cores, memory, and full software
stack. A hardware failure in one partition can be recovered
by another partition taking over its functionality. We have
realized this vision by implementing FT-Linux, a Linux-based
operating system that transparently replicates race-free, multi-
threaded POSIX applications on different hardware partitions
of a single machine. Our evaluations of FT-Linux on several
popular Linux applications show a worst case slowdown (due
to replication) by ~20%.

1. Introduction

Application demands have broadly resulted in increased
processor parallelism (with the so-called end of Moore’s
law) and larger memory sizes. However, these changes
in chip designs have required higher densities of circuits,
causing manufacturing errors, heating issues, etc, and have
resulted in soft and hard faults [1]. Since hardware faults
are largely uncorrelated among components, fault-resilient
software must provide availability in the presence of com-
ponent failures. This problem has already been recognized in
domains including data-centers [1], [2] and embedded sys-
tems [3]. Recent solutions for intra-machine fault-tolerance

® The author is now with CS, UCLA.

P The author is now with Euler, Huawei German Research Center.
7 The author is now with OS Kernel Lab, Huawei.

B The author is not anymore with ECE, Virginia Tech.

exclusively focus on application-level fault-tolerance [3].
Nevertheless, faults can happen even during OS kernel/mon-
itor execution [4], hampering the stability of all applications
running atop.

Recently, Shalev et al. [5] have addressed this problem
for CPU core failures in commodity multicore hardware.
However, their solution does not mask the failure from an
application standpoint and sustain (application) functionality
i.e., they only ensure that the OS remains alive after a
core failure. In addition, they exclude memory and bus
errors. In the distant past, full software stack intra-machine
fault tolerance has been proposed by replicating hardware
components, like in the case of Tandem computers [6] and
lock-step processors, which require costly, special-purpose
hardware. On the other end of the spectrum, software-only
full software-stack fault tolerance, using commodity hard-
ware, has been exclusively developed for the inter-machine
case, cf. State-Machine Replication (SMR) [2]. We explore
the intersection of these two solution spaces and propose a
novel software design.

State-Machine Replication. SMR is a widely used tech-
nique to provide fault-tolerance of computing services. The
technique involves running multiple replicas of a service on
different machines that are assumed to fail independently.
The execution of the replicas are coordinated to provide
the abstraction of a single service to clients. A popular
flavor of SMR is Primary-Backup, in which a unique replica,
the primary, serves all client requests. Before executing an
operation, the primary typically waits for a majority of the
replicas so that, would replicas crash, at least one of them
would still be available to provide the service. Hence, each
operation costs at least a round-trip exchange with a majority
of replicas.

In replication solutions, replicas are often physically
separated, e.g., housed in different racks in a data center,
or in different data-centers. However, physically separating
the replicas is not always possible, such as in an embedded
system where space constraints usually exist.

Additionally, physical separation usually requires dupli-
cation of the entire physical machine and its components,
thus doubling the volume, and power consumption — thereby,
doubling monetary costs. As a result, being able to tolerate
core and memory failures within a machine is a cost-efficient
solution.

Moreover, from a performance perspective, physical sep-

aration comes at a price: farther apart the replicas, longer the
round-trip communication between replicas, and higher the
overhead of replication. For example, Guerraoui et al. [7]
measured a propagation delay of 0.55us, on average, when
repeatedly sending messages from one core to another in
a multi-core machine. In contrast, they measured a prop-
agation delay of 135us in a LAN, almost three orders of
magnitude more. Newer networking infrastructures such as
RDMA can reduce the latency of inter-machine commu-
nication and thereby reduce the gap to only one order of
magnitude [8], but that is still a significant difference.

Intra-Machine Replication. When replicas are in close
proximity, e.g., on the same electronic board in a dual-
core lock-step processor, the performance of the replicated
system can be close to that of the same system running
within a single processor. However, dual-core lock-step pro-
cessors are nowadays not an attractive proposition because
of their lower performance when compared to recent multi-
cores, higher acquisition costs, common mode failures, and
lack of flexibility (all computation is replicated). Moreover,
high-performance cores are non-deterministic, which makes
it difficult to synchronize their state. Therefore, it is not
clear whether high-performance lock-step configurations are
likely to appear in the future, especially in application
settings where COTS components are used.

Contributions. We investigate whether a variant of soft-
ware Primary-Backup replication, wherein replicas run on
different hardware partitions of the same electronic board
of a commodity machine, is an interesting middle-ground
between Primary-Backup replication on physically separated
machines and lock-step processors. We target modern highly
parallel multi-core machines that are built using multiple
copies of the same circuit, each of which can be considered
as an independent failure unit. We exploit hardware error
monitoring mechanisms that are available in commodity
multi-core machines to detect hardware failures. We focus
on transparent Primary-Backup replication, which enables
legacy applications to take advantage of our proposed fault
tolerance mechanism without making any modifications, and
also for applications that are developed without replication
in mind.

We have developed FT-Linux, a prototype operating sys-
tem built on Popcorn Linux [9]. FT-Linux’s design borrows
elements from FT-TCP [10], TFT [11], and Rex [12]:

« To maximize resilience to memory errors, FT-Linux has
no software component that is a single point of failure:
all Linux replicas run on bare metal, communicate via
a “mail box” area in shared memory, and otherwise run
on disjoint partitions of the hardware resources of the
machine.

o To maximize performance, FI-Linux implements a hy-
brid replication strategy inspired by FI-TCP [10], [13]:
the Linux TCP stack is replicated using incremental
checkpointing; user-space applications are replicated
using active replication, where the primary replica logs
its non-deterministic execution steps and distributes the
log to the replicas, which replay it.

« From the perspective of POSIX applications, replica-
tion in FT-Linux is completely transparent. FT-Linux
replicates applications using a method inspired by
Rex [12]: a primary FT-Linux replica records its ex-
ecution and distributes a partially ordered log of the
non-deterministic events to the replicas, which replay
unordered events in parallel and thereby retain most
of the parallelism and performance of non-replicated
execution.

Using FT-Linux, we measured the performance of pop-
ular Linux applications including the Mongoose web server
and the PBZIP2 compression utility, in various configu-
rations, and compared against an Ubuntu-packaged Linux
kernel. The results of our measurements, show that FT-Linux
has a moderate performance overhead, achieving 80% of
the throughput of an unmodified Linux kernel in practical
situations.

The rest of the paper is organized as follows. Section 2
discusses FT-Linux’s failure model and Section 3 discusses
FT-Linux’s design and implementation. Section 4 presents
the experimental setup and evaluation results. Section 5
discusses past work, Section 6 identifies possible future
extensions, and Section 7 draws the work’s conclusions.

2. Failure Model

2.1. Fault Types

We say that FT-Linux implements a type of fault tol-
erance that we call intra-machine fault-tolerant replication
(or intra-machine fault tolerance for conciseness). We argue
that intra-machine fault tolerance is no more restrictive
than fault-tolerance that is provided using replication on
physically separate machines. In fact, a modern highly par-
allel multi-core machine already replicates various hardware
components, including cores, memory controllers, I/O con-
trollers, bus links, etc. (Note that redundant power supply
is used in commodity server-grade machines, and also in
life/safety-critical embedded systems.) Thus, a CPU socket
or a NUMA node can be considered as an independent
failure unit.

FT-Linux tolerates core, memory, and bus failures that
affect a single partition, and that can be detected before they
cause cross-replica contamination. These include fail-stop
faults and data-corruption faults. The latter type of faults
include memory and bus faults that are detected but not
corrected by error detection and correction codes. Examples
include ECC detection and reporting hardware, which cause
hardware exceptions to be reported to the operating system,
such as Intel Machine Check Architecture (MCA) and Ad-
vanced Error Reporting (AER) [14]. Our work presumes the
existence of such hardware error detection technologies.

Intra-machine fault tolerance could also cover data-
corruption faults that are not detected in hardware, but that
would require a voting scheme involving at least three repli-
cas, so that a majority vote can be used to filter out corrupted
data. Even then, faults that corrupt in-kernel data structures

that are used to enforce memory protection, such as the
page table, may cause one replica to make arbitrary writes
in the memory of another replica, causing cascading failures.
However, we expect faults that cause memory partitioning
violations to be rare, given the low memory footprint of the
data-structures involved. Currently, the FT-Linux prototype
supports only two replicas; extensions to more than two are
future work.

2.2. Likelihood of Tolerated Faults

A recent study on memory errors [15], which collected
memory error data on the entire fleet of servers at Facebook
during a full year, observed that 0.03% of the servers were
affected by detected but uncorrected memory errors each
month, and that 2% of the servers suffered correctable
memory errors. Among those 2% of servers suffering cor-
rectable memory errors, 10% became unresponsive, which
we consider a failure, because they were bombarded by
hardware exceptions caused by the errors. Overall, 0.05% of
the servers failed each month due to memory errors that can
be prevented by intra-machine fault tolerance, and 0.02% of
the servers failed each month due to memory errors that FT-
Linux would have tolerated. These numbers hardly seem to
justify the use of replication. However, it is likely that soft-
ware would increasingly be able to handle faulty situations;
memory in future server fleets may not be as reliable as
today’s, and even low fault rates can significantly impact
long running jobs, as in scientific computing applications.

Finally, some embedded systems run in harsh environ-
ments where temperature, radiation, vibration, and other
factors increase the likelihood of the type of hardware faults
that are tolerated by FT-Linux. It is becoming increasingly
common that embedded systems are not built using special-
purpose hardware, but using COTS hardware, increasing
their fault tolerance requirements, fostering software solu-
tions.

2.3. Likelihood of Faults in Kernel

As reported by Shalev et al. [5], a CPU core fail-
stop takes down the entire machine. However, there is
no similar work that reports memory (or bus) errors
affecting applications running on a monolithic kernel
(Linux includes a memory fault handling framework cf.
mm/memory-failure.c). To estimate the impact of a
memory error on Linux, we ran the memcached server [16]
with a load generator from CloudSuite [17] as a represen-
tative data center application. We interrupted the execution
and simply dumped the physical memory state. We repeated
this experiment for several loads, thereby measuring the
probability of the error hitting different parts of the kernel.

The results, shown in Figure 1, reveal that, on a 64 core
machine with 96GB of RAM, up to 15% of the RAM
contains kernel data and is not recoverable with Linux-
implemented memory fault-tolerance (labeled as Ignored).
For the same dataset (“180x”), another 20% of the memory

=
£

E 100

=

= 80

O

2 60

o

5 40

(0]

e 20

8 0

§ 3x 30x 60x 90x 120x 150x 180x

Input Size Multiplicator

Figure 1. Memory dump of a Linux system running the memcached
application under varying cached data size. The user-space memory con-
sumed by memcached is “User.” The kernel-space memory is labeled
“Ignored” and “Delayed” [18], respectively, indicating an unrecoverable
and recoverable memory area when hit by a memory fault.

is used by the kernel, but Linux is able to continue oper-
ation without immediate failure (Delayed). Note that if the
memory error hits the application (User), the application will
likely be killed. Since memcached does not extensively use
the page cache, we expect that the percentage of hitting a
sensible kernel area that is not recoverable will only increase
for other benchmarks from the reported 35%.

3. FT-Linux Design and Implementation

FT-Linux is based on the following design principles:

1) the hardware should be strictly divided among software
replicas;

2) not all the applications running on a system require
fault tolerance;

3) multithreaded applications and (multithreaded) kernel
services must be efficiently replicated;

4) when the primary replica fails, the backup replica (sec-
ondary) should quickly take over I/O seamlessly.

Hardware Partitioning. As shown in Figure 2, FT-
Linux partitions the cores, memory, and I/O devices of a
machine into isolated partitions, and runs one Linux kernel
on each partition. Each I/O device is owned exclusively
by one kernel. One of the partitions, called the primary,
loads a full Linux distribution, such as Ubuntu. The other
partition, called the secondary, loads a minimal user-space
environment. Initially, both kernels execute completely inde-
pendently. FT-Linux inherits the ability to boot multiple ker-
nels on separate resource partitions from Popcorn Linux [9]
(Section 3.1).

FT-Namespace. FI-Linux implements a new Linux
namespace, FT-Namespace, in order to isolate applications
that require fault tolerance from the one that do not require
it. Applications created in a FT-Namespace will utilize
full software-stack replication. Once an user enters the FI-
Namespace, all the applications that run inside it will be
replicated in the secondary kernel. The launching procedure
inside FT-Namespace includes replicating all the environ-
ment variables to the corresponding replicated process on
the secondary, so that both sides are launching the applica-
tion with the same initial environment (Section 3.3).

Container

e

CPUL1 CPUZ CPU3 (PU4 PUG CPU7

Main Memory

Linux component
=) standalone FT-Linux component
:] Embedded FT-Linux component

Figure 2. FT-Linux software architecture atop a multi-CPU platform in
normal operation (i.e., before any failure).

Replicating the Application. For multithreaded ap-
plications, the non-deterministic thread interleaving leads
to non-deterministic states and outputs. This becomes an
issue when trying to replicate a multithreaded application
because the output of the replicas must be an exact (de-
terministic) copy of the output of the primary. To tame
the non-determinism, we implemented active replication
(Section 3.2) to synchronize the thread-interleaving for mul-
tithreaded applications. We call this FT-Linux’s system-call
synchronization component. Non-deterministic system calls
are transparently intercepted by this component that logs
primary I/O and replays it on the secondary replica.

Replicating Operating System Services. In order to
correctly replicate system services beyond system call repli-
cation, I/O is replicated above the driver interface in order
to maintain a consistent kernel service state, which allows
fast failover. To support network activities, we replicate
the TCP stack; its state is kept synchronized using an
ad-hoc technique inspired by FT-TCP [10] (Section 3.4).
The technique consists of keeping the send and receive
queues, sequence number, and a few other TCP parameters
synchronized between primary and secondary. In effect, FT-
Linux synchronizes checkpoints of the logical state of the
TCP stack through incremental updates.

Failover. The primary and backup keep sending heart
beat messages to each other periodically. When the sec-
ondary does not hear from the primary after a timeout, it
will send an interrupt to it to forcefully halt. Additionally,
modern hardware error monitoring is used to detect that
a hardware partition is malfunctioning and to eventually
restart the software on it. Subsequently, the secondary ini-
tiates device-ownership transfer by reloading the drivers of
any device used by the primary, including the NIC. Once
the NIC that is used to communicate with application clients
becomes available on the secondary, it uses the logical TCP

state to restore the primary’s network sockets, including send
and receive queues, sequence numbers, and other parame-
ters. Finally, the application replicas switch from live replay
mode to live execution mode (Section 3.7).

3.1. Popcorn Linux Extensions

Popcorn Linux [9] is a replicated kernel operating sys-
tem that strives to improve the scalability of the Linux op-
erating system on multi-core architectures. It provides a tra-
ditional Linux system image to applications above multiple
independent kernels. Although we do not make use of the
ability of Popcorn Linux to provide a single-system image,
FT-Linux reuses the ability of Popcorn Linux to partition the
hardware resources of a shared-memory multi-core machine,
to boot one independent kernel on each partition, and its
inter-kernel shared-memory messaging layer.

Popcorn Linux provides a messaging layer to allow
kernel instances to communicate through message passing.
In FT-Linux’s setting, since all kernel instances reside on
the same machine, it is possible to deploy Popcorn Linux’s
messaging layer over shared memory, and thereby minimize
as much communication overhead as possible. Each kernel
owns a receiving queue of fixed-size packets, which are con-
sumed circularly by the kernel itself, thereby implementing
a ring buffer for incoming messages. The memory reserved
for each buffer is local to the partition assigned to each
kernel, and the address of the buffer is shared at boot time
by writing it on a small table accessible by all kernels.

Senders can directly write on the ring buffer of the
receiving kernel, and message notifications are delivered
through a combination of inter-processor interrupts (IPIs)
combined with polling to reduce overhead. Since the buffer’s
memory is local to each kernel, once a message has been
written on the receiver’s ring buffer, the message will be
always delivered unless the receiver itself fails. This al-
lows FT-Linux to avoid using acknowledgements between
replicas while providing reliable messaging with high prob-
ability: once a replica completes its shared memory write,
the message will be delivered if the recipient does not fail,
unless the sender experiences a failure while its write has
not been propagated out of its local CPU cache, and the
failure disrupts cache coherency. This is further discussed
in Section 3.5.

3.2. Active Replication Above the System-Call In-
terface

In FT-Linux, both replicas actively execute the
application above the system-call interface using a model
similar to the execute-agree-follow model of Rex [12].
FT-Linux interposes its runtime system at the system call
interface, and at the POSIX Pthreads interface, both on
the primary and the secondary. The FT-Linux runtime
manages the execution of the system calls, including
gettimeofday, time, accept, acceptd, rcv,
rcv_from, send, sendto, epoll, epoll_wait,

the Pthreads
cond_wait,

functions, exclusively
cond_timedwait,
mutex_trylock, rwlock_wrlock,
rwlock_trywrlock, rwlock_tryrdlock, and
rwlock_rdlock. Interposition at the system call
interface is performed in the kernel by modifying the
system call handler. Interposition at the Pthreads interface
is performed by linking applications with a modified
version of the Pthreads library.
The primary executes a replicated application as on
Linux, except that:

and poll, and
cond_signal,
mutex_lock,

o for each thread, the primary streams the sequence
of executed system calls to the replica, but does not
otherwise interfere with system call execution;

o FT-Linux enforces a total order on all Pthreads oper-
ations (using a global lock), and streams the observed
sequence of Pthreads operations to the replica.

The replica executes the application normally only above
the system call and Pthreads interfaces. Below those inter-
faces, execution is managed by the FT-Linux runtime:

o FT-Linux intercepts all Pthreads calls and forwards
them to the original POSIX Pthreads implementation so
as to produce the same outcomes as on the primary. For
example in a race on a lock, the lock call of the thread
that won the race on the primary will be forwarded first,
and the lock call of the other thread will be forwarded
only after the lock is acquired;

o FT-Linux intercepts all calls to the poll and epoll
I/O event notification APIs and returns the same values
as on the primary. FT-Linux also maintains the kernel
objects related to epoll (e.g., interest sets) so as to
allow transition to unmanaged execution after failover.

o FT-Linux intercepts TCP socket system calls, does not
forward them to the TCP stack, and instead copies and
returns the same values as on the primary. The state
of the TCP stack is managed internally by the TCP-
Stack replication component, described in Section 3.4,
so as to enable transition to unmanaged execution upon
failover.

3.3. Replicating Multithreaded Applications

As mentioned above, we are targeting to synchronize the
execution order of Pthreads primitives. FT-Linux provides
two system calls called __det_start and __det_end
. Any execution between a __det_start __det_end
pair will be logged on the primary and be replayed on the
secondary. We denote a code section which is surrounded
by __det_start and __det_end a “determinisitic sec-
tion”. Figure 3 shows a simplified implementation of it.

__det_start and __det_end will serialize all the
deterministic sections by using a global mutex to control
the mutual exclusion. Every thread in the FT-Namespace
maintains a sequence number Seqipreqq and the entire
namespace maintains a sequence number Seqgopqi. On the
primary, __ det_start simply locks the global mutex.
__det_end unlocks the global mutex, sends a tuple of

* ns: current Popcorn Linux namespace

* ns—>global_mutex: global_mutex in current
namespace

* ns—>seq: global sequence number
Seq_global

* current—>seq: task sequence number
Seq_thread

* current—>ft_pid: replicated task unique
identifier

*/

void _ _det_start ()

if (is_secondary(current))
wait_for_sync(current—>seq,
ns—>seq, current—>ft_pid);
lock (ns—>global_mutex) ;

void

{

__det_end ()

if (is_primary(current))
send_sync (current —>seq,
ns—>seq, current—>ft_pid);
current —>seq++;
ns—>seq++;
unlock (ns—>global_mutex) ;

Figure 3. Simplified implementation of __det_start and __det_end
syscalls.

< Seqinread; Seqgiobal, ft_pid > to the secondary and
then increases the value of Seqgioba; and Seqipread- On
the secondary, __ det_start blocks until it receives a
< Segihread; S€qgloval, ft_pid > tuple corresponding to its
caller thread, then holds the global mutex, and __det_end
increases Seqgiobar and Seqipreqd, then the global mutex is
released.

In order to provide a transparent interface to applica-
tions, we have re-implemented a set of Pthreads’ synchro-
nization primitives instrumented with our __det_start
and ___det_end syscalls. The re-implemented functions
are built into a shared library that can be loaded via the
LD_PRELOAD environment variable, so that applications
can call our implementations instead the original ones in
Glibc.

For pthread_mutex_lock (and other lock primi-
tives), we simply put __det_start and __det_end
around it to enforce the lock acquisition order. Moreover,
we have modified Linux futex implementation to enforce
a FIFO behavior on the futex queue, so that the order of
possessing a futex will lead to a deterministic order of
releasing it. With the above being implemented, the order
of acquiring pthread_mutex_lock can be synchronized
between the primary and the secondary.

Here, pthread_cond_wait needs to be treated
specially. The timing of getting into futex_wait
and waking up from it is non-deterministic. According
to Glibc’s implementation, the futex_wait inside
pthread_cond_wait only gets woken up when

the condition variable differs from what it was when
pthread_cond_wait was called previously. This can
be caused by calling pthread_cond_signal, or
calling another pthread_cond_wait with a specific
interleaving. As a result, by synchronizing the access
sequence of condition variables inside the implementation of
pthread_cond_wait and pthread_cond_signal,
we are able to synchronize the wakeup sequence of
pthread_cond_wait. This is done by providing a
new implementation of pthread_cond_wait and
of pthread_cond_signal, with _ det_start
and __ det_end protecting the access to the
internal ~ condition variables. The re-implemented
pthread_cond_wait is in library that we load
with LD_PRELOAD. pthread_cond_timedwait is
treated in the same way. In addition, for the timeout case in
pthread_cond_timedwait, since we synchronized the
result of gettimeofday between primary and secondary,
the wake up time is inherently synchronized.

3.4. TCP-Stack Replication

To provide transparent failover, it is not sufficient to
replicate user-space applications because application-visible
state might also be held in the kernel, such as in the TCP
stack. A possibility would be to apply live replication to
the TCP stack, as is done for the applications. While it is
possible to replicate applications using live replay, because
non-deterministic actions can be trapped and controlled by
an underlying software layer, it is more difficult to do so for
the OS kernel. The Linux kernel is highly non-deterministic
and replaying its execution faithfully on the replica would
require controlling hardware non-determinism, possibly us-
ing a hypervisor. The work of Bressoud and Schneider [19]
uses an hypervisor, but that would introduce a single point
of failure and a likely performance bottleneck.

Instead, we maintain a synchronized copy of the logical
state of the primary’s TCP stack on the secondary. The
logical state of the TCP stack is designed so that, upon
failover, the new primary can bring its original TCP stack
in a state that is indistinguishable to the application from
the last externally visible state of the primary’s TCP stack.
TCP stack replication in FT-Linux implements the design
of Alvisi et al. [20].

FT-Linux intercepts calls below Linux’s TCP stack and
above the TCP stack, at the system call interface. We use
Netfilter hooks to intercept packets coming from the network
just before they enter the TCP layer of the Linux TCP/IP
stack, and from the TCP stack just before they reach the IP
layer of the Linux TCP/IP stack.

Non-determinism in the original TCP stack is resolved
when its effect on outputs (both network output, up calls,
and return values to the user-space layer) are known. For ex-
ample, the TCP stack may return a non-predictable number
of bytes to an application reading from a socket. However,
before returning to the application, the primary will update
the logical state on the replica to reflect the number of
bytes returned. In this way, we resolve non-determinism

without requiring the exposure of internal non-determinism
at the interface of the TCP stack. Similarly, the size of a
network packet sent by the primary TCP stack may not be
predictable. Therefore, before sending a packet, the primary
will inform the replicas of the size of the packet. In turn,
the logical state of the TCP stack on the replica is adjusted
according to the information received from the primary,
resolving non-determinism.

Special care and engineering effort is needed to handle
the many possible states of a TCP connection. We modified
the Linux network stack in order to handle each TCP state.

3.5. Ensuring Output Stability

To ensure that transparent failover is possible at any
time, the primary replica must wait for an output packet
to be stable before sending it through the network, i.e.,
it waits for all TCP-stack state updates and all user-space
non-deterministic actions that caused the output to be ac-
knowledged by the secondary replica. This is the traditional
“output commit” problem [21].

If the primary replica waits for its output to be known
to the secondary before releasing it (by waiting for an
acknowledgement), then, should the primary crash after its
output, the secondary replica will be able to reach the state
the primary was in just before the output, produce the
same output, and continue execution transparently to the
application. Note that the primary does not need to wait for
the secondary’s live copy of the application to have reached
the same execution point, but only to have received it for
subsequent live replay. As much as possible, we execute
the primary without waiting for the replica to have received
synchronization information.

Due to our single-machine setting, this constraint can
be relaxed at a small cost. If the primary does not wait for
an acknowledgement from the secondary, there is a small
chance that some of its messages will not have left its local
memory caches when it is hit by a failure. If the failure is
a memory failure, then the cache coherency protocol will
continue functioning and the messages will be promptly
received by the replica. Only if the failure disrupts cache
coherency, will the messages be lost. We conjecture that
this case will be rare.

3.6. Failure Detection

Failure detection in FT-Linux relies on a heart-beat
mechanism: each replica periodically sends a heart-beat
message to the other replica. If no heart-beat is received
after a configurable timeout, the sender replica is considered
to have failed by the other replica. In order to prevent a
situation in which a replica that is deemed to have failed is
just too slow, the other replica also sends an inter-processor
interrupt that will forcibly halt it, if it has not already done
SO.

Depending on the hardware architecture, a range of addi-
tional mechanisms can be used to detect hardware failures.
For example, Intel’s Machine Check Architecture reports

hardware errors to the operating system. In the case of FI-
Linux, those reports can be used to determine whether to
halt the primary replica and trigger failover.

3.7. Failover

When the failure of the primary replica is detected, the
system switches to a failover phase in which the secondary
replica prepares to enter primary execution. All necessary
kernel objects are created or brought to a state consistent
with what the application’s clients observed so far. More-
over, the primary’s exclusive ownership of the hardware
devices needed by replicated applications must be revoked
and device ownership is transferred to the secondary replica.
FT-Linux transfers devices ownership by re-loading the nec-
essary drivers on the secondary replica. For drivers that do
not hold application-visible state, such as Ethernet drivers,
this works well. For other cases, the techniques of Swift
et al. [22] could be used to replicate device-driver state
similarly to how FT-Linux replicates the state of the TCP
stack.

4. Experimental Evaluation

Software. We evaluated the performance of several pop-
ular Linux applications when running on FT-Linux. We
compared the applications’ performance on FT-Linux with
that on unmodified Ubuntu Linux 12.04. Both OSes are
based on Linux kernel 3.2.14 — the Linux version on which
FT-Linux has been developed. We measured the overheads
introduced by FT-Linux by means of characteristic parame-
ters of the tested applications, which include PBZIP2, Mon-
goose (plus ApacheBench), an in-house developed HTTP-
based file server, and wget.

Hardware. All the experiments were performed on a
machine with four AMD Opteron 6376 processors with
16 cores each (64 cores in total) and 128 GB of RAM,
split in 8 equally sized NUMA nodes. Unless otherwise
stated, FT-Linux is configured to divide the machine into
two symmetrical partitions of two processors (32 cores, or
4 NUMA nodes) and 64 GB of RAM each. When comparing
with Ubuntu, Ubuntu is allocated the same resources as a
single FT-Linux partition (e.g., 32 cores, 4 NUMAs, 64 GB).

4.1. Compute Performance

To measure the overhead caused by the inter-replica
synchronization of Pthreads operations, we measured the
performance of FI-Linux when compressing a file using
the PBZIP2 file compressor. PBZIP2 is a multi-threaded
program that spawns three types of threads. First, a producer
thread reads the file to be compressed from the file system,
divides it into blocks of equal size, and inserts them one by
one into a shared queue. Second, a configurable number of
worker threads repeatedly dequeue a block from the queue,
compress it, and insert the compressed block into another
shared (output) queue. Finally, a writer thread reads blocks

from the output queue, puts them in order, and writes the
resulting compressed file to the file system. The queues are
protected by Pthreads locks, and the producer threads notify
the consumer threads using a condition variable.

4500 T T T T T T T T T T 1.2
_ Linux blocks/second C—1
4000 FT-Linux blocks/second (burst)
FT-Linux blocks/second E 1
FT-Linux/Linux I
3500 [~
- 0.8
T 3000 |- " @
o Q<
o 5
<2 2500 HE Bkl ’ 0.6 @
) 5
[%}
<] E
& 2000 ©
-1 0.4
1500 HERER ERIER
- 0.2
1000

500
10 20 30 40 50 60 70 80 90 100

block size in KB

Figure 4. Compressing a file with PBZIP2, varying the block size.

We compressed a 1GB file using PBZIP2, using 32
worker threads on FT-Linux and on Ubuntu. Figure 4 shows
the number of blocks compressed per second on Ubuntu
versus on FT-Linux as a function of the block size used
(the scale is on the left vertical axis). For FT-Linux, two
quantities are shown: the peak throughput attainable in a
short burst, and the throughput sustainable over a long pe-
riod. The two are different because during a short burst, the
primary replica only sends data to the secondary replica and
does not have to wait for the secondary replica to process
it. Over a long period of time, the primary replica must
slow down to the pace of the secondary replica, which is
slower; otherwise, data accumulates “in flight” and eventu-
ally exhausts the available buffers on the secondary replica.
Figure 4 also shows the percentage of the performance of
Ubuntu achieved by FT-Linux (scale on the right axis).

90000 T . T . : . 12
messages/second C—1
80000 MB/second EEEER - 11
-1 10
70000 [
19
o 60000 1 4
) 1=
@ . 3
£ 1 =
40000
15
30000 [
1 4
20000 4 5
10000 ~— 2

10 20 30 40 50 60 70 80 90 100
block size in KB

Figure 5. Inter-replication messages per second and bytes per second
observed when running PBZIP2, as a function of the block size.

Figure 5 shows the traffic, in terms of the number of

inter-replica messages and the number of bytes, flowing
through FT-Linux’s shared-memory messaging layer as a
function of the block size used. The inter-replica traffic
increases super-linearly as the block size decreases because
worker threads contend on the input and output queues
and increasingly have to retry their dequeue and enqueue
operations.

FT-Linux compares well to Ubuntu for block sizes be-
tween 50 and 100 KB: FT-Linux achieves close to 80%
of the throughput of Ubuntu. At a block size of 50 KB,
FT-Linux compresses 1113 blocks/s, and the inter-replica
message rates reach around 34,000 messages per second for
a byte rate of 4.3 MB/s.

Below 50KB, the peak throughput of FT-Linux contin-
ues to follow the throughput of Ubuntu closely, but the
sustainable throughput drops steadily as the block size de-
creases. The throughput drops because the secondary replica
cannot replay the execution of the primary replica fast
enough. This is due to the Linux implementation of the
wake_up_process () function. We rely on this function
to wake up the next process waiting for a message, which
can be waiting on an idle processor — this function can take
up to tens of ms. Since inter-replica Pthreads synchroniza-
tion is done serially (all Pthreads operations are serialized
with a global lock), wake_up_process () is a bottleneck
that limits the performance of the entire application. The
inter-replica bandwidth is not a bottleneck because the core
to memory transfer rates can easily reach several GB/s when
we only transfer at 4.3 MB/s.

4.2. Network 1I/0 Performance

Figures 6 and 7 show performance measurement of a
Mongoose web server running 32 worker threads under
a client load generated by the ApacheBench utility. The
ApacheBench utility repeatedly requests a 10KB static web
page (over TCP) using 100 parallel connections per second.
The client machine is connected through a 1Gb network
link to the Mongoose server running on FT-Linux. In this
experiment, we artificially inserted a CPU loop that runs
upon each request in the Mongoose server code, simulating
an application performing a computation on each request.
The Mongoose web server uses one listening thread which
accepts connections from clients, and delegates connec-
tion processing to worker threads using a shared queue
protected by a Pthreads lock and a condition variable. In
this experiment, FT-Linux must maintain the state of the
primary’s TCP stack on the replica, and must coordinate
thread scheduling among the replicas.

Figure 6 presents the performance of the Mongoose
server on FT-Linux and Ubuntu as a function of the number
of iterations that each CPU loop involves; for each increment
of the value on the horizontal axis, the number of iterations
is multiplied by two. We show the number of requests per
second processed by Ubuntu, by FT-Linux in short bursts,
and by FT-Linux at a sustained rate. Figure 7 presents
the inter-replica traffic, in messages per second and bytes

3000 T T T T T T T T T 1.4
Linux reqs/second —1
FT-Linux reqgs/second (burst) EZ=EE
2500 - FT-Linux reqs/second 1.2
FT-Linux/Linux I
41
2000 ["
2 8
S 41 08 £
Q S
o 1500 [0
2 5
g 106 E
©
1000
-4 0.4
500 1 02

1 2 3 4 5 6 7 8 9 10
CPU load per request

Figure 6. Performance serving a 10KB static web page with the Mongoose
web server, with a varying CPU load per request (incrementing the CPU-
load value by one corresponds to doubling the time spent by the CPU to
process one request).

45000

T T T T T T 20
messages/second —1

40000 MB/second B8 - 18

35000 [16

14
30000 [~

12

25000 -
10

msgs/sec
MB/sec

20000 -

15000 [~

10000 4
5000 |- 2
o L 0
1 2 3 4 5 6 7 8 9 10
CPU load

Figure 7. Inter-replica messages serving a 10KB static web page with the
Mongoose web server, with a varying CPU load per request (incrementing
the CPU-load value by one corresponds to doubling the time spent by the
CPU to process one request).

per second, flowing through the shared-memory messaging
layer.

Figure 6 shows that FT-Linux stays within 20% of the
throughput of Ubuntu when the throughput is lower than
roughly 1500 requests per second. At a higher number of
requests per second, the performance of FT-Linux, when
compared to Ubuntu, drops sharply. Unlike PBZIP2, the
burst rate of FT-Linux is also affected by the increasing syn-
chronization load, showing that network I/O synchronization
is more costly than Pthreads schedule replication. Note that
for all values of CPU load, the bandwidth remains lower
than the network capacity (for a maximum of 900Kb/s).

The benchmark shows that FT-Linux performs well for
CPU-bound applications, but suffers from a larger overhead,
reaching only 60% of the performance of Ubuntu, under a
high load of short requests.

4.3. Mixing Non-Replicated and Replicated Appli-
cations

FT-Linux allows replicated applications to run along-
side non-replicated applications. To measure whether non-
replicated applications affect the performance of replicated
ones, we configured FT-Linux to create a 32-core primary
partition alongside a single-core secondary partition. On the
primary partition, we run a CPU-intensive non-replicated
application that occupies all 32 CPUs at 100% when left
running alone. Then, we started a Mongoose web server and
used the ApacheBench utility to repeatedly request a 10KB
static web page using 5 concurrent requests at a time. To
compare with Ubuntu, we ran the same benchmark on 32
cores.

We observed that Ubuntu reaches a throughput of 760
requests per second while FT-Linux reached 700 requests
per second, or 91% of the throughput of Ubuntu. Moreover,
Ubuntu exhibits a latency of 1.3ms per request, while FI-
Linux achieves a latency of 1.4ms per request, an 8% in-
crease. This benchmark shows that the replicated Mongoose
server on FT-Linux does not suffer significantly from the
interference of non-replicated applications when compared
to Ubuntu.

4.4. Failover

To evaluate the failover capabilities of FI-Linux, we
measured the throughput obtained by downloading a 10GB
file via a TCP connection, traversing a 1Gb/s Ethernet link
using the wget utility. FT-Linux runs the in-house HTTP-
based file server written in C. The server listens for incoming
connections, and transfers the 10GB file when it receives
one. We opted for a light-weight server to easily break down
the overheads.

Linux FT-Linux

45 T T T T T T

“r |
- ![........................ __) ;]

30 . i
25 | H
20 F Y
10 F 3

5 L i
0 1 1 L £ 1 |

0 5 10 15 20 25 30 35
time (s)

througput (MB/s)

Figure 8. The throughput of FT-Linux in transferring a data file of 10GB
between machines compared with Ubuntu (Linux) and FT-Linux with
failures (Failover).

Figure 8 shows the throughput obtained in three sce-
narios on the server: using the stock Ubuntu installation,
replicating the server with FT-Linux, and replicating the
server with FT-Linux when the primary replica fails in the

middle of the transfer. In this experiment, FT-Linux achieves
a transfer rate up to 85% of the Ubuntu ones in the failure-
free case. Although the TCP connection is not interrupted,
the throughput drops to zero for roughly 5 seconds upon
failure, before increasing again and reaching the rate of
Ubuntu.

Our breakdown shows that 99% of this 5 seconds
failover time is due to the time that the NIC driver takes to
load on the secondary; this is consistent with what has been
reported by previous work [22]. We left the optimization of
this case as future work, as more engineering work on the
driver itself can significantly reduce the latency.

5. Past and Related Work

Prior to FT-Linux, there exist several architectural so-
lutions to mitigate faults on a multi-core system. Tandem
Computer Systems [6] are multi-CPU computer systems
designed with fault-tolerance capability. A process running
on one CPU has an identical replica on another CPU. Such
redundancy is called a “process pair.” When one CPU fails,
the paired process can take over and the system will auto-
matically redirect I/O data to the replica. However, process
pairs on Tandem Computer Systems need to be written with
their checkpoint APIs to enable the fault-tolerance feature.

Another modern solution is the Dynamic Processor Spar-
ing [1] technique, which can be seen on IBM Power 8-
based servers. With this technique, running processors will
automatically checkpoint at a fine granularity. As soon as
an error is detected, the pre-configured spare processors can
resume the system from the checkpoint.

While [1], [6] require either proprietary hardware or
specially designed software or both, FT-Linux is a pure
software solution that is able to run on commodity multicore
systems, and supports existing POSIX applications without
any code modifications.

Another pure software-based solution is Core Surprise
Removal (or CSR) [5], which is also based on Linux. In
CSR, when a core fails, tasks running on the failed core
are migrated to other working ones. While CSR is targeted
toward core failures, FT-Linux’s full-stack replication ap-
proach is capable of mitigating other faults such as memory
and device failures.

To the best of our knowledge, FT-Linux is the first sys-
tem that utilizes a multi-kernel OS to achieve fault-tolerance
and recovery. Hive [23], [24] and Cellular Disco [25] pio-
neered the field of multi-OS kernel setups in shared mem-
ory, partitioning or dynamically sharing hardware resources
and confining hardware and software errors to the affected
kernels.

The Barrelfish [26] operating system implements a new
OS architecture in which independent kernels run on each
CPU of a multi-core system and communicate by message
passing. Popcorn Linux [9], FI-Linux’s ancestor, was orig-
inally designed to enable unmodified Linux applications
to transparently execute on heterogeneous architectures to
optimize performance and energy consumption.

Replicating multi-threaded application is a major chal-
lenge in FT-Linux. Our approach is inspired by a number
of existing solutions. Rex [12], Eve [27], and Crane [28]
are recent systems that are designed for replicating multi-
threaded applications on a multi-machine setup. They all
utilize state machine replication to some degree, to main-
tain consistent states of multi-threaded applications across
replicas. While Crane maintains a global deterministic exe-
cution order across all the replicas, Rex and Eve allow the
applications to have arbitrary thread inter-leavings on the
primary machine, and enforce the same execution order on
other replicas.

For recovering the TCP stack for Linux, FI-TCP [10]
proposes a TCP-stack replication scheme for two replicas,
and demonstrates how to engineer fault-tolerant applications
around it. Each application is replicated in an ad-hoc man-
ner, and system calls are synchronized as needed. FT-Linux
uses similar techniques to replicate the Linux TCP stack,
but offers a more generic approach to user-space application
replication.

6. Limitations and Future Work

Similarly to lock-step processors, a limitation of the
proposed approach is that intra-machine replication on com-
modity hardware may rely on non redundant hardware
components, such as the motherboard, a network card, and
a disk drive — we assume they do not fail. However, we
believe that fault tolerance support can be added cheaply
to such components. Note that multiple network cards can
be plugged in a single machine, but the system will require
external hardware to replicate the I/O

FT-Linux offers fault-tolerance guarantees similar to
dual lock-step processors. Another hardware replication
technique is Triple Modular Redundancy, in which all hard-
ware is triplicated and a voting mechanism is used to
exclude inputs or outputs from faulty components. Cur-
rently, FT-Linux does not support more than two replicas;
however, it could be extended to support a configurable
number of replicas. FT-Linux’s ancestor, Popcorn Linux and
its messaging layer already support a configurable number
of replicas, and replica synchronization could be achieved
with few modifications of the current prototype by overlay-
ing a consensus protocol over the inter-replica messaging
layer: David et al. [7] describe how to implement high-
performance consensus based on the Paxos algorithm in a
shared memory setting.

Another limitation of FT-Linux’s architecture is that it
does not work with devices whose memory space is directly
mapped into the application itself, such as kernel-bypass
drivers. With FT-Linux, we target traditional monolithic op-
erating systems in which all resources are centrally managed
by the OS itself.

Some replication systems ensure Byzantine Fault Toler-
ance (BFT) [29] and can therefore continue operating even
when some replicas are controlled by a malicious adversary.
The design of FT-Linux precludes BFT because some hard-
ware I/O components are not replicated and constitute single

points of failure, like the NIC, and because a malicious
kernel could make arbitrary writes in the address space of
other kernels. However, new hardware mechanisms such as
Intel’s Software Guard Extension (SGX) may be used to
enforce replica isolation. Leveraging SGX, FT-Linux could
support BFT if each I/O device is also replicated.

FT-Linux’s current implementation does not support
applications with non-trivial use of a file system (e.g., a
database backed by a file system). However, recent work on
the specification of POSIX file-systems [30] presents strong
evidence that POSIX file-systems are deterministic except
for the number of bytes returned by a read. This indicates
that file system replication could be done using SMR rel-
atively easily even when the file system is implemented in
kernel. Another approach would be to run a user-space file
system as a replicated application.

Device drivers that hold application-visible state could
be replicated by recording their execution and restarting
them on the secondary replica (after the primary’s failure)
using techniques developed by Swift et al. [22].

7. Conclusions

We investigate whether fault-tolerant full software-stack
transparent replication in a single machine is a practical
middle ground between multi-machine live replication, as
implemented in FT-TCP [10], Rex [12], or Crane [28],
and hardware fault tolerance, as implemented in lock-step
processors.

To understand this space, we built a prototype operating
system based on Linux, called FT-Linux, which partitions
the hardware resources of a single multi-core machine into
two partitions and replicates unmodified Pthreads appli-
cations using Primary-Backup replication. To ensure fully
transparent replication of network applications, FI-Linux
also transparently replicates the Linux TCP stack. The
architecture of FI-Linux is inspired by FI-TCP [10] and
TFT [11]. Our performance evaluation shows that intra-
machine replication incurs a moderate overhead on a se-
lection of Linux applications. Compared to multi-machine
replication, intra-machine replication can be applied to em-
bedded systems where space constraints preclude multi-
machine replication, and can improve the fault-tolerance of
systems with spare capacity at a low cost.

Acknowledgments

This work was done as part of Yuzhong Wen’s MS
thesis at ECE, Virginia Tech. The authors thank the anony-
mous reviewers and Prof. Haibo Chen for comments on
an early version of this paper. This work is supported in
part by grants received by Virginia Tech including that
from AFOSR (grants FA9550-14-1-0163 and FA9550-16-
1-0371) and ONR (grants N00014-13-1-0317 and N0O0O14-
16-1-2711).

References

(1]

(2]

[3]

[4]

(1]

(6]

(71

(8]

[l

[10]

[11]

[12]

[13]

[14]

J. Cahill, T. Nguyen, M. Vega, D. Baska, D. Szerdi, H. Pross,
R. Arroyo, H. Nguyen, M. Mueller, D. Henderson et al., “Ibm power
systems built with the power8 architecture and processors,” IBM
Journal of Research and Development, vol. 59, no. 1, pp. 4-1, 2015.

V. K. Garg, “Implementing fault-tolerant services using state ma-
chines: Beyond replication,” in International Symposium on Dis-
tributed Computing. Springer, 2010, pp. 450—464.

G. Gogniat, T. Wolf, W. Burleson, J.-P. Diguet, L. Bossuet,
and R. Vaslin, “Reconfigurable hardware for high-security/high-
performance embedded systems: the safes perspective,” IEEE Trans-
actions on Very Large Scale Integration (VLSI) Systems, vol. 16, no. 2,
pp. 144-155, 2008.

D. Jewett, “Integrity s2: A fault-tolerant unix platform,” in Fault-
Tolerant Computing, 1991. FTCS-21. Digest of Papers., Twenty-First
International Symposium. 1EEE, 1991, pp. 512-519.

N. Shalev, E. Harpaz, H. Porat, I. Keidar, and Y. Weinsberg, “Csr:
Core surprise removal in commodity operating systems,” in Proceed-
ings of the Twenty-First International Conference on Architectural
Support for Programming Languages and Operating Systems. ACM,
2016, pp. 773-787.

J. Bartlett, J. Gray, and B. Horst, “Fault tolerance in tandem computer
systems,” in The Evolution of Fault-Tolerant Computing. Springer,
1987, pp. 55-76.

T. David, R. Guerraoui, and M. Yabandeh, “Consensus inside,” in
Middleware, L. Réveillere, L. Cherkasova, and F. Taiani, Eds. ACM,
2014, pp. 145-156.

C. Binnig, A. Crotty, A. Galakatos, T. Kraska, and E. Zamanian, “The
end of slow networks: it’s time for a redesign,” Proceedings of the
VLDB Endowment, vol. 9, no. 7, pp. 528-539, 2016.

A. Barbalace, B. Ravindran, and D. Katz, “Popcorn: a replicated-
kernel os based on linux,” in Proceedings of the Linux Symposium,
Ottawa, Canada, 2014.

D. Zagorodnov, K. Marzullo, L. Alvisi, and T. C. Bressoud, “Engi-
neering fault-tolerant TCP/IP servers using FT-TCP,” in DSN. IEEE
Computer Society, 2003, pp. 393—402.

T. C. Bressoud, “TFT: A software system for application-transparent
fault tolerance,” in FTCS. IEEE Computer Society, 1998, pp. 128—
137.

Z. Guo, C. Hong, M. Yang, D. Zhou, L. Zhou, and L. Zhuang,
“Rex: replication at the speed of multi-core,” in EuroSys, D. C. A.
Bulterman, H. Bos, A. I. T. Rowstron, and P. Druschel, Eds. ACM,
2014, pp. 11:1-11:14.

L. Alvisi, T. C. Bressoud, A. El-Khashab, K. Marzullo, and
D. Zagorodnov, “Wrapping server-side tcp to mask connection fail-
ures,” in INFOCOM 2001. Twentieth Annual Joint Conference of the
IEEE Computer and Communications Societies. Proceedings. IEEE,
vol. 1. IEEE, 2001, pp. 329-337.

A. B. Lim and E. D Heaton, “Platform-level error handling strategies
for intel systems,” http://www.intel.com/content/dam/www/public/us/
en/documents/white- papers/platform-level-error-strategies- paper.pdf.

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

J. Meza, Q. Wu, S. Kumar, and O. Mutlu, “Revisiting memory errors
in large-scale production data centers: Analysis and modeling of new
trends from the field,” in DSN. IEEE Computer Society, 2015, pp.
415-426.

B. Fitzpatrick, “Memcached - a distributed memory object caching
system,” http://www.memcached.org.

M. Ferdman, A. Adileh, O. Kocberber, S. Volos, M. Alisafaee,
D. Jevdjic, C. Kaynak, A. D. Popescu, A. Ailamaki, and B. Falsafi,
“Clearing the clouds: A study of emerging scale-out workloads on
modern hardware,” in Proceedings of ASPLOS XVII, pp. 37-48.

A. Kleen, “Ongoing evolution of linux x86 machine check handling,”
http://www.halobates.de/mce-1c09-2.pdf.

T. C. Bressoud and F. B. Schneider, “Hypervisor-based fault toler-
ance,” TOCS, vol. 14, no. 1, pp. 80-107, 1996.

D. Zagorodnov, K. Marzullo, L. Alvisi, and T. C. Bressoud, “Practical
and low-overhead masking of failures of TCP-based servers,” TOCS,
vol. 27, no. 2, 2009.

E. N. Elnozahy and W. Zwaenepoel, “Manetho: Transparent rollback-
recovery with low overhead, limited rollback, and fast output com-
mit,” IEEE Transactions on Computers, vol. 100, no. LABOS-
ARTICLE-2005-013, pp. 526-531, 1992.

M. M. Swift, M. Annamalai, B. N. Bershad, and H. M. Levy,
“Recovering device drivers,” ACM Transactions on Computer Systems
(TOCS), vol. 24, no. 4, pp. 333-360, 2006.

J. Chapin, M. Rosenblum, S. Devine, T. Lahiri, D. Teodosiu, and
A. Gupta, “Hive: Fault containment for shared-memory multiproces-
sors,” in SOSP, M. B. Jones, Ed. ACM, 1995, pp. 12-25.

M. Rosenblum, J. Chapin, D. Teodosiu, S. Devine, T. Lahiri, and
A. Gupta, “Implementing efficient fault containment for multiproces-
sors: Confining faults in a shared-memory multiprocessor environ-
ment,” CACM, vol. 39, no. 9, pp. 52-61, 1996.

K. Govil, D. Teodosiu, Y. Huang, and M. Rosenblum, “Cellular
disco: resource management using virtual clusters on shared-memory
multiprocessors,” TOCS, vol. 18, no. 3, pp. 229-262, 2000.

A. Baumann, P. Barham, P. Dagand, T. L. Harris, R. Isaacs, S. Peter,
T. Roscoe, A. Schiipbach, and A. Singhania, “The multikernel: a
new OS architecture for scalable multicore systems,” in SOSP, J. N.
Matthews and T. E. Anderson, Eds. ACM, 2009, pp. 29-44.

M. Kapritsos, Y. Wang, V. Quéma, A. Clement, L. Alvisi, and
M. Dahlin, “All about eve: Execute-verify replication for multi-core
servers,” in OSDI, C. Thekkath and A. Vahdat, Eds. USENIX
Association, 2012, pp. 237-250.

H. Cui, R. Gu, C. Liu, T. Chen, and J. Yang, “Paxos made trans-
parent,” in SOSP, E. L. Miller and S. Hand, Eds. ACM, 2015, pp.
105-120.

L. Lamport, R. E. Shostak, and M. C. Pease, “The byzantine generals
problem,” ACM Trans. Program. Lang. Syst., vol. 4, no. 3, pp. 382—
401, 1982.

T. Ridge, D. Sheets, T. Tuerk, A. Giugliano, A. Madhavapeddy,
and P. Sewell, “Sibylfs: formal specification and oracle-based testing
for POSIX and real-world file systems,” in SOSP, E. L. Miller and
S. Hand, Eds. ACM, 2015, pp. 38-53.

