
An Automated Framework for Decomposing
Memory Transactions to Exploit Partial Rollback

Aditya Dhoke
Virginia Tech

adityad@vt.edu

Roberto Palmieri
Virginia Tech

robertop@vt.edu

Binoy Ravindran
Virginia Tech
binoy@vt.edu

Abstract—In this paper, we present a framework that auto-
matically decomposes programmer-written flat transactions into
closed-nested transactions. The framework relies on two key
mechanisms for the decomposition. The first is a static tool that
analyzes application source code and produces a compact rep-
resentation of transactions’ business logic. The second is a run-
time monitor that captures the actual contention level of shared
objects and, relying on the outcome of the static tool, triggers
the optimal closed-nested configuration for the workload at hand.
We implemented this framework atop QR-CN, an open source
fault-tolerant DTM written in Java. Our experimental studies
conducted using the TPC-C, Vacation and Bank benchmarks
reveal that the framework yields better performance than flat
nesting and manual closed nesting, especially when the workload
changes.

Keywords-Transaction Nesting, Distributed Transactional
Memory, Adaptivity

I. INTRODUCTION

The ubiquity of multicore architectures is forcing appli-
cation software developers to expose greater concurrency in
software to exploit the increasing hardware parallelism. This
is a challenging problem due to the programmability and scala-
bility shortcomings (e.g., deadlocks, livelocks, composability)
of traditional abstractions for concurrency control (i.e., coarse-
grained or fine-grained locking, lock-free synchronization).
Software Transactional Memory (STM) [1], [2], [3], [4], [5]
is an emerging concurrency control abstraction that promises
to alleviate these difficulties. STM is a software layer that
provides transparent support for synchronizing activities of
different threads operating on the same shared data. A pro-
grammer’s only obligation is to demarcate application code
blocks that require transactional execution properties such
as atomicity, isolation, and consistency. The programmability
and scalability shortcomings of lock-based synchronization
are exacerbated in distributed systems due to multi-computer
concurrency. Thus, similar to STM, distributed transactional
memory (DTM) [6] is emerging as a promising distributed
synchronization abstraction that offers high programmability.

In DTM, transaction execution time is longer than in cen-
tralized STM due to the multiple interactions with other nodes
in the network. Aborting a transaction involves re-executing all
the transactional operations performed before the transaction
is aborted. In a centralized setting, transactions are comprised
of in-memory operations, and re-executing a transaction after
an abort event has lesser impact than in DTM on overall

transaction execution. In fact, in DTM many operations require
network access, such as retrieving new copies of objects from
other nodes and, as a consequence, repeated re-executions due
to aborts can significantly degrade performance.

One way to address this problem is through transactional
scheduling, which optimizes the execution order of transac-
tional operations to minimize conflicts [7], [8]. Unfortunately,
when a conflict occurs, most of the time involved in triggering
a transaction’s abort is inevitable. An effective technique to
alleviate the problem of restarting transactions from start after
an abort is partial rollback [9], [10]. Here, an aborted trans-
action, instead of restarting from the start and re-executing
in its entirety, saves intermediate states of its execution, and
restarts from one such state, re-issuing only those operations
that have been invalidated. Even though promising, partial
rollback has the overhead of saving intermediate transaction
execution states (or checkpointing), which can be significant.

A lightweight mechanism for supporting partial rollback
is the closed nesting model [9], [10]. Closed nesting treats
transactions as containers for inner (or sub-) transactions.
While sub-transactions encounter conflicts during their exe-
cution, they are aborted independently of their enclosing or
“parent” transactions, thereby potentially reducing the scope of
rollbacks. When a sub-transaction commits, its state is merged
with its parent’s state, but it is not made globally visible
until the parent commits. If a conflict is detected after the
sub-transaction commits, the parent is aborted and re-issued
together with all its sub-transactions. In contrast to classical
checkpointing [11], in closed nesting, the scope of a rollback
can only be chosen from among the enclosing transaction
boundaries. A recent work [10] that compares checkpointing
and closed nesting shows that the latter has lesser overhead
and better performance in DTM.

A. Motivations

The closed nesting model assumes that the program-
mer manually decomposes transactions into a set of sub-
transactions. Manually configuring sub-transactions to effec-
tively exploit the partial rollback mechanism is non-trivial.
There are three main factors that affect the effectiveness of
closed nesting transactions: 1) the nesting granularity in terms
of the number of operations performed; 2) the contention of
the shared objects accessed; and 3) the position in the source
code of each closed-nested transaction. In the following, we

provide an intuition of why these parameters are important
and, in Section III, we detail the discussion. The following
arguments point out the complexity of designing effective
closed-nested transactions and, at the same time, they represent
the motivations of our work because our proposal aims at
solving these issues.

The first parameter is complex to predict because it is
affected by transaction semantics. For example, it is useless
to enclose transactional operations that depend on each other
in different closed-nested transactions if no other shared ob-
jects are accessed (i.e., only local computation). Say Tp1 a
transaction performing the following operations: { Read(OA),
Read(OB), C = OA + OB , D = C + φ } where OA, OB

are shared objects and C, D are private variables. When Tp1
is decomposed into closed-nested transactions, the operation
D = C + φ is always wrapped in the same sub-transaction
of C = OA + OB because any invalidation on OA or OB

implies the re-execution of D = C + φ. If we enclose
D = C+φ in a separate sub-transaction, then when OA or OB

become invalid, the entire Tp1 will be re-executed, losing the
gain of closed nesting. In contrast, say Tp2 = { Read(OA),
Read(OB), C = OA + OB , Read(OD), E = OD + C },
with OA, OB , OD shared objects and C, E private variables.
Here the operation E = OD + C involves another shared
object (i.e., OD). For this reason, it can be enclosed in a
separate sub-transaction because an invalidation on OD will
cause the ex-execution of only the two operations: Read(OD)
and E = OD + C, preserving the previous computation (i.e.,
Read(OA), Read(OB), C = OA +OB), that is still valid.

The second parameter depends on the application’s work-
load and therefore can dynamically change with the evolution
of the system and the users’ behavior. In the previous example,
Tp1 has two operations involving remote communication:
Read(OA), Read(OB). The contention probability (P) of OA

and OB changes over time depending on the workload. On
one hand, when P (OA) is comparable with P (OB), these
two operations could be enclosed in the same sub-transaction.
On the other hand, when P (OA) >> P (OB), then if both
appear in the same closed-nested transaction, the invalidation
of OA will always cause the re-execution of Read(OB), even
though OB is still valid. In this scenario, the best configuration
is splitting the two operations into two different closed-nested
transactions. By this example, it is clear how complex it is to
statically predict such phenomena.

The positions of the sub-transactions in parent transactions
significantly affect closed nesting’s effectiveness. In contrast
to checkpointing, where, after a conflict, the transaction’s
execution can restart from any point, the closed nesting model
is effective only when a conflict occurs on an object accessed
for the first time in the sub-transaction currently executing.
For example, sub-transactions that access highly contended
objects can be moved closer to the transaction commit phase
to save a large part of the transaction execution state, as this
organization decreases the transaction’s abort probability. In
fact, when highly contended objects are accessed in a sub-
transaction, say Ts1, located at the beginning of its parent

transaction Tp, then after Ts1’s commit, they become part of
Tp’s history (i.e., Tp’s read-set as described in Section IV). At
this stage, if an invalidation of those shared objects previously
accessed by Ts1 after the commit of Ts1 occurs, it entails the
re-execution of the entire Tp.

Moving such sub-transactions closer to the parent transac-
tion’s end reduces the abort probability because it reduces the
total time in which their objects are stored in the parent’s read-
and write-sets. In this case, when an abort happens, almost the
entire transaction is already executed and it does not need to
be rolled back. Although important, this approach is doable
only if transactions expose independent parts. In other words,
the order of sub-transactions within a parent transaction, upon
which all operations depend, cannot be changed.

B. Contributions

All three parameters are significantly influenced by the
application workload. Thus, even though programmers may
know the entire application business logic and the expected
workload and therefore can manually define closed-nested
transactions, it will not be effective when the workload
changes at run-time.

Motivated by these observations, we propose ACN, an
automated framework for defining closed-nested transactions
at run-time according to the application’s workload. ACN
analyzes application source code and creates a graph-based
representation of transactions’ logic as defined by the pro-
grammer. Subsequently, it provides an initial definition of sub-
transactions for each original transaction. At run-time, based
on the workload dynamics, ACN adjusts the granularity of
sub-transactions for maximizing the effectiveness of partial
rollback according to the contention of objects accessed. ACN
also identifies possible independent segments of a transac-
tion’s logic and configures the segment containing the most
contended objects closer to the commit phase. This way,
ACN transparently exploits the closed nesting technique for
implementing partial rollback. Using ACN, programmers can
take advantage of partial abort of transactions without the
overhead of checkpointing and the burden of manual definition
of closed-nested transactions.

We implemented ACN and integrated it into QR-CN [10].
QR-CN is a fault-tolerant DTM framework which supports
manual closed nesting. The integration produces QR-ACN.
Note that the ACN methodology can also be applied in non-
DTM systems. In this paper we selected DTM as a baseline
transactional system because of the significant effectiveness
of partial rollback on improving DTM performance as shown
in [10]. Also, the great programmability of STM/DTM mo-
tivates ACN because ACN hides to the programmer the
exploitation of closed nesting as a partial rollback technique.

In order to conduct a fair and exhaustive evaluation, our
study spans from scenarios where closed nesting is effective,
to configurations where its usage does not improve the overall
performance significantly. ACN is a framework that optimizes
the effectiveness of closed nesting, therefore its applicability
is not limited to specific cases whereas its performance impact

is relevant when the partial rollback mechanism pays off. In
fact, there are applications, as well as workloads, in which the
partial abort technique does not provide benefit over restarting
the transaction from the very beginning. In such cases, ACN
can still be applied but the expected performance improvement
is not substantial. Nevertheless, as we will show through
experimental results, in those cases the impact of ACN’s
overhead is minimal, thus, it can still be adopted without
degrading application performance.

We evaluated QR-ACN using benchmarks commonly used
for assessing performance of transactional systems such as
TPC-C [12], Bank and Vacation [13]. Results reveal that QR-
ACN improves performance over flat nesting transactions by
as much as 120% and over manual closed nesting by 83%. In
addition, running configurations where the partial rollback is
not effective, QR-ACN guarantees performance similar to flat
nesting, thus exposing minimal overhead.

To the best of our knowledge, this work is the first to provide
a methodology and a practical framework for defining closed-
nested transactions automatically. In addition, as detailed in
Section III, this paper provides also the first analysis of factors
affecting closed-nesting transactions’ effectiveness.

II. BACKGROUND

A. Transaction Nesting Models

Transactions are nested when they appear within another
transaction’s boundary. Transactional nesting makes code com-
posability easy: multiple operations inside a transaction are
executed atomically without breaking encapsulation. Three
transactional nesting models have been proposed in the lit-
erature: Flat, Closed, and Open. In this paper, we focus on the
first two, because open nesting cannot be used for aborting
transactions partially.

Flat nesting, which is the simplest form of nesting, simply
ignores the existence of transactions in inner code. All oper-
ations are executed in the context of the parent transaction.
Aborting any inner transaction causes the parent transaction
to abort. Thus, no partial rollback is possible with this model.
Clearly, flat nesting does not yield any performance improve-
ment over non-nested transactions.

Closed nesting [14], [15], [10] allows inner transactions1

to abort individually. Aborting an inner transaction does not
necessarily abort the parent transaction (i.e., partial rollback
is possible). However, inner transactions’ commits are not
visible outside of the parent transaction. An inner transaction
commits its changes only into the private context of its parent
transaction, without exposing any intermediate results to other
transactions. The shared state is modified only when the parent
transaction commits, thus the closed nesting model does not
affect the system’s correctness. If an object accessed within
the context of an inner transaction becomes invalid after the
commit of the inner transaction, the entire transaction (i.e., the
parent) aborts and restarts from the very beginning.

1We use the terms inner transaction, sub-transaction, and closed-nested
transaction synonymously.

B. The QR-CN Protocol

Dhoke et al. [10] present QR-CN (Quorum-based Repli-
cation protocol with Closed Nesting), a fault-tolerant DTM
protocol that supports closed-nested transactions. QR-CN is
an extension of QR-DTM (Quorum-based Replication proto-
col) [16], a fault-tolerant DTM concurrency control protocol
that uses quorums for managing transactional meta-data. QR-
DTM uses full replication: each object is replicated on all
nodes. Each node is designated a read quorum and a write
quorum, where a quorum is a set of nodes having specific
properties. A read quorum services a transaction’s read and
write requests on objects, while a write quorum is used
to commit changes to objects through two-phase commit.
A transaction executing on a node uses the read and write
quorums designated for that node for executing its operations.
In QR-CN, each transactional access implies a remote call to
quorum nodes.

The QR-DTM protocol ensures 1-copy serializability [17].
In order to retrieve the latest copy of accessed objects, QR-
DTM leverages the quorum intersection property, namely any
write quorum and read quorum always intersect [18]. This
property also helps to provide incremental validation, i.e., on
each read request for an object, the previously read objects
are validated. This method is useful in detecting aborts early
during transaction execution. The nodes in QR-DTM form
a logical ternary tree. QR-DTM uses Agrawal et al.’s [18]
procedures for creating read and write quorums. A read
quorum is the majority of children at a level of the tree, while
a write quorum is the majority of children at every level.

III. EFFECTIVENESS OF CLOSED NESTING

The main distinguishing aspect between closed nesting and
checkpointing – as a means for implementing partial abort –
is the transaction’s rollback point. With checkpointing at the
finest granularity (i.e., saving the transaction state whenever
the transaction issues the first read operation on a shared
object), when a conflict occurs due to an invalid read, the
transaction restores the execution from the checkpoint prior
to the invalid read. With closed nesting, even though the
implementation overhead is minimal, a parent transaction
exploits the advantage of partial rollback only when the invalid
object is accessed by the currently executing closed-nested
transaction. If the object has been read by a previous closed-
nested transaction, then closed nesting is ineffective, and the
transaction must be re-executed from its very beginning.

The nature of the closed nesting model presents important
design choices for the programmer, for making this lightweight
partial rollback strategy effective. These include:
Granularity. The size of the closed-nested transactions is a
factor responsible for partial rollback’s effectiveness. On the
one hand, wrapping each read operation in a sub-transaction
(the finest grain) results in poor performance gain, because, the
probability of detecting an object invalidation while executing
a sub-transaction composed of only one shared object accessed
is very low. With this granularity, likely most of the invalid

objects are already accessed for the first time in a previous sub-
transaction. Therefore, those aborts are handled by restarting
the transaction from its very beginning, instead of somewhere
in the middle. On the other hand, when the size of sub-
transactions is large, the number of valid operations that are
re-executed due to invalidations reduces the benefits of partial
rollback. In fact, adopting the maximum granularity for sub-
transactions is equivalent to use the flat nesting model (or
classical, non-nested, transactions). Finding the proper trade-
off between these two end-points is a way for increasing
performance using closed nesting.
Contention probability. The contention degree of each shared
object significantly impacts closed nesting’s effectiveness.
Heavily contended objects (also called “hot spots”) are the
main cause of a transaction abort. When operations on hot
spot objects are combined with those on less contended shared
objects in the same sub-transaction, valid operations (mostly
those on non-contended objects) are re-executed when an abort
occurs due to the invalidation of a hot spot object. In this
case, partial rollback’s effectiveness is reduced, along with its
performance gain. Operations on system’s hot spots should be
separated from operations accessing less contended objects to
reduce the number of valid operations to rollback.
Code repositioning. The position of transactional operations
is defined by the programmer; however there are parts of a
transaction that can sometimes be moved within the trans-
action’s boundary because they are independent from other
parts (i.e., there is no data-dependency between them). The
basic property of transaction processing is that the whole
transaction is executed “all or nothing”, therefore reposition-
ing such independent parts neither changes the transaction
logic, nor affects transaction correctness. The closed nesting
technique can take advantage of such code repositioning – in
transactions where it is possible – for increased performance.
In closed nesting, when an object accessed by a committed
sub-transaction is invalidated, the entire transaction has to re-
execute. As discussed before, such re-executions can be miti-
gated by shifting independent sub-transactions closer to their
parent’s commit phase (i.e., at the end of an atomic section).
The effectiveness of code repositioning is particularly evident
when combined with the contention probability of independent
sub-transactions. Moving sub-transactions that access system’s
hot spots closer to their parent’s commit phase significantly
reduces the transaction’s invalidation probability. This benefit
is because contended objects, that cause invalidation, are not
accessed at the beginning of the transaction but close to its end.
As a consequence, when an abort occurs during the execution
of the shifted sub-transaction, almost all of the original (i.e.,
parent) transaction has already been executed, reducing the
amount of work to be re-done.

These factors represents guidelines that the programmer
should consider while defining closed-nested transactions.
Combining all these factors is critical for effectively exploiting
closed nesting as a partial rollback mechanism. However, given
the number of trade-offs that must be considered when these
factors are combined, effectively using closed nesting could be

difficult for a programmer, and sometimes impossible, when
the application workload changes over time. Our contribu-
tion, the ACN framework, monitors the current contention
probability of the shared objects and adjusts sub-transactions’
definitions at run-time to find the best trade-off among the
aforementioned three factors.

IV. SYSTEM MODEL

We consider a distributed system, which consists of nodes
that communicate by message-passing links. A set of dis-
tributed transactions T := {T1, T2, . . .} sharing objects
O := {o1, o2, . . .} distributed over the network is assumed. A
transaction consists of a sequence of requests, each of which
is a read or a write operation for an object, followed by a
commit operation. An object has the following meta-data that
are used for QR-CN’s operations:
- Version number maintains the object’s version number and

is used during object validation.
- Protected is a boolean field. When true, read or write to the

object is disabled until commit is complete, after which it
is set to false.
According to QR-CN, write operations, after fetching the

requested objects, are buffered in the write-set and the return
values of read operations are logged in the read-set. Read-set
and write-set are private (i.e., non-shared with other transac-
tions) memory spaces. Writes are applied to the shared state at
commit time, after acquiring locks on the read-set’s elements.
A two-phase-commit protocol is used at commit time for
finalizing the commit procedure. The complete description
of QR-CN and QR-DTM can be found in [10] and [16]
respectively. Hereafter, we refer to the requesting transaction
as client, and the quorum node as server.

ACN has been designed for decomposing transactions with
only one level of nesting, which means that when a sub-
transaction TS is defined, no further nested transaction are
allowed in the context of TS . In transaction processing, due
to the complexity of defining nested transactions, the common
model is using only one level of nesting (e.g., [14], [15]).

V. ACN: AUTOMATED CLOSED NESTING

As [10] shows, closed nesting can improve performance of
fault-tolerant DTM. However, in certain cases, performance
can degrade due to large numbers of partial aborts. Therefore,
it is important to appropriately compose closed-nested trans-
actions to effectively utilize the benefits of partial aborts. In
order to determine the correct composition of closed-nested
transactions, one needs to know the degree of contention of
the objects involved in transaction execution. Contention of
an object depends on factors such as the write workload,
access pattern, and the number of servers (i.e., quorum nodes)
and clients in the system. Given the dynamic nature of
these factors, contention of objects can only be determined
during application run-time. Therefore, it is complicated for a
programmer to effectively compose closed-nested transactions
while taking into account these run-time behaviors.

To this end, we develop an automated closed nesting frame-
work, QR-ACN, which dynamically (re-)determines the com-
position and order of closed-nested transactions. We follow a
hybrid approach where we use static and dynamic analyses to
determine the closed-nested transactions’ composition. Static
analysis involves data dependency analysis of transactional
code at compile-time, while dynamic analysis involves mea-
suring the contention of objects at run-time. The information
collected from these analyses are used to properly compose
closed-nested transactions.

A. Overview

The basic idea behind automated closed nesting is exploiting
the contention probability of shared objects accessed for
guiding the definition of sub-transactions. In fact, we can sum-
marize ACN’s activities in the following two steps: 1) it defines
the size of a sub-transaction depending on the contention of its
accessed objects; and 2) it moves independent sub-transactions
that access heavily contended objects closer to the parent’s
commit phase. By doing so, sub-transactions accessing low
contended objects are executed at the beginning of parent’s
execution while those sub-transactions containing accesses to
high contended objects are executed later. These two steps
are then repeated periodically such that the sub-transaction’s
definition is refreshed according to the application workload.

We illustrate this with an example. Consider a bank trans-
action (of Bank benchmark), where funds are transferred
from a bank account Account1 belonging to branch Branch1
to another account Account2 belonging to branch Branch2.
The pseudo-code for this transaction, written as a flat-nested
transaction, is shown in Figure 1. Lines 2-5 correspond to
reading remote object copies of the branch objects Branch1
and Branch2, and withdrawing and depositing amounts from
them, respectively. Lines 6-9 correspond to reading remote
object copies, and withdrawing and depositing on Account1
and Account2, respectively.

1 T FLAT :
2 branch1 = getRemote (b r a n c h I d 1) ;
3 b ranch2 = getRemote (b r a n c h I d 2) ;
4 b ranch1 . wi thdraw (amt1) ;
5 b ranch2 . d e p o s i t (amt2) ;
6 a c c o u n t 1 = getRemote (a c c o u n t I d 1) ;
7 a c c o u n t 2 = getRemote (a c c o u n t I d 2) ;
8 a c c o u n t 1 . wi thdraw (amt1) ;
9 a c c o u n t 2 . d e p o s i t (amt2) ;

10 i f ! commit ()
11 r e t r y T FLAT ;

Fig. 1. Example of flat-nested Bank transaction.

Objects Branch1 and Branch2 are globally shared objects
for their respective branches, hence, other transactions will
also access them. Thus, at run-time, they will be highly
contended. On the other hand, objects Account1 and Account2
will have low contention as they would have lesser number of
accesses. Thus, the contention levels of the branch and account
objects will differ significantly. For this transaction, having
the branch operations (lines 2-5) and the account operations

(lines 6-9) inside the same closed-nested transaction would not
yield any performance improvement over flat nesting. That is
because the probability of aborting while executing the branch
operations is higher, thus, each time one of these objects (i.e.,
Branch1 and Branch2) is invalidated by another committing
transaction, the entire sub-transaction is restarted, repeating
operations on Account1 and Account2 that are likely still valid.
Adopting this configuration, the behavior would be the same
as that of flat nesting.

1 T PARENT
2 a c c o u n t 1 = getRemote (a c c o u n t I d 1) ;
3 a c c o u n t 2 = getRemote (a c c o u n t I d 2) ;
4 a c c o u n t 1 . wi thdraw (amt1) ;
5 a c c o u n t 2 . wi thdraw (amt2) ;
6 T CLOSED
7 branch1 = getRemote (b r a n c h I d 1) ;
8 b ranch2 = getRemote (b r a n c h I d 2) ;
9 b ranch1 . wi thdraw (amt1) ;

10 b ranch2 . d e p o s i t (amt2) ;
11 i f (! commit ())
12 r e t r y T CLOSED
13 i f ! commit ()
14 r e t r y T PARENT ;

Fig. 2. Modified flat-nested Bank transaction.

Furthermore, if we look closely at Figure 1, there is no data
dependency between the branch operation and the withdrawal
operation. We can potentially change the order of these op-
erations as shown in Figure 2. With this change, the branch
operations are closer to the commit phase. We observe that
the transaction is more likely to encounter conflict due to
branch objects. Hence, we wrap the branch operation inside a
closed-nested transaction, as shown in Figure 2 (lines 7-12).
The conflict encountered in the closed-nested transaction can
now be resolved using partial abort and restarted from line 7.
Operations already performed on Account1 and Account2 are
still valid and they do not need to be re-executed.

Note that changing the order of the operations will not
affect the correctness of the transaction because it is executed
atomically. The functional behavior of the transaction still
remains the same. In fact, in both the cases, the transaction
read-set and write-set are exactly in the same state, and the
changes are applied during the commit phase. Moreover, a
transactional operation doing only local computation, e.g., line
10 in Figure 2, depends on the shared object globally retrieved
before, e.g., line 8. These operations should be enclosed in
the same sub-transaction such that, when the accessed object
becomes invalid, both can be re-executed without involving
the re-execution of the whole transaction.

In order to devise a framework that automatically deter-
mines the composition of closed-nested transactions, we need
a mechanism that detects data dependencies and contention
level of objects.

B. ACN Design

QR-ACN can change the composition of closed-nested
transactions dynamically depending upon the contention level
of the objects accessed. To achieve this goal, transaction code

has to be transformed during initialization. We now introduce
a few definitions to illustrate how transactional code execution
happens in QR-ACN.

UnitBlock. We divide transactional code into distinct sec-
tions called UnitBlocks. A UnitBlock is the smallest logical
unit of code in QR-ACN, and it comprises of exactly one
remote object invocation. The contention level of a UnitBlock
is the contention level of the remote object it opens.

We consider the UnitBlock as a logical unit of code because
it contains the first access to a shared object. When the
transaction aborts due to the invalidation of an object o
accessed, the partial abort mechanism restores the transaction’s
execution from a point before performing the read operation on
o such that the invalid object (i.e., o) can be refreshed with the
new version in the system. In closed nesting, when an object
inside the sub-transaction is invalidated, the sub-transaction
is restarted, including the operation for retrieving the object.
For this reason we consider a UnitBlock composed of the first
transactional read on a shared object.

Transactional operations resulting in only local computation
on the shared object accessed are included in the same
UnitBlock containing the access to the object. Clearly, there
are local operations accessing more than one shared object
(e.g., C = A + B where A and B are shared objects).
In this case, the read operation on A will be enclosed in
a UnitBlock (UnitBlockA); the read operation on B will
be enclosed in another UnitBlock (UnitBlockB); and the
operation C = A + B will be included in the latest sub-
transaction preceding the operation (e.g., in a transaction
composed of: {Read(A), Read(B), C = A + B}, the local
operation C = A+B will be wrapped in the same UnitBlock
as Read(B)’s, while Read(A) will define a new UnitBlock.

Block. Multiple UnitBlocks can be combined to form a
Block. ACN leverages on the actual contention level of ad-
jacent UnitBlocks for making the decision about merging the
UnitBlocks into a single Block. ACN allows programmers to
provide custom models for calculating the contention level of
a Block starting from the contention level of all the objects
accessed in its UnitBlocks. In this paper we approximate
the object’s contention level as a means for defining the
abort probability of a transaction accessing that object. With
this approximation, we rely on a simple and fast-to-compute
analytic model for calculating the abort probability of the
entire Block, using the same methodology presented in [19].
A Block enclosing multiple UnitBlocks represents a piece of
code to be executed.

Executor Engine. This module is responsible for maintain-
ing the sequence of Blocks that comprises a transaction and
for executing those Blocks in that order. In order to execute
a Block, the module executes all the UnitBlocks enclosed
inside it. The sequence of Blocks can be changed over time,
depending on the workload. Note that the sequence can be
changed only by the Algorithm module (see below).

Figure 3 shows the Bank transaction arranged in UnitBlocks
and Blocks. In the original Block sequence (Figure 3(a)), each
Block contains one UnitBlock which in turn consists of one

remote object invocation. As already stated in Section V-A,
branch objects are more contended than account objects. For
this reason, UnitBlocks corresponding to branch objects are
merged inside a single Block (i.e., B2). Similarly, account
objects are merged into Block B1. B1 and B2 will define two
different closed-nested transactions.

The different contention levels of B1 and B2 also trigger
a change in the order of sub-transactions. Moving B2 closer
to the parent transaction’s commit increases the effectiveness
of closed nesting because, after an invalidation of Branch1
or Branch2, the entire B1 is still valid and it does not need
to be re-executed. In contrast, leaving B2 before B1 results
in re-processing B1 each time an object on B2 is invalidated
while B1 is executing.

(a) Original Block Sequence (b) Modified Block Sequence

Fig. 3. Code Arrangement using UnitBlocks and Blocks.

We now describe the core modules of QR-ACN.
Static Module. This module maintains static information

of transaction code. It is triggered at the beginning of the
application and creates a graph model of transaction code,
called UnitGraph. During run-time, the graph model is queried
by the Algorithm Module for detecting data dependencies.

Dynamic Module. This module collects run-time parameters
such as objects’ write and abort ratios and feeds them as input
to the Algorithm Module.

Algorithm Module. This module is invoked periodically.
It accepts input from the Static Module and the Dynamic
Module and processes it to produce a sequence of Blocks. (We
describe the algorithm used to compute the Block sequence
in Section V-C.) The sequence is then input to the Executor
Engine, which executes the Blocks in that order.

C. Algorithm
1) Data Dependency Analysis: We use the Soot [20] Java

source code analysis framework for dependency analysis of
transactional code. Soot converts Java classes into four differ-
ent intermediate representations, each of which can be used for
different kinds of program analyses. The framework creates a
control-flow graph, called UnitGraph, where a node represents
a program statement and an edge represents the control flow
between the nodes. In order to determine the data dependency
among the nodes, we perform data flow analysis on top of the
UnitGraph. Specifically, for every node in the UnitGraph, the
in-flow and out-flow data is tracked to create data dependency
edges among the nodes.

Next, we identify the invocations to access remote objects
from the UnitGraph. This task is straightforward because in
QR-CN, as well as in QR-ACN, the first read and write
operation on a shared object always involves remote interac-
tion for retrieving the latest version of the object. UnitBlocks
are created from those UnitGraph nodes that contain remote
invocations. Each UnitBlock is associated with the remote
object’s class and is registered in the ACN Module. Subse-
quently, all the transactional operations performing only local
computations are assigned to the just-defined UnitBlocks. Each
one is enclosed to the latest UnitBlock that contains the access
on a shared object managed by the local operation. If a local
operation Oloci does not manipulate any shared object, it is
necessarily depending on another local operation Olocj (or
via a chain of local operations) that manages a shared object
(note that operations completely independent from the rest of
the code are usually not enclosed in transactions). In this case,
Oloci will be merged with the UnitBlock containing Olocj .

As an example, say T a transaction performing: {Read(A),
Read(B), Read(C), Read(D), var = A+B, var = var/2,
Read(E), var2 = E+B}. Using the UnitGraph, the operation
var = A + B will be part of the UnitBlock containing
Read(B) because it is the last UnitBlock where the read
operation on A or B has been performed. Following the same
rule, the operation var2 = E + B will be included in the
UnitBlock containing Read(E). The operation var = var/2
does not manipulate any shared objects but it has a dependency
with the operation var = A + B. In this case, var = var/2
will be enclosed in the same UnitBlock that contains var =
A+B. Associating local computation to a UnitBlock is again
straightforward by simply analyzing the UnitGraph flows.

Dependencies between the UnitBlocks are registered. If
there is a dependency between nodes belonging to different
UnitBlocks, then there is a dependency between the Unit-
Blocks as well. Each UnitBlock has an ID, which is its index
in the sequence of UnitBlocks. At this point, the transaction
source code is automatically transformed: a new function is
defined with the Block (see Section V-B for the definition of
Block) to be executed as the input. The body of this function
consists of all the UnitBlocks. A UnitBlock in the function
body is executed only when the Block input to the function
contains that UnitBlock’s ID. Figure 3(b) provides an example
of this transformation.

Block Sequence is the sequence of Blocks that can be
executed without altering the transaction’s semantics. During
initialization, a Block is created from a single UnitBlock and
the sequence found in the UnitGraph is followed. At run-time,
UnitBlocks can be merged according to their contention level,
creating bigger Blocks. Thus, a Block can consist of multiple
UnitBlocks. This Block Sequence forms the input to the
Executor. Each Block represents a closed-nested transaction.

This configuration is the first used when the system is de-
ployed. It does not represent the optimal configuration but, by
using only the static analysis, run-time behaviors like objects’
contention cannot be captured. For example, a transaction
T={Read(OA), Read(OB), var = OA + OB} results from

the static analysis as two Blocks, each with one UnitBlock:
BL1={Read(OA)} and BL2={Read(OB), var = OA+OB}.
The operation var = OA +OB is enclosed in BL2; however
it could also be enclosed in BL1, moving the resulting BL2

before BL1. This way, if the contention level of BL1 is higher
than BL2, BL1 can be moved closer to T ’s commit phase,
increasing the effectiveness of closed nesting (and vice-versa).
With the configuration resulting from the static analysis, BL1

has a data dependency with BL2 because BL2 uses an object
(i.e., OA) read by BL1, therefore BL1 cannot be moved after
BL2. For addressing this problem, the composition of sub-
transactions will be further refined at run-time, taking into
account the actual application workload.

According to the evolution of an application’s workload,
some UnitBlock can also be extracted from its Block to
become a new, smaller Block. The data dependency analysis
generates the so-called dependency model for each transaction.

2) Contention Level: The contention level of each shared
object is the parameter we use for identifying system’s hot
spots. However QR-ACN is flexible in doing so, as it allows
programmers or system administrators to provide a custom
model for calculating the contention level. We use the term
“contention level” as an indicator for representing when an
object is a hot spot. Different programmers can classify
hot spots in different ways, therefore QR-ACN offers the
opportunity to provide custom characterization for them.

The purpose of QR-ACN is not providing a methodology
for profiling system’s hot spots, although, for the sake of
completeness, we overview a simple analytical model that we
used during the evaluation of QR-ACN. We approximate the
contention level of a shared object according to the number
of write operations occurred on that object since the last
observation. This information is maintained by quorum nodes.
Whenever a transaction, during its commit phase, sends a write
request of an object, the node increases a counter associated
to that object. The algorithm for assessing the compliance
with the current composition of closed-nested transactions is
invoked periodically (as we will illustrate in Section V-C3).
Each period represents a time window. Moving from one time
window to the next one implies resetting the counters of write
operations. This way, at any point in time, the contention level
of an object is calculated as the number of write requests
happened in the last time window. The greater this value, the
greater the contention level for that object.

For obtaining the sequence of Blocks to provide better per-
formance, the clients request the contention level of accessed
objects. They create the list of objects that are contained in the
Block sequence. This list is sent as part of the request to the
quorum nodes. Upon receiving the request, the quorum nodes
determine the contention level of an object as the number
of write operations in the last time window, and the list of
contention levels is sent back to the requesting client. This
process introduces just a small overhead because meta-data
are coupled with existing network messages, which slightly
increases the network transmission delay. However, messages
are compressed such that this additional cost is minimized.

A Block could be composed of multiple UnitBlocks merged
together. As a result, this Block will contain a number of
accesses to shared objects equal to the number of UnitBlocks
merged. In this case, QR-ACN should calculate the contention
level of the whole Block. However, as we will show in the next
sub-section, the algorithm for creating Blocks from UnitBlocks
always starts decomposing all merged Blocks into UnitBlocks,
as in the original version after analyzing the UnitGraph. For
this reason, QR-ACN only takes into account the contention
level of single object because each UnitBlock is composed of
only one access to a shared object.

We approximate the contention level of a shared object
with the abort probability of a transaction accessing only that
object. In fact, when the contention level of an object o is
high, the probability that a transaction (or a sub-transaction)
accessing o is aborted increases. More complex analytical
models can be adopted for determining the contention level
and the abort probability of UnitBlocks. An example of these
models applied to STM can be found in [19]. However, all of
them should consider the time needed for solving the model
itself. Expensive computations are usually not suited for on-
line transaction processing. Our solution is fast and provides a
good representation of the actual contention level of an object.

3) Algorithm Module: The Algorithm Module is triggered
periodically on the client nodes. The input of this module is
the current Block sequence, the contention level of each object
within a Block, and the dependency model (see Section V-C1
for the definition of dependency model) between the Blocks.
The module output is the new Block sequence. The depen-
dency model is created during the initialization of the system,
while the contention level of objects (at that point in time) is
requested from the quorum nodes.

The Algorithm module works on the basis that highly
contended objects (hot spots) should be as close to the
transaction commit phase as possible. In order to achieve this,
the module attempts to compose and shift Blocks accessing
highly contended objects, while maintaining data dependencies
among Blocks. The process has three steps:

Step 1. In the first, the algorithm seeks a new Blocks config-
uration such that it can exploit the current objects’ contention
levels. The current Block sequence is discarded and merged
Blocks are split again. All the local operations (managing
shared objects or depending on other local operations that
manage those objects) are separated by their current Unit-
Blocks. For each local operation Oloc, the algorithm seeks the
most contended UnitBlock that contains the access to one of
the objects managed by Oloc. This way, UnitBlocks accessing
highly contended objects also contain their dependent local
operations. The first step enables the possibility to move
Blocks closer to the transaction’s commit phase. This step also
solves the problem of static analysis, as reported at the end of
Section V-C1.

Step 2. The second step seeks to merge adjacent depen-
dent UnitBlocks that expose similar (less than a configured
threshold) contention levels. This is because, in case they are
dependent and with a similar contention level, they can: i)

be moved together closer to the transaction’s commit phase;
ii) maximize the effectiveness of partial rollback because an
invalidation of one of their objects accessed causes the re-
execution of only the new bigger Block instead of the (pos-
sibly) entire transaction due to the presence of two different
UnitBlocks.

Step 3. The third step sorts the new Blocks depending
on their current contention levels. Starting from the lowest
contention level, each Block is shifted such that all the
Blocks executing before it have lower contention levels, while
preserving the data dependency.

As we will show later (Figure 4(d)), the overhead of this
algorithm is limited because, usually, transactions’ sizes are
not as big to make its computation unfeasible. This algorithm
is executed asynchronously and periodically by clients running
the transactional applications.

VI. EXPERIMENTAL EVALUATION

We implemented QR-ACN extending QR-CN [10]. We
evaluated QR-ACN using three benchmarks widely adopted
in transaction processing such as TPC-C [12], Bank and
Vacation [13]. TPC-C [12] is the popular On-line Transaction
Processing (OLTP) benchmark emulating an order processing
system for a wholesale supplier with multiple districts and
warehouses; Bank emulates a bank application; and Vacation is
a transactional application from the famous STAMP suite [13]
that mimics the process of booking vacations.

Our test-bed consists of up to 30 nodes, 10 serving as
servers and up to 20 as clients, interconnected using a 1Gbps
switched network. Each node is an AMD Opteron machine
with eight CPU cores running at 1.9GHz. We do not show
results increasing the number of nodes because an evaluation
study of QR-CN is already presented in [10]. We measured
the throughput on client nodes as transactions committed per
second. We compared the throughput of QR-DTM and QR-
CN (i.e., manual closed nesting) with QR-ACN. We ran QR-
ACN’s algorithm for assessing the effectiveness of the current
closed nesting configuration every 10 seconds, and measured
the system throughput for every 10 second time interval. Every
datapoint reported is the average of four repeated experiments.

In this evaluation we span scenarios where closed nesting is
particularly effective (e.g., Figure 4(b)), as well as scenarios
where this partial rollback mechanism does not pay off in
terms of performance improvement (e.g., Figure 4(d)). This
way we also provide a hint about the applicability of ACN on
other benchmarks.

A. TPC-C Benchmark

We compared QR-DTM, QR-CN, and QR-ACN for write
intensive workloads on the TPC-C benchmark such that the
partial abort mechanism can be effective on the overall perfor-
mance. We configured the clients to generate 100% NewOrder
transactions of the TPC-C specification. Figure 4(a) shows the
throughput of QR-DTM, QR-CN, and QR-ACN for different
time intervals. We observe that QR-DTM and QR-ACN have
the same throughput up to t = 10 sec because QR-ACN is still

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50

T
h

ro
u

g
h

p
u

t
(t

x
/s

e
c
)

Time Interval (seconds)

QR-DTM

QR-CN

QR-ACN

(a) 100% NewOrder.

 200

 300

 400

 500

 600

 700

 800

 10 15 20 25 30 35 40 45 50

T
h

ro
u

g
h

p
u

t
(t

x
/s

e
c
)

Time Interval (seconds)

QR-DTM

QR-CN

QR-ACN

(b) 100% Payment.

 40

 60

 80

 100

 120

 140

 0 10 20 30 40 50

T
h

ro
u

g
h

p
u

t
(t

x
/s

e
c
)

Time Interval (seconds)

QR-DTM

QR-CN

QR-ACN

(c) 50% Payment and New Order.

 50

 55

 60

 65

 70

 0 10 20 30 40 50

T
h

ro
u

g
h

p
u

t
(t

x
/s

e
c
)

Time Interval (seconds)

QR-DTM

QR-CN

QR-ACN

(d) 100% Delivery.

 20

 40

 60

 80

 100

 120

 140

 160

 0 5 10 15 20 25 30 35 40

T
h

ro
u

g
h

p
u

t
(t

x
/s

e
c
)

Time Interval (seconds)

QR-DTM

QR-CN

QR-ACN

(e) Vacation Benchmark.

 50

 100

 150

 200

 250

 0 5 10 15 20 25 30 35 40

T
h

ro
u

g
h

p
u

t
(t

x
/s

e
c
)

Time Interval (seconds)

QR-DTM

QR-CN

QR-ACN

(f) Bank Benchmark.

Fig. 4. Performance results with TPC-C, Vacation and Bank benchmarks.

monitoring the workload for figuring out the best closed nest-
ing configuration. In this first observation, QR-CN outperforms
the others. In the next time interval, QR-ACN determines
the heavily contended objects (District in this case). The
transactional code as per the TPC-C specification performs the
remote operations initially in the execution. QR-ACN moves
the remote operation on District as close to the commit phase
as possible, while satisfying data dependencies. Additionally,
QR-ACN merges the blocks with similar contention levels.
This adjustment results in throughput improvement of 53%
over QR-DTM and of 38% over QR-CN.

We performed a similar comparison for Payment, another
write-transaction profile of the TPC-C specification. The
throughput variation with time is shown in Figure 4(b). We
observe that, initially, QR-ACN’s throughput is lower than that
of flat nesting and manual closed nesting, because the initial
configuration of closed-nested transactions is not effective for
partial abort. However, after t = 10 sec, the composition is
changed. QR-ACN determines the high contention objects
to be District and Warehouse, and shifts them closer to the
commit phase. This shift results in a throughput improvement
of 53% over QR-DTM and 45% over QR-CN.

Next, we compared QR-DTM, QR-CN, and QR-ACN for
the TPC-C profile of 50% of Payment and NewOrder transac-
tions. The results are shown in Figure 4(c). We observe that
after QR-ACN “kicks in” the throughput improvement over
QR-DTM is 28% and that over QR-CN is 9%.

TPC-C has another write-transaction profile, Delivery,
which accesses objects such that the difference between their
contention levels is not significant (all the objects have similar
low contention levels). In this scenario, the closed nesting
technique (QR-CN and QR-ACN) is not effective. This can

be seen from the Figure 4(d), as there is no major difference
in performance of QR-DTM, QR-CN and QR-ACN. However,
this plot assesses the minimal overhead of QR-ACN with
respect to the manual QR-CN. Even though QR-CN is mostly
better than QR-ACN, this gap is always less than 3%, high-
lighting that the overhead of QR-ACN does not significantly
deteriorate the classical closed nesting performance.

B. Vacation Benchmark

We evaluated QR-ACN for the Vacation benchmark, an
application of the STAMP benchmark suite [13]. In our setup,
we changed the contention of objects during different time
intervals. Figure 4(e) shows the variation of throughput for
QR-DTM, QR-CN, and QR-ACN for the time intervals. The
highly contended objects change in the second and fourth time
intervals. At the beginning of the experiment, QR-CN has
the best performance, because QR-ACN is still monitoring
the workload. Subsequently, in the second time interval, we
observe that QR-ACN adjusts dynamically to the changing
workload, and yields a throughput improvement of 120% over
QR-DTM and 35% over QR-CN, whose throughput remains
the same. In the fourth time interval, QR-DTM’s through-
put increases as its existing composition favors the changed
workload. QR-ACN still outperforms QR-DTM by 8%. QR-
DTM and QR-CN do not change their behavior depending
on the objects’ contention levels. Thus, their effectiveness is
unpredictable when the workload changes.

C. Bank Benchmark

We configured the benchmark to generate 90% of write
transactions and, as in Vacation, we changed the contention

of objects in the second and fourth time intervals. At the be-
ginning, QR-CN performed the best because the configuration
suggested by the static analysis of QR-ACN does not take into
account contention level. In fact, in the subsequent data-point,
QR-ACN moves branch operations closer to the transaction’s
commit phase and defines two sub-transactions wrapping
account operations and branch operations respectively, max-
imizing the effectiveness of partial rollback. As the results
in Figure 4(f) show, we can observe better performance of
QR-CN at the beginning but subsequently QR-ACN optimizes
sub-transactions such that the gain becomes up to 55%.

VII. RELATED WORK

Transactional nesting has been studied for TM, but largely
in the multiprocessor context. Harris et al. [21] argued that
closed-nested transactions, supporting partial rollback, are
important for implementing composable transactions, and pre-
sented an orElse construct that relied on closed nesting.
In [22], Adl-Tabatabai et. al. presented an STM that provides
both nested atomic regions and orElse, and introduced the
notion of mementos to support efficient partial rollback. All
of these works assume manual definition of closed-nested
transactions and they do not consider the problem of system
hot spots while creating sub-transactions.

Herlihy and Koskinen [11] proposed checkpointing and par-
tial aborts (in multiprocessor TM), as an alternate to nesting.
They argued that fine-grained checkpointing can be achieved
and closed nesting is a more rigid alternative. However,
checkpointing needs to save and restore the processor context
to resolve conflicts, and therefore may not be suited for all
platforms. Rainbow OS [23] proposed to checkpoint the entire
DTM system state, which can be used in case of node failures.
Note that this is different from the concept of transactional
checkpointing discussed in this paper.

Code transformation and analysis have been widely applied
in the context of concurrent applications. The domination
locking protocol [24] transforms sequential code to fine-
grained locking. The technique applies to systems where the
shape of memory forms a forest. CONCURRENCER [25] is a
code refactoring tool, which helps to transform sequential Java
code into that using the java.util.concurrent library
in an error-free and omission-free manner. CalFuzzer [26] im-
plements a two-phase active testing framework for concurrent
programs. Soot [20] is a Java code analysis framework that
is widely used. JDBC checker [27] checks the correctness of
dynamically-generated query strings, and internally uses Soot.
ACN relies on Soot for building transactions’ dependency
graphs and identifying independent segments.

VIII. CONCLUSION

Our work reveals that it is indeed possible to take the
programmer out of this loop: transactions can be automatically
decomposed into closed-nested transactions with effective per-
formance. Additionally, the work reveals that the performance
gain with closed nesting is significantly affected by the sys-
tem’s hot spots, which are likely to change over time in some

application situations, necessitating the need for automated
dynamic decomposition of transactions.

ACKNOWLEDGMENTS

This work is supported in part by US National Science
Foundation under grants CNS-1217385 and CNS-1116190.

REFERENCES

[1] N. Shavit and D. Touitou, “Software transactional memory,” ser. PODC,
1995.

[2] L. Dalessandro, M. F. Spear, and M. L. Scott, “NOrec: streamlining
STM by abolishing ownership records,” in PPOPP, 2010.

[3] D. Dice, O. Shalev, and N. Shavit, “Transactional locking II,” in
Distributed Computing. Springer, 2006, pp. 194–208.

[4] A. Turcu, B. Ravindran, and R. Palmieri, “Hyflow2: a high performance
distributed transactional memory framework in scala,” in PPPJ, 2013.

[5] A. Hassan, R. Palmieri, and B. Ravindran, “Remote invalidation: Opti-
mizing the critical path of memory transactions,” in IPDPS, 2014.

[6] M. Herlihy and Y. Sun, “Distributed transactional memory for metric-
space networks,” in DISC, 2005.

[7] D. Hendler, A. Naiman, S. Peluso, F. Quaglia, P. Romano, and A. Suissa,
“Exploiting locality in lease-based replicated transactional memory via
task migration,” in DISC, 2013.

[8] J. Kim and Ravindran, “Scheduling transactions in replicated distributed
software transactional memory,” in CCGRID ’13.

[9] J. Kim and B. Ravindran, “Scheduling closed-nested transactions in
distributed transactional memory,” in IPDPS, 2012.

[10] A. Dhoke, B. Ravindran, and B. Zhang, “On closed nesting and check-
pointing in fault-tolerant distributed transactional memory,” in IPDPS,
2013.

[11] E. Koskinen and M. Herlihy, “Checkpoints and continuations instead of
nested transactions,” in SPAA, 2008.

[12] “TPC-C benchmark: Transaction processing performance council.
www.tpc.org.”

[13] C. Cao Minh, J. Chung, C. Kozyrakis, and K. Olukotun, “STAMP:
Stanford transactional applications for multi-processing,” in IISWC,
2008.

[14] J. E. B. Moss and A. L. Hosking, “Nested TM: Model and architecture
sketches,” Sci Comp Prog, vol. 63, pp. 186–201, 2006.

[15] M. J. Moravan, J. Bobba, K. E. Moore, L. Yen, M. D. Hill, B. Liblit,
M. M. Swift, and D. A. Wood, “Supporting nested transactional memory
in logtm,” in ASPLOS, 2006.

[16] B. Zhang and B. Ravindran, “A quorum-based replication framework
for distributed software transactional memory,” ser. OPODIS, 2011.

[17] P. Bernstein and N. Goodman, “Multiversion concurrency controltheory
and algorithms,” TODS, 1983.

[18] D. Agrawal and A. El Abbadi, “The tree quorum protocol: An efficient
approach for managing replicated data,” in VLDB ’90.

[19] P. di Sanzo, B. Ciciani, R. Palmieri, F. Quaglia, and P. Romano, “On
the analytical modeling of concurrency control algorithms for software
transactional memories: The case of commit-time-locking,” Perform.
Eval., vol. 69, no. 5, 2012.

[20] R. Vallée-Rai, P. Co, E. Gagnon, L. Hendren, P. Lam, and V. Sundaresan,
“Soot: A java bytecode optimization framework,” in CASCON First
Decade High Impact Papers. IBM Corp., 2010.

[21] T. Harris, S. Marlow, S. Peyton-Jones, and M. Herlihy, “Composable
memory transactions,” in PPoPP, 2005, pp. 48–60.

[22] A.-R. Adl-Tabatabai, B. T. Lewis, V. Menon, B. R. Murphy, B. Saha,
and T. Shpeisman, “Compiler and runtime support for efficient software
transactional memory,” in PLDI, 2006.

[23] T. Schmitt, N. Kammer, P. Schmidt, A. Weggerle, S. Gerhold, and
P. Schulthess, “Rainbow os: A distributed stm for in-memory data
clusters,” in MIPRO, 2011.

[24] G. Golan-Gueta, N. Bronson, A. Aiken, G. Ramalingam, M. Sagiv, and
E. Yahav, “Automatic fine-grain locking using shape properties,” ser.
OOPSLA ’11.

[25] D. Dig, J. Marrero, and M. D. Ernst, “Refactoring sequential java code
for concurrency via concurrent libraries,” ser. ICSE ’09.

[26] P. Joshi, M. Naik, C.-S. Park, and K. Sen, “CalFuzzer: An Extensible
Active Testing Framework for Concurrent Programs,” ser. CAV ’09.

[27] C. Gould, Z. Su, and P. Devanbu, “Jdbc checker: A static analysis tool
for sql/jdbc applications,” ser. ICSE ’04.

