
On Designing NUMA-Aware Concurrency
Control for Scalable Transactional Memory

Mohamed Mohamedin Roberto Palmieri Sebastiano Peluso Binoy Ravindran
ECE Department, Virginia Tech

{mohamedin, robertop, peluso, binoy}@vt.edu

Abstract
NUMA architectures posed the challenge of rethinking parallel ap-
plications due to the non-homogeneity introduced by their design,
and their real benefits are limited to the characteristics of the partic-
ular workload. We name as partitionable transactional workloads
such workloads that may be able to exploit the distributed nature of
NUMA, such as transactional workloads where data and accesses
can be easily partitioned among the so called NUMA zones. How-
ever, in case those workloads require the synchronization on shared
data, we have to face the issue of exploiting the NUMA architec-
ture also in the concurrency control for their transactions. There-
fore in this paper we present a NUMA-aware concurrency control
for transactional memory that we designed for promoting scalabil-
ity in scenarios where both the transactional workload is prone to
scale, and the characteristics of the underlying memory model are
inherently non-uniform, such as NUMA architectures.

Categories and Subject Descriptors D.1.3 [Programming Tech-
niques]: Concurrent Programming

Keywords Transactional Memory, NUMA, Scalability

1. Overview
Transactional Memory (TM) [8] is a powerful programming ab-
straction for implementing concurrent applications. TM frees pro-
grammers from the complexity of managing multiple threads that
access the same set of shared objects, and its programmability ad-
vantage is compelling with the advent of multi-core architectures,
which have exacerbated the multithreaded programmability chal-
lenge by requiring greater exposition of concurrency in software
for improved application performance.

To continue to push the performance boundary of today’s multi-
core architectures, hardware designers have continually increased
the per-processor core count in multi-core architectures. This has
had many consequences. In particular, scalability issues of single
bus-based architectures have led to Non-Uniform Memory Access
(NUMA) [12] designs, which are increasingly becoming the de-
facto standard for emerging multi/many-core platforms (e.g., Intel
QuickPath Interconnect, Opteron/HyperTransport [1, 16]).

In a NUMA design, one memory socket is physically attached
to one processor socket (or to one die inside a socket), and it rep-

[Copyright notice will appear here once ’preprint’ option is removed.]

resents what is called a “NUMA zone”. We say that a thread exe-
cuting on a socket accesses a local NUMA zone when it accesses a
memory location within the NUMA zone connected to that socket.
Otherwise, we say that the thread accesses a remote NUMA zone.
In the former case the latency is very small (e.g., 9 nsec in DDR3-
2000 memory [10]), since there is no usage of the shared bus, while
in the latter case the latency and the hardware contention is higher
because the usage of the shared bus is required.

This distinction is of particular interest for a broad range of
transactional workloads, which we call partitionable transactional
workloads, wherein application data can be partitioned such that
transactions mostly access data that are stored in the partitions
where they are running, and therefore they are well-suited for ex-
ploiting the characteristics of NUMA. Examples of such workloads
include most OLTP applications, e.g., TPC-C [15] benchmark, as
well as applications that have driven the design of scalable in-
memory distributed transactional systems, e.g., [13].

In this paper we focus on maximizing the performance of such
workloads when they are executed on software TM (STM) that are
deployed on NUMA architectures. The reason is simple: today’s
STM implementations are not prone to scale on NUMA architec-
tures even when the workloads are partitionable. To support our
claim we conducted an experimental study by using a typical com-
modity NUMA machine: a 64-core AMD Opteron 6376 server (2.3
GHz, and 128 GB of memory), which is structured in 4 sockets of
2 dies each, with a NUMA zone of 8 cores per die.

In the study, we assessed the performance of the most popular
TM algorithms in the literature, including TL2 [4], SwissTM [6],
TinySTM [7], RingSTM [14], and NOrec [3], by configuring TL2,
SwissTM, and TinySTM to rely on a lock table that is partitioned
across NUMA zones. We used a version of the Bank benchmark
(i.e., a micro-benchmark that represents bank accounts and enables
monetary transfers among the accounts), which meets our defini-
tion of partitionable workload: the bank accounts were partitioned
across NUMA zones, and threads operated only on accounts stored
in their local NUMA zone. Each transaction produces 10 transfer
operations involving two bank accounts each.

Figure 1(a) shows the throughput (committed transactions per
second) under varying number of threads. We can notice that all of
the algorithms stop scaling with more than 16 threads, where 16 is
the maximum number of parallel threads allowed within a single
socket, since the cost of updating their global meta-data, e.g., a
shared logical clock, becomes significantly high in that case.

In this paper we propose a NUMA-aware concurrency control
for transactional memories, in order to obtain scalable performance
in case of partitionable transactional workloads on NUMA ma-
chines. Our solution has two key design principles: i) threads run-
ning in different NUMA zones do not interfere with each other
if the transactions they are executing do not conflict on common
transactional objects; and ii) threads executing in the same zone are

1 2016/1/28

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 10 20 30 40 50 60 70

T
h
ro

u
p
u
t
(1

M
 t
x
/s

e
c
)

Threads

TL2
NOrec

SwissTM
RingSTM

TinySTM

(a) Motivating results with no inter-NUMA
zone conflicts.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 10 20 30 40 50 60 70

T
h
ro

u
p
u
t
(1

M
 t
x
/s

e
c
)

Threads

NUMA-aware TM
TLC
TL2

TL2-GV5

NOrec
NOrec-NUMA

2PL

(b) Results assessing the benefits of a NUMA-
aware concurrency control with <10% of
inter-NUMA zone conflicts.

Figure 1. Throughput of Bank benchmark configured to produce a partitionable workload.

allowed to share information any time to speed up their execution,
as this cooperation does not significantly affect the performance of
threads executing on other zones.

The core idea is to treat conflicts involving transactions that
execute within the same zone differently from those that involve
transactions on different zones. This allows the concurrency con-
trol to resolve some conflicts simply and efficiently within a sin-
gle zone, e.g., by detecting a change of a shared per-zone logical
clock, as updating shared variables locally at a zone is a fast oper-
ation. On the other hand, identifying inter-zone conflicts involves
a different mechanism: each time a transaction accesses a remote
NUMA zone, it leverages that zone’s local view about the status
of the memory to incrementally build the memory snapshot that it
is allowed to read from. Thus, an inter-zone conflict is detected as
soon as a transaction is required to update its readable snapshot.
The conflict causes an abort whenever the snapshot cannot be up-
dated without violating the correctness of the resulting execution.

2. Evaluation
We implemented our concurrency control in C++ language, and we
integrated it into the RSTM framework1. We conducted a compre-
hensive evaluation by using the version of Bank benchmark and a
64-core machine as described in Section 1, and generating a per-
centage of conflict among threads running on different NUMA
zones that is less than 10%.

As competitors, we considered two state-of-the-art STM algo-
rithms that rely on global shared meta-data, i.e., TL2 and NOrec;
two disjoint-access parallel [9] algorithms, i.e., TLC [2] and Strict
2-Phase Locking (2PL); and an optimized version of TL2 that was
designed to alleviate the frequency of accesses to the shared global
meta-data, i.e., TL2 GV5 [11]. We also developed a version of
NOrec that was enhanced with our implementation of the NUMA-
aware lock of [5], specifically, the C-BO-BO Lock.

Figure 1(b) shows the throughput under varying number of
threads. We notice that our NUMA-aware TM provides the high-
est throughput and best scalability; its throughput almost linearly
increases by increasing the number of threads. TLC’s performance
is very close to our solution since the level of inter-zone contention
of this workload is very low, and TLC does not suffer from the typ-
ical high number of unnecessary aborts, which is common under
slightly more contending workloads [2]. 2PL also scales well, but
the overhead of acquiring locks on both read and written objects
at encounter-time is evident, even with such low contention, and
therefore has a much lower throughput than our solution and TLC.
In contrast, TL2-GV5 stops scaling when the system size exceeds

1 http://www.cs.rochester.edu/research/synchronization/
rstm/

32, as it uses a centralized single timestamp. TL2 has the same be-
havior starting from 16 threads. NOrec and NOrec-NUMA have
very limited scalability up to 16 threads, due to NOrec’s sequential
commit phase, although it is clear that using a NUMA-aware lock
enhances performance.

Acknowledgments
This work is supported in part by the AFOSR under grant FA9550-
14-1-0187.

References
[1] J. Antony, P. P. Janes, and A. P. Rendell. Exploring Thread and Mem-

ory Placement on NUMA Architectures: Solaris and Linux, Ultra-
SPARC/FirePlane and Opteron/Hypertransport. In HiPC ’06, 2006.

[2] H. Avni and N. Shavit. Maintaining Consistent Transactional States
Without a Global Clock. In SIROCCO ’08, 2008.

[3] L. Dalessandro, M. F. Spear, and M. L. Scott. NOrec: Streamlining
STM by Abolishing Ownership Records. In PPoPP ’10, 2010.

[4] D. Dice, O. Shalev, and N. Shavit. Transactional Locking II. In DISC
’06, 2006.

[5] D. Dice, V. J. Marathe, and N. Shavit. Lock Cohorting: A General
Technique for Designing NUMA Locks. In PPoPP ’12, 2012.

[6] A. Dragojević, R. Guerraoui, and M. Kapalka. Stretching Transac-
tional Memory. In PLDI ’09, 2009.

[7] P. Felber, C. Fetzer, and T. Riegel. Dynamic Performance Tuning of
Word-based Software Transactional Memory. In PPoPP ’08, 2008.

[8] T. Harris, J. Larus, and R. Rajwar. Transactional Memory, 2nd Edi-
tion. Morgan and Claypool Publishers, 2nd edition, 2010. ISBN
1608452352, 9781608452354.

[9] A. Israeli and L. Rappoport. Disjoint-access-parallel Implementations
of Strong Shared Memory Primitives. In PODC ’94, 1994.

[10] JEDEC. DDR3 SDRAM standard (revision F), 2012. http://www.
jedec.org/standards-documents/docs/jesd-79-3d.

[11] Y. Lev, V. Luchangco, V. Marathe, M. Moir, D. Nussbaum, and M. Ol-
szewski. Anatomy of a scalable software transactional memory. In
TRANSACT ’09, 2009.

[12] N. Manchanda and K. Anand. Non-Uniform Memory Access
(NUMA). New York University, 2010.

[13] S. Peluso, P. Romano, and F. Quaglia. SCORe: A Scalable One-copy
Serializable Partial Replication Protocol. In Middleware ’12, 2012.

[14] M. F. Spear, M. M. Michael, and C. von Praun. RingSTM: Scalable
Transactions with a Single Atomic Instruction. In SPAA ’08, 2008.

[15] TPC Council. TPC-C Benchmark, Revision 5.11. Feb. 2010.
[16] D. Ziakas, A. Baum, R. A. Maddox, and R. J. Safranek. Intel R© Quick-

Path Interconnect Architectural Features Supporting Scalable System
Architectures. In HOTI ’10, 2010.

2 2016/1/28

