
Brief Announcement: Managing Resource Limitation of
Best-Effort HTM

Mohamed Mohamedin, Roberto Palmieri, Ahmed Hassan, Binoy Ravindran
Virginia Tech

Blacksburg, VA
{mohamedin,robertop,hassan84,binoy}@vt.edu

ABSTRACT
The first release of hardware transactional memory (HTM)
as commodity processor posed the question of how to effi-
ciently handle its best-effort nature. In this paper we present
Part-HTM, the first hybrid transactional memory protocol
that solves the problem of transactions aborted due to the re-
source limitations (space/time) of current best-effort HTM.
The basic idea of Part-HTM is to partition those trans-
actions into multiple sub-transactions, which can likely be
committed in hardware. Due to the eager nature of HTM,
we designed a low-overhead software framework to preserve
transaction’s correctness (with and without opacity).

Categories and Subject Descriptors
D.1.3 [Programming Techniques]: Concurrent Program-
ming; D.3.3 [Programming Languages]: Language Con-
structs and Features

Keywords
Transactional Memory, Hardware Transactions, Concurrency

1. INTRODUCTION
Transactional Memory (TM) [4] is one of the most attrac-

tive recent innovations in the area of concurrent and trans-
actional applications. TM is a support that programmers
can exploit while developing parallel applications so that
the hard problem of synchronizing different threads, which
operate on shared objects, is solved.

Very recently two events confirmed TM as a practical al-
ternative to the manual implementation of thread synchro-
nization: first, GCC – the famous GNU compiler, embedded
interfaces for executing atomic blocks since its version 4.7;
second, Intel released to the customer market the Haswell
processor equipped with Transactional Synchronization Ex-
tensions (TSX) [7], which allow the execution of transac-
tions directly on the hardware through an enriched hardware
cache-coherence protocol.

SPAA’15, June 13–15, 2015, Portland, OR, USA.
.

Hardware transactions (or HTM transactions) are much
faster than their software version because the conflict resolu-
tion is inherently provided by the hardware cache-coherence
protocol; however, their downside is that they do not have
commit guarantees, therefore they may fail repeatedly, and
for this reason they are categorized as best-effort. The even-
tual commit of an HTM transaction is guaranteed through
a software execution defined by the programmer (called fall-
back path). The default fallback path consists of executing
the transaction protected by a single global lock (called GL-
software path). In addition, there are other proposals that
fall back to a hybrid-HTM scheme [5, 1].

Leveraging the experience learnt from recent papers on
HTM [2, 1], three reasons that force a transaction to abort
have been identified: conflict, capacity, and other. Conflict
failure occurs when two transactions access the same object
and at least one of them wants to write it; a transaction is
aborted for capacity if the number of cache-lines accessed is
higher than the maximum allowed; and any extra hardware
intervention, including interrupts, is also a cause of abort.

Many recent papers propose solutions to handle aborts
due to conflict efficiently (e.g., [1, 5]), and to tune the num-
ber of retries a transaction running in hardware has to ac-
complish before falling back to the software path [2]. De-
spite this body of work, one of the main unsolved prob-
lems of best-effort HTM is that there are transactions that,
by nature and due to the characteristics of the underlying
architecture, are impossible to be committed as hardware
transactions. Examples include transactions that require
non-trivial execution time even accessing few objects and
thus they are aborted due to a timer interrupt (which trig-
gers the actions of the OS scheduler); or those transactions
accessing several objects, such that the problem of exceed-
ing the cache size arises (capacity failure). We group these
two types of failures into one superset, where, in general, a
hardware transaction is aborted if the amount of resources,
in terms of space and/or time required to commit, are not
available. We name this superset as resource failures.

None of the past works target this class of aborted transac-
tions and we turn this observation into our core motivation:
solving the problem of resource failures in HTM. To pursue
this goal, we propose Part-htm, an innovative transaction
processing scheme, which prevents those transactions that
cannot be executed as HTM due to space and/or time lim-
itation to fall back to the GL-software path, and commit
them still exploiting the advantages of HTM.

Part-htm’s core idea is to first run transactions as HTM
and, for those that abort due to resource limitations, a parti-

tioning scheme is adopted to divide the original transaction
into multiple, thus smaller, HTM transactions (called sub-
HTM), which can be easily committed. However, when a
sub-HTM transaction commits, its objects are immediately
made visible to others and this inevitably jeopardizes the iso-
lation guarantees of the original transaction. We solve this
problem by means of a software framework that prevents
other transactions from accessing (or from committing after
having accessed) those committed (but still locked) objects.

This framework is designed to be low overhead: a heavy
instrumentation would annul the advantages of HTM, falling
back into the drawbacks of adopting a pure STM implemen-
tation. Part-htm uses locks, to isolate new objects writ-
ten by sub-HTM transactions from others, and a slight in-
strumentation of read/write operations using cache-aligned
signature-based structures, to keep track of any accessed
object. In addition, a software validation is performed to
serialize all sub-HTM transactions at a single point in time.

With this limited overhead, Part-htm gives performance
close to pure HTM transactions, in scenarios where HTM
transactions are likely to commit without falling back to
the software path, and better than pure STM transactions,
where HTM transactions repeatedly fail. This latter goal
is reached exploiting sub-HTM transactions, which are in-
deed faster than any instrumented software transactions. In
other words, Part-htm’s performance gains from HTM’s
advantages even for those transactions that are not origi-
nally suited for HTM due to resource failures.

Opacity [3] is the reference correctness criterion for TM
implementations because it avoids any inconsistency during
the execution, independently from the final transaction out-
come (either commit or abort). However, ensuring opacity
in Part-htm is challenging because its overhead could nul-
lify the achieved benefits. While acknowledging the impor-
tance of an opaque hybrid-TM protocol, in this paper we
briefly introduce two versions of Part-htm. One aims at
obtaining the best performance by relaxing opacity in favor
of serializability, the well-known consistency criterion for on-
line transaction processing, and by relying on the HTM pro-
tection mechanism (i.e., sandboxing), which protects from
faulty computations (e.g., division by zero). In the second
version, we enriched Part-htm for ensuring opacity but, at
the same time, we present a set of innovations (e.g., address-
embedded write locks) for reducing the transaction’s memory
footprint so that the overhead is kept limited (less than the
achievable gain).

2. PROBLEM STATEMENT
In this section we briefly overview the principles of Intel’s

HTM transactions in order to highlight their limitations and
motivate our proposal. The current Intel HTM implementa-
tion of the Haswell processor, also called Intel Haswell Re-
stricted Transactional Memory (RTM) [7], is a best-effort
HTM, namely no transaction is guaranteed to eventually
commit. In particular, it enforces space and time limita-
tions. Haswell’s RTM uses L1 cache (32KB) as a transac-
tional buffer for read and write operations. Accessed cache-
lines are marked as “monitored” whenever accessed. This
way, the cache-line size is indeed the granularity used for
detecting conflicts. When two transactions need the same
cache-line and at least one wants to write it, an abort oc-
curs. When this happens, the application is notified and

the transaction can restart as HTM or can fall back to a
software path.

In addition to those aborts due to data conflicts, HTM
transactions can be aborted for other reasons. Any cache-
line eviction (e.g., due to cache-associativity) of written mem-
ory locations causes the transaction to abort (however there
is a specialized buffer for handling the eviction of a mem-
ory location previously read, but not written). This means
that write operations of hardware transactions are limited
in space by the size of the L1 cache. However, read opera-
tions can go beyond the L1 cache capacity by exploiting the
L2 cache. Also, any hardware interrupt, including the inter-
rupts from timers, forces HTM transactions to abort. We
name the union of these two causes as resource limitation
and in this paper we propose a solution for that.

3. ALGORITHM DESIGN
Despite the simple main idea of partitioning a transaction

into smaller hardware sub-transactions, executing them effi-
ciently in a way such that the global transaction’s isolation
and consistency is preserved poses a challenging research
problem. In this section we describe the design principles
that compose the base of Part-htm, as well as the high
level transaction execution flow. Hereafter, we refer to the
original (single block) transaction as a global transaction and
the smaller sub-transactions as sub-HTM transactions.

A memory transaction is a sequence of read and write op-
erations on shared data that should appear as atomically ex-
ecuted at a point in time between its beginning and its com-
pletion, and in isolation from other transactions. This also
entails that changes on the shared objects performed by a
transaction should not be accessible (visible) to other trans-
actions until that transaction is allowed to commit. The
latter point clashes with the above idea: when a sub-HTM
transaction TS1 of a global transaction T commits, its writ-
ten objects are applied directly to the shared memory, by
nature. This allows other transactions to potentially access
these values, thus breaking the isolation of T . Moreover,
once TS1 is committed, there is no record of its read/written
objects during the rest of T ’s execution, therefore also T ’s
correctness becomes hard to enforce.

All these problems can be trivially solved by instrument-
ing HTM operations for populating the same meta-data com-
monly used by STM protocols for tracking accesses and han-
dling conflicts. However, applying existing STM solutions
can easily lead to HTM losing its effectiveness and, conse-
quently, lead to poor performance. In the following we point
out some of these reasons:
- STM meta-data are not designed for minimizing the im-

pact on memory capacity. Adopting them for solving our
problem would stretch both the transaction execution time
and the number of cache-lines needed, thus consuming pre-
cious HTM resources.

- HTM already provides a conflict detection mechanism faster
than any software-based contention manager.

- HTM monitors any memory access within the transac-
tion, including those on the meta-data or local variables,
which takes the flexibility for implementing smart con-
tention policies away from the programmer.
Part-htm faces the challenge of how to exploit the ef-

ficiency of sub-HTM transactions, which write in-place to
the shared memory, by minimizing the overhead of the in-
strumentation needed for maintaining the isolation and cor-

rectness of global transactions, and taking into account the
above points. Given that HTM transactions commit directly
to the shared memory and Part-htm always executes trans-
actions using HTM (except when the GL-software path is in-
voked), we opt for using an eager approach. Part-htm first
executes incoming transactions as HTM with few instrumen-
tations (called first-trial HTM transactions). In case they
experience a resource failure, then our software framework
“kicks in” by splitting them.

Let T x be a transaction aborted for resource limitations,
and let T x

1 , T x
2 , . . . , T x

n be the sub-HTM transactions ob-
tained by partitioning T x. Let T x

y be a generic sub-HTM
transaction. At the core of Part-htm there is a software
component that manages the execution of T x’s sub-HTM
transactions. Specifically, it is in charge of: 1) detecting ac-
cesses that are conflicting with any T x

y already committed;

2) preventing any other transaction T k from reading and
committing or overwriting values created by T x

y before T x

is committed; and 3) executing T x in a way the transaction
observes a consistent state of the memory.

The software framework does not handle conflicts that
happen on T x

y ’s accessed objects when T x
y is still running; the

HTM’s hardware contention management protocol solves
them efficiently. This is the main benefit of our approach
over a pure STM fallback implementation.

For the achievement of the above goals, the software frame-
work needs a hint about objects accessed by sub-HTM trans-
actions. In order to do that, we do not use the classi-
cal address/value-based read-set or write-set as commonly
adopted by STM implementations; rather we rely only on
cache-aligned Bloom-filter-based meta-data (just Bloom-filter
hereafter) to keep track of read/write accesses. Just be-
fore committing, a sub-HTM transaction updates a shared
Bloom-filter for notifying its written objects, so that no
other transaction can access them.

Two Bloom-filters per global transaction are used for record-
ing the objects read and written by its sub-HTM transac-
tions. In fact, these Bloom-filters are passed by the frame-
work from one sub-HTM transaction to another. Therefore,
they are not globally visible outside the transaction. The
purpose of these Bloom-filters is to let read/written objects
survive even after the commit of a sub-HTM transaction,
allowing the framework to check the validity of the global
transaction at any time. A value-based undo-log is kept for
handling the abort of a transaction having sub-HTM trans-
actions already committed.

As mentioned before, in this paper we provide also a
version of Part-htm (called Part-htm-o) that guarantees
opacity by introducing some (but limited) overheads. Specif-
ically, any sub-HTM transaction of Part-htm-o performs
the following two additional checks. First, once an object
is accessed by a sub-HTM transaction, the existence of a
write lock is immediately detected. In order to minimize the
impact on the memory footprint, we introduce the address-
embedded write locks, which are locks that do not use addi-
tional memory location, whereas they are implemented by
“stealing” the last bits from the accessed address. This pre-
vents any false conflicts on the shared write locks set. Sec-
ond, a sub-HTM transaction is immediately aborted once
a global transaction commits. This is achieved leveraging
the HTM conflict resolution itself by monitoring a shared
timestamp, incremented anytime a global transaction com-
mits, inside sub-HTM transactions.

4. PRELIMINARY EVALUATION
Figure 1 plots the results of Part-htm using the Labyrinth

application of the STAMP benchmark [6]. We selected this
application because more than half of the generated trans-
actions in Labyrinth are large and long, thus their original
version cannot complete using HTM.

 0
 5

 10
 15
 20
 25
 30
 35
 40

 1 2 3 4 5 6 7 8

M
 tx

/s
ec

Threads

RingSTM
NOrec

NOrecRH
HTM-GL

Part-HTM
Part-HTM-O

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 1 2 3 4 5 6 7 8

Threads

Figure 1: Speed-up over sequential (non-
transactional) execution using Labyrinth of STAMP.

Table 1 reports the breakdown of the reason transactions
are aborted in Labyrinth using HTM and Part-htm. Here
we can see how the percentage of HTM transactions aborted
for both capacity and other forms more than 91% of all
aborts, forcing HTM to often execute its GL-software path.
Part-htm solves this issue.

Conflict Capacity Explicit Other
HTM-GL 10.11% 70.76% 0.04% 19.09%
Part-htm 93.95% 1.09% 1.14% 3.82%

Table 1: Decomposition of aborted transactions us-
ing Labyrinth and 4 threads.

5. ACKNOWLEDGMENTS
Authors would like to thank Alexander Matveev for the

important feedback. This work is supported in part by US
National Science Foundation under grant CNS 1217385.

6. REFERENCES
[1] I. Calciu, J. Gottschlich, T. Shpeisman, G. Pokam, and

M. Herlihy. Invyswell: A hybrid transactional memory
for haswell’s restricted transactional memory. In PACT,
pages 187–200, 2014.

[2] N. Diegues and P. Romano. Self-tuning intel
transactional synchronization extensions. In ICAC,
pages 209–219, 2014.

[3] R. Guerraoui and M. Kapalka. On the correctness of
transactional memory. In PPoPP, pages 175–184, 2008.

[4] T. Harris, J. Larus, and R. Rajwar. Transactional
memory, 2nd edition. Synthesis Lectures on Computer
Architecture, 5(1), 2010.

[5] A. Matveev and N. Shavit. Reduced hardware
transactions: A new approach to hybrid transactional
memory. In SPAA, pages 11–22, 2013.

[6] C. C. Minh, J. Chung, C. Kozyrakis, and K. Olukotun.
STAMP: Stanford transactional applications for
multi-processing. In IISWC, pages 35–46, 2008.

[7] J. Reinders. Transactional synchronization in haswell.
Intel Software Network., 2012.

