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ABSTRACT
Migrating legacy real-time software stacks to newer hard-
ware platforms can be achieved with virtualization which al-
lows several software stacks to run on a single machine. Ex-
isting solutions guarantee that deadlines of virtualized real-
time systems are met but can only accommodate a reduced
number of systems. Therefore, this paper introduces ExVM,
a new scheduling framework to maximize the number of
legacy uniprocessor real-time systems able to run on a single
machine. Contrary to most existing solutions, ExVM uses a
flattening approach where the host schedules the virtual ma-
chine which contains the task with the earliest deadline. The
real-time characteristics of tasks are obtained through intro-
spection during the execution. We implemented this frame-
work using Linux’s SCHED DEADLINE real-time schedul-
ing policy in the host. Simulations using an exact schedula-
bility test show that ExVM is able to schedule 96% of ran-
domly generated tasksets with a utilization of at least 0.8,
while state-of-the-art solutions are only able to schedule 40%
of the same tasksets. Experimental evaluations performed
using synthetic benchmarks and production real-time appli-
cations show that ExVM always outperforms the existing
solutions, always meeting more than 80% of deadlines while
these solutions fall below 50% when the utilization increases.

1. INTRODUCTION
Many real-time systems are designed to run on the same

hardware platform during their entire lifecycles. However,
organizations periodically go through hardware refreshes for
multiple reasons – e.g., hardware becomes obsolete, increas-
ing maintenance costs; advanced features become available
in newer platforms; security concerns, etc. Migrating exis-
tent, enterprise-class real-time software to new hardware is
expensive, as it may involve costly re-writing of large legacy
codebases and/or re-validation of timing requirements.

Virtualization is therefore an appealing solution for this
problem. Full virtualization, which allows a guest OS to run
unmodified atop a hypervisor is particularly compelling, as
it enables a software stack (i.e., OS, applications, and associ-
ated libraries) to be easily migrated onto new hardware into
a virtual machine (VM), without any modifications. With
the commodity-scale availability of virtualization extensions,
e.g., Intel VT-x, and AMD-V on the x86 architecture, full
virtualization has become a game changer, as it reduces the
need to emulate guest software, thereby reducing overhead
and yielding good performance. In contrast, paravirtual-
ization is a less appealing solution: it involves modifying
the guest OS so that hypercalls can be made to the hy-

pervisor. Though this also yields near native performance,
the need to modify guest operating systems can be expen-
sive, especially when large legacy codebases are migrated.
Moreover, hardware virtualization extensions are likely to
further improve with newer processor generations, further
reducing the overheads of full virtualization. For the same
motivations, operating-system-level virtualization technolo-
gies such as LXC [26] or jails [15], that further requires to
eventually port the application to another operating system,
are definitely not a viable solution either.

Using full virtualization, an existent real-time software
stack can be migrated on to new hardware with relative
ease. However, guest applications’ time constraints must
(continue to) be satisfied on the new hardware. This will
require hypervisor-level scheduling policies that ensure tem-
poral isolation of the guest VMs, especially when multiple
VMs are consolidated on the same platform, which is often
done in enterprise settings to reduce hardware costs, increase
resource utilization, reduce maintenance costs, etc. One
approach to schedule VMs is hierarchical scheduling [32],
wherein VMs are scheduled as independent schedulable en-
tities, and within each VM’s scheduled time duration, its
guest OS scheduler schedules its guest tasks.

Previous efforts using hierarchical scheduling to virtual-
ize real-time systems use a periodic server-based approach,
where guests are seen as periodic servers which take turns
executing on the processor. This approach requires an offline
analysis of the real-time tasks on each guest (e.g., execution
time, period) to compute the proportion of CPU time to al-
locate to each server to satisfy all the deadlines. Then, dur-
ing the execution, the hypervisor only schedules VMs and is
not aware of the guest tasks inside each VM. This approach
thus suffers from wasted CPU cycles and improvements can
be obtained if guests are allowed to communicate with the
host scheduler. Lackorzynski et al. [17] were the first to go
beyond servers and introduced flattening scheduling to im-
prove the schedulability of the system. Using a flattening
approach, the host is aware of the tasks inside VMs and
chooses the VM to schedule according to the characteristics
of every task. However, their solution nevertheless still relies
on servers (see discussion in Section 2).

Flattening scheduling alters the temporal isolation be-
tween guests. However, this paper targets legacy real-time
systems, thus trusted systems in which the whole software
stack is assumed not to be hostile. For example, we assume
that no denial of service attack where guests launch tasks
with short deadlines is going to occur during the execution.
Thus, security issues are out of the scope of this paper.



1.1 Contribution
The contributions presented in this paper are fourfold: the

ExVM framework for flattening hierarchical scheduling, its
exact schedulability test, its implementation, and its evalu-
ation using different scenarios and competitors. ExVM im-
proves the schedulability of the system by directly schedul-
ing guest real-time tasks via their associated VM using a
flattened scheduler, while most of the existing solutions rely
on temporally-isolated servers (Section 2 contrasts past work
with ours). ExVM uses a periodic task model detailed in
Section 3, supports guests which use either EDF or RM,
and schedules VMs on multiprocessor systems using worst-
fit partitioning. An exact schedulability test in Section 4
demonstrates that ExVM can schedule a higher proportion
of tasksets than state-of-the-art server-based approaches.

An implementation of the algorithm based upon Linux
and KVM is provided (Section 5). This implementation is
the first open-source implementation of a real-time hierar-
chical scheduler for virtual machines in Linux which does
not use servers but a flattened scheduler. To support legacy
real-time guests, this implementation uses introspection [5]
rather than paravirtualization to expose the real-time char-
acteristics of the guests to the host. Contrary to other in-
trospection engines, it only introspects real-time events and
thus comes with a low overhead. The implementation of
ExVM is open-source and is available online.

Using this implementation, Section 6 provides evaluations
of the real-time performance of ExVM in comparison to
vanilla Linux and a state-of-the-art server-based approach.
Evaluations demonstrate that ExVM satisfies a higher num-
ber of deadlines than the state-of-the-art alternative when
utilization is increased to near-overload and overload levels
for multiple real-world real-time applications.

2. RELATED WORK
Scheduling virtual machines inherently implies a hierarchy

of schedulers [10]; thus a plethora of hierarchical scheduling
literature is relevant to the work presented in this paper.
Servers provide a method of representing an application or
virtual machine with its own real-time tasks and scheduler
as a single entity to be scheduled by the host OS or VM mon-
itor. Lipari et al. extend and improve upon scheduling with
server by integrating the Constant Bandwidth Server frame-
work in [21], examining how to partition resources among
servers in [22], and how to extend hierarchical scheduling
to multiprocessor systems [23]. Other aspects of hierarchi-
cal scheduling have also been studied, for example resource
sharing [8] or cache related preemption delays [25]. There
also exists analytical work for the hierarchical scheduling
of tasks without real-time servers, such as an analysis of
EDF within priorities presented by Harbour et al. in [14]
or hybrid-priority real-time scheduling by Baruah et al. [2].
However, these works do not focus on virtualization.

In [28], Shin and Lee introduced the Compositional Schedul-
ing Framework (CSF). CSF provides a method to compute
the budget of a periodic server given the set of guest tasks,
the guest scheduler, and the period of the server on the
host. A smaller period in the host to schedule servers will
result in a better schedulability but it will also increase the
number of preemptions. CSF is fully composable, mean-
ing that a server can schedule servers which schedules its
own servers. In [19], Lee et al. introduce a method to sup-

port soft real-time tasks in the Xen hypervisor by reducing
scheduling latency and managing shared caches among VMs.
Real-Time Xen [32] was introduced by Xi et al. to schedule
real-time virtual machines in Xen. RT-Xen uses the con-
cept of servers to schedule virtual machines. Each virtual
machine is limited to a single virtual CPU that is pinned to a
single physical CPU core; a similar model is used in ExVM.
In 2012, Lee et al. added CSF to Real-Time Xen [18]. With
CSF, RT-Xen is able to guarantee that deadlines are met
when the taskset is schedulable. Multicore scheduling was
introduced in RT-Xen in [33]. This work evaluates the use of
both global and partitioned EDF schedulers as the top-level
scheduler for the servers, as well as for the guest schedulers.

Some approaches (e.g., [13, 4]) supporting real-time vir-
tualization use a micro-kernel, and for example NOVA [30]
could also be used as a microhypervisor. However, as in
ExVM, many solutions make use of the widely available and
well-known Linux kernel. Furthemore, Kiszka [16] showed
that Linux using KVM and the PREEMPT RT patch set
has promise as a real-time hypervisor. In [7], Cucinotta
et al. examine the use of KVM as a hypervisor when the
guest is running IRMOS, an operating system designed to
run real-time multimedia applications. IRMOS partitions
its real-time tasks using cgroups in Linux, while Cucinotta
et al. modified KVM to partition host resources among real-
time guest tasks in an effort to reduce network latencies. The
authors evaluate their implementation using measurements
of network response times from the guest. Such work, dif-
ferently from ExVM, is limited to a specific use case, which
is reducing network latencies in the guest rather than mod-
ifying the host scheduler to provide real-time guarantees.

The idea of “flattening scheduling” was first introduced in
[17], which observed that removing the concept of servers
can improve the schedulability of a system. However, no
hierarchical algorithms were presented in this work which
allow servers to be discarded. Guests are still scheduled us-
ing servers; however the authors note that servers present
a problem when trying to maintain hard real-time guaran-
tees, and thus introduce their “flattening scheduling” idea.
This work suggests using hypercalls to flatten guest and host
schedulers, but does not go into detail about how this could
be implemented and how the host could use this informa-
tion to schedule guests. Additionally, the authors did not
evaluate the feasibility of a flattening solution in the con-
text of real-time guarantees. This paper expands on the
ideas presented in [17] by providing an algorithm, theoreti-
cal analysis, and implementation of flattening scheduling.

3. MODELS AND ASSUMPTIONS

3.1 Task Model
A real-time task τi is characterized by its period Ti, its

deadline Di, and its worst-case execution time Ci. We con-
sider that every task’s deadline Di is equal to its period Ti.
Each task releases a single job once per period and all tasks
are released simultaneously. A job is denoted as τ ji , where
j represents the jth release of task τi. The absolute dead-
line of a task τi job is di. It is assumed that no job will
ever exceed its worst case execution time Ci. However, the
implementation provides safeguards against this possibility.
Pi is the priority of task τi.

A set of tasks is denoted by Γ and referred to as a taskset.
In this model, the taskset to schedule contains n tasks and is



divided into non-overlapping subsets Vk, where Vk contains
the tasks which belong to guest operating system k. The
hyperperiod of a taskset Γ is equal to the least common
multiple (LCM) of Ti for all τi ∈ Γ. A task’s utilization Ui
is defined as Ci/Ti. The utilization of a guest Vk is defined
as
∑
∀τi∈Vk

Ui. The overall utilization U of a taskset Γ is

defined as
∑
∀τi∈Γ Ui. Vτi is the guest which owns task τi.

3.2 Guest Model
This work aims to schedule the taskset Γ split in a collec-

tion of real-time guests, each guest k being in charge of its
own taskset Vk. Each guest is a VM running on top of a host
operating system known as a hypervisor. The guests in this
model are fully virtualized; this means they are executing
under the assumption that they are running on real hard-
ware, and thus make no attempts to communicate with the
hypervisor. Furthermore, the guests operate without privi-
leged hardware access, just as any user-space Linux process.

Each guest is assumed to be using either EDF or RM as
its scheduler. VEDF and VRM are respectively the set of
VMs scheduled with EDF and RM. In the remainder of this
paper, a EDF VM will be a VM scheduled using EDF (re-
spectively a RM VM for a VM scheduled using RM). All of
the solutions presented in this work also support a mixture
of EDF and RM guests. The guest schedulers are uninflu-
enced by both the hypervisor and other guests. Therefore,
an EDF guest will always schedule the active task τ ji ∈ Vk
which has the earliest absolute deadline. Similarly, an RM
guest k will always schedule the highest-priority active task
which belongs to Vk. It is assumed that each guest runs on
a single virtual CPU (vCPU).

3.3 Hardware Model
All theoretical and experimental results presented in this

work assume a homogeneous x86-based multicore platform.
The implementation presented in this work relies on the
Intel-VT or the AMD-V virtualization hardware extensions.
It is assumed that the host system consists of m identical,
independent cores. This work does not consider the effects
of cache on performance. The model used by this work and
the work of the competitors does not assume any preemption
overhead or scheduling overhead. However, and contrary to
most studies in this field, this paper includes experimental
evaluations which incorporate caches as well as the over-
heads of preemption and scheduling.

In uniprocessor evaluations, the host is only able to use a
single physical CPU to schedule multiple guests, each having
a single vCPU. In multiprocessor evaluations, partitioned
scheduling is used, such that vCPUs are unable to migrate
to other physical CPUs after they begin executing.

This work examines a hierarchical scheduling model in
which a single host schedules multiple guests. The role of
the hypervisor scheduler is to choose which guest to schedule
at any given point in time. Because the guest operating
systems are unaware of the hypervisor and other guests, at
any given point in time each guest operating system will
have a preferred task τ ji . The hypervisor cannot alter this
preference. Essentially the hypervisor must determine which
preferred task τ ji among the guests to schedule at each time.

No priorities are assumed between different guest operat-
ing systems. Supporting systems with priority requirements
between different virtual machines are left to future work.

The host operating system for both the implementation

presented in this paper as well as the competitors presented
uses a constant-bandwidth-server (CBS) implementation. This
means that tasks are preempted (i.e., they are not given any
more execution time) if they attempt to overrun their spec-
ified worst case execution times Ci.

4. ALGORITHM
This section presents the uniprocessor flattened schedul-

ing algorithm implemented by ExVM. This algorithm is
work-conserving: it never leaves the processor idle when any
guest has real-time jobs ready to execute. It removes the
concept of servers and flattens the hierarchy of schedulers
such that the host can schedule guest tasks directly. The
term “flattening” was introduced in [17] but the algorithm
presented here goes further by completely removing servers.

The scheduling algorithm uses EDF as the top-level sched-
uler in the hierarchy. This is because EDF has been shown
to be an optimal algorithm for scheduling tasks on a unipro-
cessor system. Additionally, using EDF as the host sched-
uler eliminates the need to assign priorities to each guest,
but rather schedule them with no assumption of priority, as
specified in the scheduling model in Section 3.

Removing the concept of servers and bridging the commu-
nication gap between the host and guest schedulers comes
with many advantages. First, it allows a reduction of idle
CPU time, which directly leads to increased schedulability
and performance. Additionally, ExVM has the potential to
support any guest scheduler, not just EDF and RM. It can
also better adapt to less-predictable guest tasksets, through
the ability to gather task information on-the-fly. For ex-
ample, aperiodic tasks, which only appear once and at any
time. ExVM can also accommodate tasks which do not spec-
ify a worst-case execution time; the only parameter each task
is required to report is its absolute deadline since the top-
level scheduler uses EDF. Finally, ExVM does not require
any offline calculations to compute a server budget, allow-
ing guests and tasks to be added and removed on-the-fly at
runtime without the recalculation of budgets.

4.1 Overview
The algorithm assumes no priority relationship between

the virtual machines, is online, and executed in the host
at each scheduling event. No offline processing is required,
which makes it easier to add and remove tasks or VMs during
the execution. The algorithm is detailed in Figure 1.

1 begin
2 Select active job τ j with earliest absolute deadline;

3 Let g be the guest which contains τ j ;
4 if g is scheduled using EDF then
5 Schedule τ j

6 else
7 Schedule the highest priority active job on g
8 end

9 end

Figure 1: ExVM Scheduling Algorithm

Note that a system with multiple guests all using fixed-
priority schedulers such as RM does not necessarily produce
the same schedule as running RM on all of the tasks without
a host scheduler would; this is because the top-level sched-



uler is still EDF. In fact, a system in which every guest runs
the RM scheduler with one task per guest will actually result
in a pure EDF schedule under this algorithm.

4.2 Schedulability Test
The best-case schedule for the flattening algorithm occurs

when the system only contains EDF VMs or RM VMs with
only one task. In this case, all tasks are scheduled using
EDF and the utilization bound is 1. When RM VMs with
more than one task are added to the system, the utilization
bound decreases. If the system only contains one RM VM,
the algorithm actually reduces to RM, and has a utilization
bound of Ubound = n(21/n − 1) [24]. While this represents
the utilization bound for the ExVM flattening algorithm,
it is a poor schedulability test for the algorithm. In cases
where one guest is scheduled with EDF, or even in cases
where there are multiple guests all scheduled with RM, the
actual utilization bound is higher than the bound for RM
on the taskset.

In an effort to demonstrate ExVM algorithm’s superiority
over both RM and server-based approaches to hierarchical
scheduling, this section proposes a schedulability test for the
algorithm based on response-time analysis. The theory pre-
sented below is built upon the response-time analysis tech-
niques developed by Spuri [29] for EDF scheduling, and the
notation used below is based upon the notation used in [14],
a response-time analysis of EDF within fixed-priorities.

This section computes the worst-case response-time Ra of
task τa which can be in a VM scheduled with EDF or RM.
If this worst-case response time is larger than the period of
τa, τa will miss a deadline. The worst-case response time
happens when τa is released at the critical instant. However
the critical instant cannot be known in advance as in e.g.
EDF, thus all the possible instants in the“busy period”must
be examinated. The“busy period” is the period in which the
processor is never idle. The busy period is assumed to have
length t, and maximum length L. The busy period begins at
time 0, and continues until a processor idle period is reached.

The worst-case response-time of τa depends on the inter-
ference of all the other tasks of the systems, tasks which
can be in the same or another VM. The next section details
the contribution of tasks scheduled using EDF. Then, the
contributions of tasks scheduled in the same RM VM with
higher priority and in a different RM VM are examined.

4.2.1 Interference from tasks scheduled under EDF
Spuri [29] provides the conditions necessary to calculate

the worst-case contribution of an interfering task τi to the
response time of the analyzed task τa. Only the activa-
tions of τi that fall in the interval [0, t) contribute to the
worst-case response time of τa. This follows from the work-
conserving property of the scheduling algorithm. Addition-
ally, only activations with a deadline earlier than da, the rel-
ative deadline of τa, should be considered, since these tasks
are scheduled using EDF.

Let each activation be identified by the sequence number
p. Then the sequence number of interest identifies the last
activation which contributes to the worst-case response time
of τa. The number of activations of task τi in the busy period
is given by:

pt =

⌈
t

Ti

⌉
(1)

Similarly, since we assume that deadlines are equal to pe-

riods, the number of activations of task τi with deadlines
before da is given by:

pda =

⌊
da
Ti

⌋
(2)

By combining Equations 1 and 2, the worst-case contri-
bution of an EDF task τi to the busy period is:

WEDF
i (t, da) = min(

⌈
t

Ti

⌉
,

⌊
da
Ti

⌋
) · Ci (3)

Equations 1, 2, and 3 are adapted from [14]. Next, the
worst-case contribution of a fixed-priority task from the same
virtual machine is examined.

4.2.2 Interference from higher priority tasks in the
same VM scheduled with RM

Naturally, if the task under analysis, τa, is in a EDF VM
(i.e., Vτa ∈ VEDF ), the contribution of other tasks τi ∈
Vτa can be calculated using Equation 3 for WEDF

i (t, da).
However, if the task τa is in an RM VM (i.e., Vτa ∈ VRM ),
the worst case contribution of other tasks has nothing to do
with deadlines and everything to do with priority.

Theorem 1. The worst-case contribution of a task τi 6=
τa, τi ∈ Vτa ∈ VRM to the busy period is equal to the number
of releases of τi in the busy period multiplied by Ci if Pi ≥
Pa, and equal to 0 if Pi < Pa.

Proof. Because guest schedulers are honored, it follows
that every release of τi will preempt τa for its full execution
time Ci if Pi ≥ Pa. Similarly, no task with a lower prior-
ity than Pa will preempt τa’s execution, thus lower priority
tasks do not contribute to the busy period.

Given the results of Theorem 1, the contribution of tasks
in Vτa ∈ VRM with a higher priority than Pa can be calcu-
lated using the number of releases during the busy period,
which is given by Equation 1. This leads to the following
equation for the worst-case contribution of a task in the same
VM with a higher priority, also adapted from [14]:

WHI
i (t) =

⌈
t

Ti

⌉
· Ci (4)

4.2.3 Interference from tasks in other VMs scheduled
with RM

The final set of tasks for which worst-case contribution
must be computed is the set of tasks which reside in a fixed-
priority virtual machine which is not the same machine in
which τa resides.

Unlike tasks in the same fixed-priority VM as τa, there is
no priority relationship between these tasks and τa. How-
ever, it is also not as simple as the EDF case, because τi has
the capability to contribute to the busy period even if its
relative deadline di falls after da when another task in Vτi
has a deadline earlier than da.

To obtain the number of releases of τi which contribute to
τa, the term D′i(da) is defined as follows:

D′i(da) = max(∀τj ∈ Vτi |Pj ≤ Pi,
⌊
da
Tj

⌋
Tj) (5)

D′i(da) is the closest deadline in Vτi to da such thatD′i(da) ≤
da and the deadline belongs to a task with a priority less
than or equal to Pi. Figure 2 represents what the value of



D′i means graphically for i = 4. Let dj represent the relative
deadline of τj ∈ Vτi , where a lower value of j represents a
lower priority.

(a) D′4 6= d4

(b) D′4 = d4

Figure 2: Graphical Representation of D′4

D′i represents the latest lower-priority deadline in Vτi that
still falls before da. In Figure 2a, note that the last release of
τi, which in this case occurs at the first d4, has its deadline
well beyond the deadline da. Thus, if scheduled using EDF,
this release would not contribute to the busy period. How-
ever, since Vτi is scheduled using a fixed-priority algorithm,
this last release can still contribute to the busy period if a
lower priority task in Vτi is active and has an earlier deadline
than da. In this case, τi would preempt the lower priority
task and execute, even though its deadline falls after da.
This is the case in Figure 2a, where the lower-priority task
τ2 has its deadline before da but after the last release of τi.
Even though d5 falls closer to da than d2, since τ5 has a
higher priority than τi, τi will not preempt τ5 and thus d5

is not considered in the calculation of D′i.
Figure 2b shows the case where the closest deadline in Vτi

to da belongs to τi itself (the period of τi has been divided
by 2). In this case, the interference from τi on τa is the same
as if τi was scheduled using EDF, since it gets no deadline
advantage from lower priority tasks on its VM.

Theorem 2. Every release of a task τi ∈ VRM , Vτi 6= Vτa
which occurs strictly before D′i contributes to the busy period
for τa.

Proof. According to the flattening scheduling algorithm,
τi ∈ Vτi ∈ VRM is scheduled when any task on Vi has the
earliest overall deadline, and τi is the highest priority active
task in Vτi . Therefore, for an activation of τi to preempt
τa, it is required that Vτi contains a task τj with priority
Pj ≤ Pi and deadline dj ≤ da. Note that it is possible that
τj ≡ τi. Since D′i is equal to the latest absolute deadline
that falls no later than da ∀τj , releases of τi that fall before
D′i will contribute to the busy period, while releases that
fall no earlier than D′i will not preempt because there will
be no lower priority task with a deadline between D′i and
da. Therefore, it follows that every release of τi that falls
strictly before D′i contributes to the busy period.

With the result of Theorem 2, it is possible to define the
worst-case contribution of a task τi which belongs to differ-

ent fixed-priority guest from τa:

WRM
i (t, da) = min(

⌈
t

Ti

⌉
,

⌈
D′i(da)

Ti

⌉
) · Ci (6)

Note that when D′i(da) coincides with Di, Equation 6 re-
duces to Equation 3. This is because tasks in other VMs
provide the same interference as EDF tasks except in spe-
cial cases such as the one shown in Figure 2a.

4.2.4 Calculating the Worst-Case Response Time of
a Task

Table 1: Set Notation

Name Definition Description

SEDF ∪Vi, ∀i|Vi ∈ VEDF The set of all
tasks which be-
long to EDF
guests

SHI ∪{τi}, ∀i|τi ∈ Vτa , Pi ≥ Pa The set of all
tasks in the same
guest as τa with
a higher priority
than τa

SRM ∪Vi, ∀i|Vi ∈ VRM , Vi 6= Vτa The set of all
tasks which be-
long to a differ-
ent fixed-priority
guest than τa

To lighten the notation, this paper defines the sets in Table
1. With the worst-case contribution of fixed-priority tasks in
other VMs accounted for, the following analysis is adapted
directly from Harbour [14]. As demonstrated by Spuri [29],
the release time of the task under analysis τa is not neces-
sarily the beginning of the busy period. It is possible that
the first release of τa which leads to the worst-case response
time occurs at an offset from the start of the busy period,
such that a future release shares its deadline with another
task in the system. Thus, response-time analysis for τa must
examine release times which coincide with other task dead-
lines, pTi. The set of all of these release times which must
be examined, Ψ, is given below:

Ψ = ∪{p · Ti}

∀p = 1 . . .

⌈
L

Ti

⌉
, ∀i ∈ SRM ∪ SEDF ∪ SHI

(7)

In Equation 7, L refers to the longest busy period, which
is calculated recursively using the following equation:

L =
∑

∀i∈SRM∪SEDF∪SHI

⌈
L

Ti

⌉
· Ci (8)

The critical release for τa is found by subtracting Ta from
each value in the set Ψ. Since τa may have multiple ac-
tivations within the busy period, every activation must be
analyzed for worst-case response time. If the first activation
of τa within the busy period occurs at time A, and the busy
period begins at time 0, the completion time wAa (p) of acti-



vation p of τa can be calculated by the following equation:

wAa (p) = p · Ca +
∑

∀τi∈SHI

WHI
i (wAa (p))

+
∑

∀τi∈SRM

WRM
i (wAa (p), DA

a (p))

+
∑

∀τi∈SEDF

WEDF
i (wAa (p), DA

a (p))

(9)

Equation 9 combines the worst-case contributions from
Equations 4, 6, and 3, as well as the contribution from τa
itself. The term DA

a (p) refers to the deadline of activation p
when the first activation occurs at A:

DA
a (p) = A+ p · Ta (10)

Finally, the worst-case response time RAa (p) for activation
p of task τa is calculated by subtracting the activation time
of iteration release p from the completion time:

RAa (p) = wAa (p)−A− (p− 1)Ta (11)

It is only necessary to check values of A which fall between
0 and Ta, since the first release must fall within this range.
Thus, it is necessary to check the values of Ψ in the subset:

Ψ∗ = {Ψx ∈ Ψ|p · Ta ≤ Ψx < (p+ 1)Ta} (12)

Thus, we define the set of A values to check as:

A(Ψx) = Ψx − (p · Ta) (13)

Figure 3: Graphical Representation of A and Ψx

Figure 3 demonstrates the graphical meaning of the differ-
ent deadlines to analyze for task τa, which this paper denotes
Ψx. The top timeline begins at the start of the busy period
(time 0) and ends with the pth release of τa. The value of A
represents an offset from the start of the busy period. The
first release of task τa occurs at A, and subsequent releases
occur at A + pTa for integer values of p. Clearly, the value
of A must fall between 0 and Ta, since A is defined as the
first release of τa in the busy period and if A > Ta, there
would be another release of τa which falls between 0 and Ta
and thus is the first release.

The second timeline in Figure 3 demonstrates how the
values of A to iterate over are calculated. Each Ψx on this
timeline represents an absolute deadline of an interfering
task in the system (or τa itself) that falls between pTa and
(p + 1)Ta. Each of these values of Ψx is offset from pTa
by the same offset of the first release, A. Only values of A
which correspond with Ψx need to be checked for the pth

release of τa because having τa’s deadline coincide with the
deadline of an interfering task provides a (local) maximum
of interference on τa.

Finally, the absolute worst-case response time for the task
τa, denoted Ra, can be calculated:

Ra = max(RAa (p))

∀p = 1 . . .

⌈
L

Ta

⌉
, ∀A(Ψx)|Ψx ∈ Ψ∗

(14)

Thus, a taskset is schedulable by the ExVM scheduling
algorithm if the worst-case response time for every task is
less than the relative deadline for the task. In other terms,
the taskset is schedulable if:

Ri ≤ Di, ∀i (15)

5. IMPLEMENTATION
We implemented the algorithm presented in Section 4 in

an existing real-time operating system, here the Linux ker-
nel. The implementation is based on SCHED DEADLINE
[12], an Earliest Deadline First scheduling policy which has
been part of the Linux kernel since version 3.14.0. Guest
real-time parameters are gathered by a low overhead intro-
spection engine [5]. It captures the real-time requirements
of the guest VM by instrumenting its kernel scheduler by
adding undefined instructions, which force the VM to exit
thus the host scheduler to gain control. Because instru-
mentation happens at initialization time there is no need to
modify the guest software. The introspection engine comes
with a plugin for each supported operating system and re-
quires the kernel symbol table to be available (e.g., DWARF
infos, Linux’s /proc/kallsysm, or System.map).

5.1 Deadline Scheduling in Linux
The EDF scheduling class in Linux is implemented based

on the assumption that each Linux thread represents a sin-
gle real-time task. As a result of this assumption, each
task_struct, the kernel data structure representing a sin-
gle Linux thread, only contains a single, statically-allocated
deadline scheduling entity. The deadline scheduling entity,
represented by the sched_dl_entity structure, contains fields
for the task period, deadline, and worst-case execution time.

In the Linux kernel, each physical CPU has an associ-
ated runqueue, which contains the threads which are active
on that CPU. The thread selected by the pick_next_task

function is the thread which will gain control of the CPU
next. The pick_next_task function gives priority to threads
scheduled using the SCHED DEADLINE scheduling class.
To decide between two deadline-scheduled threads, each CPU
also has a red-black tree data structure, sorted by deadline.
The left-most node in the tree contains the sched_dl_entity
with the earliest absolute deadline. When the red-black tree
is not empty, the pick_next_task function will return the
task_struct associated with such left-most node.

A deadline scheduling entity will remain in the red-black
tree until it depletes its available runtime. When the run-
time is fully depleted, the entity is marked as throttled, its
associated thread is put to sleep, and a timer is started which
will wake the thread up at the beginning of the next period.
When the thread is awoken by the timer, the entity’s budget
is replenished, i.e., it is set to the task’s worst-case execution
time and the entity is added back into the red-black tree.

5.2 Flattened Deadline Scheduling
In KVM, the hypervisor used by ExVM, a guest’s virtual

CPU, or vCPU, is implemented as a Linux thread itself. As



a result, the vCPU is represented in the kernel by a sin-
gle task_struct with a single sched_dl_entity. However,
when the guest contains multiple, concurrently-executing
real-time tasks, a single sched_dl_entity is not sufficient
to store the real-time information of every guest task. Note
that tasks can be released simultaneously and have different
parameters hence an aggregate of real-time characteristics
is not possible. Because of this, the task_struct structure
was modified to accommodate multiple scheduling entities,
dynamically-allocated for each guest real-time task.

Scheduling entities are stored in a linked-list that is pointed
by the owner task_struct, each scheduling entity contains
a pointer to its thread’s task_struct. Scheduling entities
are added to the red-black tree in the same way as vanilla
Linux does; when an entity has runtime it is in the tree,
and the pick_next_task function chooses the task_struct

associated with the left-most entity in the tree.
Rather than rely on timers for budget replenishment, this

implementation is able to leverage introspection. Introspec-
tion provides the host scheduler with the exact time of every
guest task release and termination; as a result the scheduler
implementation is able to replenish scheduling entities at the
exact moment of task release without using a timer. This en-
sures that each scheduling entity remains synchronized with
the actual task period on the guest; timers have the possi-
bility of drifting away from the actual task period if either
the period parameter or the timer object is not perfectly
accurate. For feasible schedules, the guest receives the exe-
cution time necessary to release each task via the non-real-
time task support, presented in Section 5.3. Additionally,
introspection provides the capability to deplete the budget
at the exact moment of task termination, which frees the
processor to execute other real-time tasks when any given
task completes its execution prior to its WCET.

SCHED DEADLINE does not natively support RM; the
support for it was added using data structures similar to the
deadline-sorted red-black tree. task_struct was augmented
with is_dm flag, which is set if the guest is scheduled using
the deadline-monotonic algorithm. When the is_dm flag is
set, scheduling entities from the guest are added to a second
per-guest linked-list (dm_list) which is sorted by relative
deadline. (Entities are still present in the red-black tree.)

The head of the dm_list is the scheduling entity with the
smallest relative deadline. When the pick_next_task func-
tion executes, it chooses the left-most node of the red-black
tree (the earliest deadline), and then checks if the associ-
ated task_struct has its is_dm flag set. If so, it depletes
the budget of the entity at the top of the dm_list when
the guest is executed. Otherwise, it depletes the entity with
the earliest deadline. Entities are removed from both the
dm_list and the red-black tree when their budgets are de-
pleted. Similarly, entities are added to both the list and the
tree when their budgets are replenished.

5.3 Non-Real-Time Guest Processes
In addition to real-time task budgets, most guests require

execution time for general processes such as a shell or ssh

server. To provide this execution time without compromis-
ing the real-time schedule, an extra deadline scheduling en-
tity is added to each task_struct. This entity is guaran-
teed to never deplete its runtime and to always have the
latest possible absolute deadline. Because of these proper-
ties, it will only execute when there are no active releases of

real-time tasks in any guest. When the red-black tree con-
tains more than one of these entities, they are scheduled in a
round-robin fashion in order to provide time to each guest.

6. EVALUATION
This section evaluates ExVM through simulations and ex-

perimental evaluations. Simulation is first used to compare
ExVM with CSF (Section 6.1), a server-based approach used
by RT-Xen, based on the number of tasksets that both so-
lutions can schedule. Then, overheads are evaluated in Sec-
tion 6.2 using the implementation discussed in section 5.
Finally, experiments are performed using the implementa-
tion on uniprocessor and multiprocessor systems, first using
a synthetic benchmark (Section 6.3), then using real-time
applications (Section 6.4).

Simulations and experiments are performed using differ-
ent periods for CSF and for multiple sets of VMs. However,
the implementation of ExVM is not compared to RT-Xen
because the evaluation would be more focused on the dif-
ferences between Xen and KVM than on the differences
between the two real-time scheduling solutions. Regard-
ing [17], it does not describe an actual algorithm, we were
thus unable to compare ExVM against this solution.

Evaluations were performed on 2 different servers: an Intel
server with a 8-core Intel Xeon E5520 CPU running at 2.27
GHz with 8MB of cache and 12 GB of RAM; and an AMD
server with an AMD Opteron 6168 processor running at 1.9
GHz with 12MB of cache and 12 GB of RAM. The Intel
server was used to measure the virtualization and scheduling
overheads and to run the synthetic benchmarks. Both server
machines were used to evaluate the real-time production ap-
plications. For all but the multicore evaluations, execution
was restricted to a single core using Linux’s cpusets.

The host runs a patched Linux 3.16 and QEMU 1.6.50.
Both the host and the guests run Ubuntu 14.04. All guests
are similar; they run a ChronOS 3.0 real-time kernel based
on Linux kernel 3.0.24. ChronOS [9] is a real-time Linux-
based operating system which implements a number of tra-
ditional real-time scheduling algorithms. The choice of the
guest operating system is however not critical and other real-
time operating systems like Linux/RTAI, LITMUSRT [6], or
RTEMS, could have also been chosen.

6.1 Comparison with CSF
Figure 4 shows the percentage of schedulable tasksets for

both CSF and ExVM for different configurations and tasksets.
For these simulations, each taskset contains 6 individual
tasks, divided randomly among 3 VMs. The utilization of
each task is computed randomly to be between 0.01 and 0.99
using a uniform distribution and the UUniFast algorithm [3].
The period of each task is chosen randomly as a multiple of
100 between 100 and 1000. The global utilization of the
taskset is set between 0.1 and 0.95. 500 tasksets were gen-
erated for each utilization. For CSF [28], 3 different server
periods were used and all servers in the same simulation
share the same period. CSF-20 denotes CSF with a server
period of 20, while CSF-100 denotes a server period of 100,
and so on. In Figure 4a two VMs are scheduled using EDF
and one with RM, while in Figure 4b 1 VM is scheduled us-
ing EDF and 2 using RM. In Figures 4c and 4d, the global
utilization is fixed respectively at 60% and 80% and only the
scheduling algorithms used inside VMs evolves: the x axis
represents the percentage of VMs scheduled with EDF.
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(a) 2 EDF VMs and 1 RM VM
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Figure 4: % of tasksets schedulable by ExVM and CSF

ExVM is able to schedule the largest proportion of tasksets,
regardless of the utilization. As expected, CSF performs bet-
ter with a smaller server period; however, this smaller pe-
riod comes with the trade-off of a higher number of virtual
machine preemptions. Even though preemption overhead is
not considered in this simulation, it is a concern at runtime
that we address in the next subsections where evaluations
are performed using an actual implementation. When the
proportion of EDF VMs increases, the number of tasksets
that are schedulable increases as expected, but ExVM al-
ways outperforms CSF. We also performed the same simu-
lations with a varying number of tasks and VMs with similar
results: ExVM always outperforms CSF and the difference
grows when the average number of tasks per VM increases.
More comprehensive results can be found in [11].

6.2 Virtualization and Scheduling Overheads
This section first evaluates the cost of the introspection

mechanism [5] using microbenchmarks in the guest and by
instrumenting the host kernel source code. The results are
calculated over 100 runs. Figure 5 shows that total cost for
introspection is around 13.8k CPU cycles ( 6us) with a stan-
dard deviation of less than 5%. Thus, introspection can be
approximated as a constant overhead and assimilated into
the WCET of each task. The introspection cost includes
switching the execution from guest code to the host kernel
code (exit VM), saving guest’s information (save VM), han-
dling the exit (vmx handle exit), passing the control back
to the main KVM loop ( vcpu run), restoring guest’s infor-
mation (restore VM), and re-entering the VM (enter VM).
The cost of all scheduling related mechanisms that we de-
veloped are integrated in vmx handle exit cost. ExVM is
not responsible for the 20% deviation in the run-time; this
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Figure 5: VM introspection cost breakdown

is due to the Linux kernel. The same applies to vcpu run.
Then, to measure the overheads of both virtualization

and the scheduling algorithms on the guest and host, the
deadline miss load metric, first introduced in [20], is used.
Deadline miss load presents a useful method of character-
izing scheduler overheads by running a schedulable taskset
and reducing the average period and execution time for the
tasks until a deadline is missed, while keeping the utiliza-
tion of the taskset constant. The end result is a minimum
average period for tasksets that run on the system.

Three sources of overhead are of interest: overhead due
to the guest scheduler (EDF) and kernel (ChronOS Linux),
overhead due to the virtualization software (KVM/QEMU),
and overhead due to the host scheduler (ExVM scheduling
algorithm) and kernel (Linux). In order to isolate each of
these overheads, the deadline miss load was calculated for
3 different experimental setups: 1) the taskset is run on a
single processor core (Hardware), 2) the taskset is run on
a single virtualized processor core (Virtualization) and 3)
the taskset is run on multiple virtualized processor cores,
scheduled onto a single physical processor core (ExVM). The
first setup characterizes the overhead of the EDF algorithm.
The second setup characterizes the overhead added by the
virtualization layer. The third setup is used to characterize
the additional overhead added by ExVM.

This evaluation was run using a taskset with a utilization
of 0.95, 12 tasks, and an average period which was varied
between 4.4ms and 155ms. The deadline miss load value for
Hardware is 4.5ms while for both Virtualization and ExVM
is 154.4ms. The experiment was repeated for 16, 20, 24,
32, and 64 tasks with similar results. This shows that the
overhead added by ExVM is negligible compared to virtual-
ization, but also that ExVM is able to schedule VMs appro-
priately when there are no active real-time tasks, including
the timely release of real-time tasks.

6.3 Evaluations using synthetic benchmarks
This section evaluates ExVM using sched_test_app [9],

a synthetic benchmark developed for ChronOS. ExVM is
compared with vanilla KVM, which is oblivious of the real-
time tasks in the guest, and with a periodic server-based
VM scheduling solution, which is instead informed about
the workload in the guests. KVM schedules each VM with a
weighted round-robin policy (Linux’s Completely Fair Sched-
uler), while the server-based configuration schedules VMs as
periodic servers (Linux’s SCHED DEADLINE) with budget
and period calculated offline with CSF (similarly to [34]).

Figure 6 shows the percentage of deadlines satisfied for
ExVM and Vanilla KVM for different utilizations between
0.7 and 1.3. Since CSF is designed without a mechanism to
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handle overload conditions, CSF’s budgets and periods can
only be evaluated with tasksets which are schedulable, thus
the Server-based configuration was examined only between
an utilizations of 0.7 and 1. For each utilization, 10 random
tasksets have been generated using the Baker model [1] and
have been scheduled using sched_test_app. Each point has
been computed using the average percentage of deadlines
satisfied among all the tasks of all VMs for 10 tasksets.

As expected, more and more deadlines are missed once
the utilization increases. But ExVM still achieves more than
85% of deadlines satisfied for a utilization of 1.2 in Figure 6a.
On the other hand, the performance of Vanilla KVM drops
quickly to reach only 40%. The disparity between VMs and
the standard deviation for Vanilla KVM is higher than for
ExVM which makes ExVM more deterministic than Vanilla
KVM. As seen in Figure 6b, deadline misses appear earlier
when the ratio of EDF VMs decreases but the percentage of
deadlines satisfied drops slower than with more EDF VMs.
This is due to the fact that RM performs better than EDF
in overloaded situations. The Server-based solution perform
the worst, with up to 30% more deadline misses than Vanilla
KVM in Figure 4a. This is because a portion of the budget is
consumed by non-real-time tasks during every server period,
delaying the earlier release of the server itself. Note that
this does not happen when using Vanilla KVM nor ExVM,
which both perform better in this scenario. In RT-Xen,
paravirtualization and idle-budgets are used, which should
also avoid this budget-consuming problem.

We performed the same evaluations for all different com-
binations of scheduling algorithms inside VMs, i.e., with 3
VMs RM scheduled, and 2 VMs EDF scheduled and 1 with
RM. Evaluations show that for all configurations, the uti-
lization for which the percentage of deadline satisfied falls
below 99% is always higher for ExVM than for vanilla KVM.

6.4 Evaluations using real-time applications
This section presents evaluations performed using produc-

tion real-time applications from Table 2. Each application
has been modified to run as a single-threaded real-time task
in ChronOS Linux. Due to space constraints, this paper

Table 2: Benchmarks

x264 [27] Video encoding application.
disparity [31] Motion-tracking application which uses

stereo-vision. Part of the San Diego Vi-
sion Benchmark Suite (SD-VBS)

multi n-cut [31] An image segmentation application.
Part of SD-VBS.
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Figure 7: Average % of deadlines satisfied among 3 VMs

only present the results with x264, but the evaluations per-
formed with the two other benchmarks yielded similar con-
clusions [11]. The average execution time of x264 on the
Intel server is 40ms for a period of 120ms. Evaluations are
performed by spawning a number of identical instances of
each application with identical input. These instances are
spread as evenly as possible among the virtual machines in
the system. As the number of instances increases, so does
the overall taskset utilization. Once the number of instances
increases to the point where the system is overloaded, the
percentage of deadline satisfied begins to drop from 100%.

We also conducted experiments on multiple processors us-
ing partitioned scheduling. We choose the commonly used
worst-fit heuristic to partition virtual machines among dif-
ferent processors in order to share the load between all avail-
able processors. Given a virtual machine, the algorithm
works by assigning that virtual machine to the processor
with the lowest utilization, even if the utilization becomes
larger than 1. The multiprocessor setup consists of 5 VMS
and 2 CPUs. Each virtual CPU is assigned to a specific
physical CPU. This pinning of vCPUs is done before the
release of any real-time jobs on any of the virtual machines.

Figure 7 shows the percentage of deadlines satisfied for
the two configurations with one and two physical CPUs.
ExVM performs better than Vanilla KVM, for which the
number of deadline misses increases quickly when more than
10 task instances are executed. Similarly to the evaluations
with sched_test_app, the standard deviation of deadlines
satisfied between VMs in a single trial, and between multiple
trials, is lower with ExVM than with Vanilla KVM.

7. CONCLUSION
This paper introduced ExVM, a real-time scheduling frame-

work for virtualized systems with a hierarchy of schedulers.
It schedules virtual machines using flattening scheduling in-
stead of servers, therefore improving the schedulability of the
system. The host scheduler is aware of the real-time char-
acteristics of the guests (scheduling policy, tasks) and can
therefore schedule guests accordingly, allowing greater flex-
ibility. An exact schedulability test was introduced showing
that ExVM decreases the CPU bandwidth required to feasi-
bly schedule a taskset. The scheduler makes all its decisions
online, and therefore does not require any offline computa-
tions based on the WCET of tasks. An implementation is
provided based on Linux and KVM. Compared to state-of-
the-art solutions, we showed through simulations of random
tasksets that for a utilization larger than 0.8, ExVM can
schedule 96% of the tasksets while this percentage drops to
40% for state-of-the-art solutions. Experimental evaluations



using real-time applications show that ExVM allows more
deadlines to be satisfied at higher utilizations. In future
work, we would like to allow migrations of guests between
physical CPUs to improve the schedulability of the system.
We also plan to support multiprocessor guests, i.e., guests
with two or more vCPUs, first using partitioned scheduling
and then global scheduling. Finally, we would like to expand
the work to other task models (e.g., aperiodic).
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