
HSG-LM: Hybrid-Copy Speculative Guest OS
Live Migration without Hypervisor

Peng Lu Antonio Barbalace Binoy Ravindran
Department of Electrical and Computer Engineering, Virginia Tech, Virginia, USA

{lvpeng, antoniob, binoy}@vt.edu

Abstract
Current Virtual Machine (VM) live migration mechanisms
only focus on providing a high availability service by offer-
ing minimal downtime to users. In this paper, we present a
novel live migration technique called HSG-LM, which also
aims to provide short waiting time to whoever is respon-
sible for triggering the VM migration (e.g., the data cen-
ter administrator). HSG-LM is implemented in the guest
OS kernel in order to not rely on the hypervisor through-
out the entire migration process. HSG-LM exploits a hybrid
strategy that reaps the benefits of both pre-copy and post-
copy mechanisms. Furthermore, HSG-LM integrates a spec-
ulation mechanism that improves the efficiency of handling
post-copy page faults. From our evaluation on different real-
world workloads (Sysbench, Apache, etc.), the results show
that HSG-LM incurs minimal downtime as well as short to-
tal migration time. Moreover, compared with competitors,
HSG-LM reduces the downtime by up to 55%, and reduces
the total migration time by up to 27%.

Categories and Subject Descriptors C.0 [COMPUTER
SYSTEM ORGANIZATION]: Systems Architecture; D.4.7
[OPERATING SYSTEMS]: Organization and Design

General Terms Design, Experimentation, Measurement,
Performance

Keywords Virtual Machine, Hypervisor, Live Migration

1. Introduction
Transferring the running application between two host ma-
chines by process migration has been thoroughly studied [6,
10, 15, 19]. However, in the real world, it is complex to im-
plement an efficient native process migration technique be-
cause the running task is intimately bound to the hosting OS

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
SYSTOR’13 June 30-July 2, 2013, Haifa, Israel.
Copyright c© 2013 ACM [to be supplied]. . . $15.00

(e.g., file descriptors, sockets) as well as the running plat-
form (e.g., device drivers, native compilation). Moreover,
considering the shared memory case, as each process may
interact with several other running processes, solo process
migration is not possible unless the involved processes are
completely independent. Otherwise, a special group of pro-
cesses need to be migrated together [18]. In addition to these
process-level migration mechanisms, a system-level strategy
that migrates all the running applications together as well
as their hosting OS is presented. Now the system-level mi-
gration attracts more attention, especially through the virtual
machine (VM) technology.

A virtual machine monitor (VMM) mediates all interac-
tions between hardware and software, encapsulates the state
of the running VMs, and isolates concurrently running OSes
and applications. VMs are increasingly being used by data
centers to provide greater flexibility and higher resource uti-
lization, as well as bring more security through isolated en-
vironments. A key feature of VM is migration. In traditional
stop-and-copy migration, the VM needs to be fully stopped
on the source host before migration; its state is then trans-
ferred to the target host and resumed there. However, this mi-
gration leads to unacceptable downtime for users. The down-
time is defined as the waiting time between when the VM is
unusable by the users (stopped on the source) and when the
VM is working again (resumed on the target).

An alternative is live migration, which refers to migrat-
ing VM to the target host while the VM is still running on the
source host. The hypervisor (or VMM) is used to manage the
entire migration process and to ensure minimal downtime to
users. In live migration, the downtime is so short as to be
almost unobservable for users (less than 1 second, usually
tens of milliseconds), so it does not jeopardize users’ inter-
action. Most state-of-the-art/practice VMMs (e.g., Xen [7],
VMware [25], KVM [3]) provide such a mechanism to-
day. VM live migration is also gaining increasing traction
in the “Platform as a Service” (PaaS; e.g., Google App En-
gine [2]) and “Infrastructure as a Service” (IaaS; e.g., Ama-
zon’s AWS/EC2 [1]) paradigms in the cloud computing.

However, this hypervisor-based migration method has
disadvantages that have been well-studied in the literature

during recent years [14, 24]. The main problems are due to
the central role that the hypervisor plays throughout the en-
tire migration process. The hypervisor needs to take care of
most of the management issues from the beginning to the
end of the migration. The central role of the hypervisor is
in fact the source of several major security concerns. Szefer
et. al. [24] show that if the hypervisor is attacked success-
fully by a malicious party, the attacker can easily inspect the
memory, expose confidential information, or even modify
the running software in the VM. Note that an investigation
of such security problems is out of the scope of our contri-
bution. However, the potential security problems caused by
the hypervisor inspired us to design a mechanism that does
not involve the hypervisor during live migration.

In an attempt to resolve these issues, in this paper, we
present a live migration mechanism that does not rely on
the hypervisor once the migration has been started. Besides
addressing the security issues, our research was targeted at
finding solutions to use-case scenarios that arise from com-
mon VM practice. One representative scenario is VM migra-
tions in a data center that offers an isolated VM for each user.
The administrator creates VM for each user with its own
fully-customized environment, in order to run its own set of
applications. In this scenario, there are several reasons why
the administrator might decide to migrate the VMs, such as
for load balancing and fault-tolerance purposes. Then in that
case, what are the metrics that an administrator should con-
sider in order to provide high availability service?

The answer to this question has driven our research ef-
fort in a top-down approach to the solution. Providing high
availability turns out to be equivalent to provide a satisfy-
ing user experience during VM migration. The administra-
tor does not want to cause the customers to be dissatisfied,
or they may leave and choose another provider. Therefore,
in order to make the user satisfied, the administrator has to
assure that the downtime perceived by the user, i.e. the time
while the user can not access his or her environment, is as
short as possible. Today, most hypervisor-based migration
mechanisms provide minimal downtime.

In addition to the transparent user experience, an admin-
istrator also has to consider the total waiting time to the
completion of each migration, as it affects the release of
resources on both source and target host [12, 13]. For ex-
ample, for some purposes such as load balancing, hardware
upgrade, etc, the administrator needs to shut down a running
host. In this case, it needs to migrate all the active VMs to
other hosts and wait until the whole migration has ended.
From the time the migration starts until the time the VM has
been resumed on the target machine, the administrator is not
able to release any resource in the VM, and has to wait un-
til the entire migration is completed. Therefore, considering
the administrator’s patience and its willingness to respect the
scheduled maintenance operations, the total migration time
is also very important.

As opposed to other works that only consider the high
availability by reducing the downtime, in this paper, we
introduce a new migration strategy, hybrid and speculative
guest OS live migration (or HSG-LM). The targets of HSG-
LM include maintaining both minimal downtime and short
total migration time. Our contributions include:

1) We implement the migration mechanism inside the
guest OS, so migration no longer relies on the hypervisor
throughout the entire migration;

2) We design and implement a hybrid-copy migration
mechanism, and investigate the pros and cons of the original
HSG-LM design;

3) To make improvements, we integrate a speculative
strategy into the HSG-LM implementation, and make the
final design adaptive to different kinds of workload. It further
reduces the downtime and total migration time;

4) We test on different workloads including Sysbench [4],
Apache [5], etc. Our results show that HSG-LM incurs min-
imal downtime and short total migration time. Compared
with competitors, HSG-LM reduces the downtime by up to
55%, and reduces the total migration time by up to 27%.

The remainder of the paper is organized as follows. Sec-
tion 2 discusses past and related work. Section 3 presents the
design of HSG-LM as well as the key methodology applied
in HSG-LM. Section 4 presents the optimization of HSG-
LM by introducing the speculative migration and the work-
load adaptive design. Section 5 reports our experimental en-
vironment, benchmarks, and evaluation results. We conclude
in Section 6.

2. Related Work
There are several non-live approaches to VM migration. In-
ternet suspend/resume [22] focuses on saving/restoring com-
puting state on anonymous hardware. Sapuntzakis et. al. [21]
address user mobility and system administration by encapsu-
lating the computing environment into capsules to be trans-
ferred between distinct hosts. Schmidt et. al. [23] apply
capsules, which are groups of related processes along with
their IPC/network states, as the migration units. Similarly,
Zap [18] uses process groups (pods) along with their ker-
nel state as migration units. In all these solutions, execution
is suspended and the applications within each VM do not
make any progress.

Currently, there exist many virtualization-based live mi-
gration techniques. Two representative live migration sys-
tems are Xen live migration [8] and VMware VMotion [16],
which adopt similar pre-copy migration strategies. Re-
mus [9] uses periodic high-frequency checkpointing to han-
dle hardware fail-stop failures on a single host with whole-
system migration. It does this by maintaining a completely
up-to-date copy of a running VM on the backup server,
which automatically activates if the primary server fails.
However, Remus incurs a large performance overhead (the
performance penalty reported in [9] is up to 50%).

Multi-VM migration mechanisms have also been stud-
ied, including VirtCFT [26] and VCCP [17]. VirtCFT pro-
vides fault-tolerance for virtual clusters by checkpointing
individual VMs to additional backup hosts. VirtCFT adopts
a two-phase commit coordinated-blocking algorithm as the
global checkpointing algorithm. A checkpoint coordinator
broadcasts checkpointing requests to all VMs and waits for
two-phase acknowledgements. However, as VirtCFT uses a
checkpoint coordinator that communicates (several times)
with each VM during a checkpoint period, the downtime is
increased due to additional communication delays. VCCP
also relies on reliable FIFO transmission to implement a
blocking coordinated checkpointing algorithm. Due to its
coordination algorithm, VCCP suffers from the overheads
of capturing in-transit Ethernet frames and VM coordination
before checkpointing.

Besides the pre-copy mechanism, there are also other re-
lated works that focus on migration optimization [20, 27].
Post-copy based migration [12, 13] is proposed to address
the drawbacks of pre-copy based migration. The experimen-
tal evaluation in [12] shows that the migration time using the
post-copy method is shorter than the pre-copy method. How-
ever, its implementation only supports para-virtualized (PV)
guests as the mechanism for trapping memory accesses and
utilizes an in-memory pseudo-paging device in the guest.
Since the post-copy mechanism requires a modified/patched
guest OS, it is not as widely used as the pre-copy mecha-
nism. Hines et. al. [12] also introduces the idea to combine
pre-copy and post-copy mechanism together but did not dis-
cuss the details because it’s out of the scope of the paper.
Our approach is different from [12]. They propose an adap-
tive pre-paging method, which keeps track of the access pat-
tern of the application. Although we also apply a kind of
pre-paging method, we speculate on locality and highlight
how this leads to a series of performance advantages for live
migration in Section 5.

3. Design and implementation of HSG-LM
3.1 Migration without hypervisor
In traditional live migration, the hypervisor is responsible for
keeping track of the dirty memory pages, as well as creating
a new VM on the target host and coordinating the transfer
of the VM state between the two hosts. However, one limita-
tion comes from the fact that the migration process totally re-
lies on the hypervisor throughout the entire migration phase.
Specifically, in order to track the dirty memory pages, the hy-
pervisor needs to record the dirty map, which is kept inside
the host OS, translate each address, find the corresponding
pages, and make the transfer. This hypervisor-central model,
as stated in the Introduction, brings a potential security prob-
lem: if the hypervisor is attacked successfully by a malicious
party, the attacker can easily inspect the memory, expose
confidential information, modify the running software in the

guest VM or even transfer the guest VM to a remote un-
trusted site.

An alternative is to perform live migration inside the
guest OS. The migration mechanism can still apply the pre-
copy procedure (like in [11]) as well as others, and all the
tracking and transferring work of memory pages will be
done by the guest OS itself, not by the hypervisor. However,
this approach is complex to implement in existing operat-
ing system software. Difficulties arise in transferring all the
consistent states from the running guest OS. Inside a run-
ning guest OS, the memory pages can be grouped into three
categories while migrating:

1) user-space memory pages;
2) kernel-space memory pages;
3) migration-dependent memory pages (that hold the mi-

gration data structures).
For the last type of memory, because the guest OS is

still running in order to transfer its final state, it generates
new dirty memory pages through the migration mechanism
itself. Therefore, the pages that are used by the guest OS
to track and transfer other dirty pages are impossible to
freeze and migrate. Hansen et. al. [11] solve this problem
by partitioning the final migration epoch into two stages:
the pre-final stage and last stage. In the pre-final stage, they
created a shadow buffer that is updated with the current dirty
pages, and in the last stage, only the data in the shadow
buffer is transferred to the target host by the hypervisor. They
verified that a consistent final view of the guest VM may
be achieved by performing this resend-on-write followed by
a copy-on-write method. However, the new shadow buffer
still creates new memory overhead. Moreover, the creation
and other operations of the buffer are within the final epoch,
which means that these operations increase the downtime
as well. Instead of re-implementing this mechanism, and in
order to avoid any further overheads, we apply a hybrid-copy
migration methodology. After the necessary state of the VM
is transferred to the target and the VM is resumed there, the
memory pages of the source VM are always transferred per
request from the target VM, and only the newest updated
copy is fetched and copied during the migration. We present
the details of our hybrid-copy in Section 3.2.

We set up a new page fault handler in the guest OS to
track the dirty memory inside the OS itself (on the target
host) and subsequently generate transfers. Therefore, the
migration does not rely on the hypervisor to manage the
memory pages anymore. For the new running VM, after
resuming on the target host, all memory pages are set as
read-only. Thus, if there is any write to a page, it will trigger
a page fault. The page fault is then reported to the new page
fault handler, and we log the change of this page to the dirty
bitmap kept by the guest OS. The set of dirty pages can
be implemented by using different data structures; here we
choose a bit vector because it is easy to estimate the space
requirements and memory overhead is minimal.

check error codePage fault

normal fault

write-protect fault
get pointer to

page table entry

forward to Linux
own fault handler

do_ page_ fault (v_addr, e_ code)

lookup_pte (v_addr)

write fault by
checkpointing?

Yeslog page
frame as dirty

log_ditry_pfn (pf_num)

also modify
page table?

Yes

log page table
as dirty

log_ditry_pfn (virtual_to_pfn(pte))

make writeable, continue
the faulting process

_PAGE_RW = 1

Return

Figure 1: Workflow of the new page fault handler.

Note that when a page fault occurs, this memory page is
set as writeable, but the page fault handler does not save the
modified page immediately, because there may be another
new write to the same page during the same interval. Instead,
HSG-LM records the address of the faulting page in the
dirty bitmap and removes the write protection from the page
so that the application can proceed with the write. At the
end of each migration, the dirty bitmap contains the address
translation info for all the pages that were modified. The
workflow of the new page fault handler is shown in Figure 1.

There is another advantage to installing a new page fault
handler inside the guest OS. In traditional hypervisor-based
migration, the hypervisor does not know what really occurs
with the applications running because the isolation feature
of the VM prevents all outside access. Therefore, compared
with the page fault trap mechanism implemented in the hy-
pervisor, our new handler is able to communicate with both
kernel and user space, so as to make a more accurate spec-
ulative migration. We discuss the speculative migration in
Section 4.

3.2 Hybrid-copy migration
In the Introduction we report a significant use case that
highlights two waiting times, both drawn in Figure 2, that are
incurred during live migration: downtime and total migration
time. As stated there, the downtime reflects the customer
satisfaction but the total migration time matters as well, e.g.,
when dealing with operations management of a data center.
Traditional VMM implementations [8, 16] exploit the pre-
copy technique, which is organized in epochs and works as
follows:

1) In the first migration epoch, the hypervisor on the
source host starts a host thread that pre-copies all of the

Source

TargetT1 T2

Downtime

resume

start pause

…...

still running

Source

TargetT1 T2

Downtime

transfer minimal
states to resume

pause not working

not working

Post-copy

Pre-copy

Total migration time

normal working

page faults

disrupted working
due to page faults

Total migration time

T3

Resume time

Source

TargetT1 T2

Downtime

transfer all
memory

pause

Hybrid-copy

normal working

less page faults

disrupted working
due to page faults

Total migration time

T3

Resume time

start

Transfer necessary
states to resume

normal working

Figure 2: Downtime and total migration time measurements.

VM’s memory pages to the target host while the VM is
running.

2) At the end of each subsequent migration epoch, the
hypervisor checks the dirty bitmap to determine which mem-
ory pages have been updated in this epoch. The hypervisor
transfers the newly updated pages only. Meanwhile, the VM
continues to run on source host.

3) When the pre-copy phase is no longer beneficial, the
hypervisor suspends the VM on the source host, transfers
the remaining data (newly updated pages, CPU register and
device states, etc.) to the target host, and prepares to resume
the VM there.

The traditional pre-copy migration mechanisms work
well regarding the downtime measurement, which is usu-
ally less than 1 second. However, the downtime takes only a
small fraction of the total migration time. From the pre-copy
workflow presented above, we observe that if a memory page
is frequently updated by some memory-intensive workload,
its updated copy will be transferred every time during each
migration epoch. Considering that a normal VM may be as-
signed up to several gigabytes of memory to run the guest
OS, this will bring a consistent overhead throughout the en-
tire migration, which leads to unacceptable total migration

times. We show this in our evaluation of the original pre-
copy mechanism in Section 5.3.

Instead of pre-copy, the post-copy migration mechanism
can reduce the total migration time. Hines et. al. [12] pro-
pose a basic post-copy framework via demand paging as fol-
lows:

1) During post-copy migration, the guest VM is first
suspended on the source host until a minimal and necessary
execution state (or checkpoint) of the VM (including CPU
state, registers, and some non-pageable data structures in
memory) has been transferred to the target.

2) Although the entire memory data is still on the source
host and no memory pages have been transferred to the
target, the VM is still resumed on the target host.

3) Whenever the resumed VM tries to access a memory
page that has not been fetched, a page fault will be generated
and redirected towards the source over the network, referred
to as a network fault.

4) The source host will respond to these network faults
by fetching the corresponding memory pages and transfer-
ring them to the target host.

In the pre-copy migration, the VM on the source host han-
dles user requests throughout the entire migration process.
As opposed to it, the post-copy migration mechanism del-
egates the user services’ response to the VM on the target
host. We present the downtime and total migration time for
post-copy migration in Figure 2 as well. Both downtime and
total migration time measurements are the same as that un-
der pre-copy migration. However, with post-copy migration,
when the VM starts to resume after a short downtime, it is
actually unusable for users for a period of initial time be-
cause of the occurrence of too many page faults. This time
period is shown as “resume time”. In our evaluation, it is
still counted in the downtime measurement because during
the majority of the resume time, the users’ normal activity is
impaired.

From Figure 2 and the above discussion, we observe that
both pre-copy and post-copy migration mechanisms have
their own benefits and limitations: short downtime but long
total migration time in pre-copy migration, the contrary for
post-copy migration, which leads to acceptable total migra-
tion times but incurs longer downtime (including resume
time). The difference is shown in our evaluation of both orig-
inal mechanisms in Section 5. To reap the benefits of both
pre- and post-copy mechanisms and to overcome their lim-
itations, our HSG-LM is the first that implements a hybrid-
copy method (introduced in [12] as future work but there is
no track of such work).

Our hybrid-copy migration performs a single round of
classic pre-copy transfer at the beginning, that is, all the
memory pages are copied from the source host to the tar-
get host while the VM is still running on the source. Then,
following the post-copy approach, the VM is paused on the
source host, a minimal set of necessary execution states is

transferred to the target, and the VM is resumed there. As
it performs a pre-copy round first, this hybrid mechanism
eliminates a great number of the page faults that usually
occur in the following post-copy round. Especially when
running read-intensive workloads, HSG-LM incurs minimal
downtime, as with the original pre-copy migration. On the
other hand, HSG-LM also supports deterministic total mi-
gration time as with the original post-copy migration, espe-
cially for the write-intensive workloads, because it ensures
that a memory page is transferred at most twice during the
entire migration (all the numbers are further discussed in
Section 5).

4. Speculative migration
4.1 Pros and cons of the hybrid design
In our early design, after the first pre-copy round where all
memory pages are transferred from source host to target
host, we let the VM resume on the target host after load-
ing only the necessary CPU and device states. Then we re-
store the updated memory data that was modified by the run-
ning VM during the first pre-copy round. Whenever the VM
needs to access a memory page which has not been updated,
it retrieves the corresponding data from the source host and
sets up the pages locally. The benefit of this solution is that
the VM starts very quickly, and it always keeps running
while restoring the memory data. Moreover, since the VM
only needs to restore a small number of CPU and device
states in order to start, its performance would not be reduced
by large VM memory sizes.

Compared with pre-copy migration, we note that the hy-
brid approach has some disadvantages. With the pre-copy
approach, after the VM starts, the VM works as well as it
did before the migration occurred. However, with the hybrid-
copy approach, the VM appears to be running almost imme-
diately after restoring the basic CPU and device states, and
with workloads with few writes, the penalty induced by page
faults that must go out over the network is relatively small.
However, write-intensive workloads may modify the mem-
ory pages with high frequency so that after the first round,
most memory pages received by the target host will need to
be updated again, so much of the pre-cached memory data
will not actually be usable. This will cause a significant num-
ber of network page faults to occur at the beginning, degrad-
ing VM performance. Note that the same problem happens
in post-copy mechanism too, with an even longer resume
time. Our experiments (Figure 6) show that using post-copy
migration, for a guest VM with 1GB RAM, during the first
14 seconds, the VM runs too slowly to be useful. Almost all
of this time was spent on restoring the updated memory data.

To reduce the total migration time, our goal is to run the
VM on the target host as early as possible, but to avoid the
performance degradation caused by page faults after the VM
starts. Our approach is to first resume the VM by loading
the necessary CPU/device states, and then when a page fault

f_mapping

struct task_struct
(/usr/bin/app)

struct mm_struct

mmowner

exe_file

struct file
/usr/bin/app

struct address_space

mmap

vm_next

vm_next

struct vm_area_struct

struct vm_area_struct

struct vm_area_struct

vm_prev

vm_prev

vm_file

/usr/bin/app address space

struct prio_tree_node

vm_start

vm_start

vm_start

vm_end

vm_end

vm_end
physical addresses

struct page
(anonymous)

struct page
(file)

struct page
(anonymous)

struct page
(file)

Stack
(anonymous)

Heap
(anonymous)

Text section
(file)

...

...

MMU
page table mapping

pgd

struct page

struct page

mapping

struct anon_vma

i_mmap

struct anon_vma

mapping

mapping

anon_vma

chain of
anon_vma_chain

Figure 3: Linux kernel data structures involved in task’s virtual to physical memory translation and inverse mapping.

occurs, to determine the memory pages that have a high
probability of being accessed in the near future and to restore
these pages from the source host. In other words, for each
page fault that occurs, we preload several additional memory
pages. By doing so, we reduce the possibility of future page
faults and thus reduce the overhead to handle them.

We determine the likely-to-be-accessed memory pages by
the principle of spatial locality on virtual address: if a page
is updated, its neighboring pages are likely to be updated in
the near future. We can rely on our knowledge of a page’s
address to predict the upcoming memory accesses.

4.2 Speculation: choose the likely to be accessed pages
Our HSG-LM runs mostly in the guest OS: it is ready to
run in a fully-virtualized environment, and we can directly
exploit the kernel data structures of the virtualized guest
OS. Knowing the data structure of the guest OS has the big
advantage that for each page used by the operating system,
we can easily determine which processes are using it. For
each process, we can identify the neighboring pages to the
faulting one. On top of that, we know the tasks that are
currently running on the guest OS.

With these considerations in mind, and the fact that the
bitmap of faulty pages is by design maintained in the guest
OS, we developed a set of speculative methods aimed at im-
proving the performance of our HSG-LM. The basic idea
behind our techniques is to transfer not one page per dirty
fault, but a bulk of pages (on-demand pre-paging), in or-
der to decrease the number of network transfers between the
source and the target host, shortening the waiting times in
the migration. Also, in HPC, the network latencies are still
an order of magnitude greater than for a multiprocessor in-
terconnect, so reducing the number of network transfers will
increase performance. To improve the user experience, we
propose that the pages to be transferred cannot be just cho-
sen randomly or like in [12] relying on the previous access
pattern, from the dirty bitmap. Instead, we choose to trans-

fer first the pages related to tasks that the user is interacting
with that are not necessarily related to the previous access
pattern. This turns out not to be straightforward but instead
to require knowledge of the Linux kernel internals (task’s
memory related data structures) that we briefly summarize
in the following for completeness. Figure 3 provides an il-
lustrative sketch.

The Linux kernel, like every other operating system that
runs on virtual memory, manages a per-task page table struc-
ture. The page table structures allow the processor’s MMU
to translate the addresses from virtual to physical. In Linux
every hardware memory page has a corresponding struct

page used by the system to “keeps track” of its usage and
Linux implements rmap (reverse mapping) that makes use
of the arrays of struct page to translate back from physi-
cal to virtual addresses. The Linux kernel maintains for each
thread a task control structure (struct task struct). For
each process, there are mainly two types of pages that are in-
teresting for our research: anonymous pages and file pages.
File pages are memory pages that contain an entire file or
part of a file that is normally resident on the hard drive.
This file can be either an executable or library, or a data file.
Anonymous pages contain the stack and the heap. From the
mm field in a struct task struct, it is possible to access
the process’ memory descriptor (struct mm struct) that
in the field mmap contains a linked list of virtual memory
area descriptors (vm area struct). Each virtual memory
area refers to a block of anonymous pages or a block of file
pages.

We identify the following speculation techniques:
1) randomly choose a group of r linearly contiguous

pages around the faulty page from the dirty bitmap, where
r is less than a customizable threshold (RANDOM);

2) bulk copy all the dirty pages that belong to a memory-
mapped file; a threshold can be specified to bound the num-
ber of pages per transfer (FILE);

3) bulk copy all the dirty pages that belong to an anony-
mous memory mapping (a single task VMA) (ANON);

4) same as the 3) but involves different VMAs; a thresh-
old can again be specified (ANON MULTI);

In our preliminary experiments, however, we found that
a general VM live migration mechanism does not work well
in all cases, for example, when dealing with memory read
intensive workload, integrating speculation in the migration
actually incurs longer downtime due to the overhead to lo-
cate the related pages. Therefore, we finally implement a
workload adaptive migration mechanism which could apply
different migration methods based on the types of the work-
load. For such workloads which modify the memory in high
frequency, the HSG-LM is triggered with speculation frame-
work. Otherwise, the speculation is disabled in the HSG-LM
and it will apply the hybrid-copy approach only. We evaluate
the workload adaptive design in Section 5.5

5. Evaluation and Results
5.1 Experimental Environment
Our preliminary experiments were conducted on a set of
identical machines equipped with an IA-32 architecture pro-
cessor (Intel Core 2 Duo Processor E6320, 1.86 GHz) and
4GB of RAM. We set up a 1Gbps network connection be-
tween the hosts and shared the file systems among all the
machines in this LAN. We built Xen 3.4.0 and ran a modi-
fied guest VM with Linux kernel 2.6.18. The guest OS and
the host OS (in Domain 0) ran CentOS Linux, with a min-
imum of services initially executing in the guest OS, e.g.,
sshd. Domain 0 has 1.5 GB of memory allocated, and the
remaining memory was left free to be allocated for guest
VMs. To ensure that our experiments are statistically signif-
icant, each data point is averaged from twenty samples. The
standard deviation computed from the samples is less than
3.4% from the mean value.

We refer to our proposed migration design with specu-
lation mechanism as HSG-LM. To evaluate the benefits of
the speculative migration, we compare HSG-LM with our
initial migration design without speculation, which we re-
fer to as HSG-LM-ns. All our HSG-LM implementations
are publicly available at http://www.ssrg.ece.vt.edu/
resilire. Our competitors include different checkpoint-
ing mechanisms including the original design of both pre-
copy and post-copy migration mechanisms. To make a more
clear comparison, we also implement an improved post-copy
migration mechanism (post-copy-i) by integrating the pre-
paging idea presented in [12]. In their paper, the pre-paging
component is provided that the VM’s pages are actively
copied from the source to the target, instead of waiting for
a fault to occur. They claim this could avoid most faults so
as to reduce the waiting time. Furthermore, we compare all
these results with a self-migration mechanism [11] which
triggers the migration from the guest OS itself by following
the similar pre-copy method. As opposed to our design, the

self-migration mechanism follows the pre-copy strategy. We
choose self-migration as another representative of pre-copy
migration. While the original pre-copy implementation is in-
cluded in Xen, the other competitors are not publicly avail-
able. Thus, we implemented prototypes for each mechanism
and used them in our evaluation.

5.2 Downtime
We evaluate the performance for migrating VMs running
two types of memory-intensive workloads: read-intensive
and write-intensive memory operations. We use the Sys-
bench [4] online transaction processing benchmark, which
consists of a table containing up to 4 million entries. We
perform either read or write transactions on the Sysbench
database to evaluate the performance of all the migration
mechanisms. The experiment is conducted on the guest VM
with assigned memory from 128 MB to 1GB, in order to
investigate the impact of memory size on downtime, total
migration time and other performance characteristics. Al-
though this range of memory may seem moderate given the
high quantity of RAM available in today’s data centers, we
found it to be reasonable for understanding the trends.

We first consider the measurement of the VM downtime.
The definition of downtime in the Introduction works well
under the pre-copy migration mechanism because after VM
resumption, the user could resume normal activity immedi-
ately. However, when using the post-copy strategy, after the
VM has been resumed on the target host, it is actually unus-
able by the users for an initial period of time due to excessive
page faults, so the resume time should be counted into the
downtime measurement as well. When measuring the down-
time in our experiment, we start measuring the elapsed time
when the VM is stopped on the source host, and stop when
the resumed VM is fully usable by the users. Figure 4a shows
the downtime results for the Sysbench-read benchmark for
six migration mechanisms with four different sizes of as-
signed guest memory.

We can make observations regarding the downtime mea-
surements. First, the downtime results of the pre-copy migra-
tion mechanisms (including self-migration) are short, while
the original post-copy migration incurs the longest down-
time. This is because memory updates are rare during the
Sysbench-read workload runs; there are relatively few dirty
memory pages left in its final migration epoch. On the other
hand, by using post-copy migration, there are no memory
pages restored in the resumed VM, so thousands of page
faults occur, and the resumed VM needs to go back to the
source host to fetch the corresponding pages, leaving the
VM unusable and leading to a much longer downtime. The
improved post-copy mechanism could significantly reduce
the downtime by fetching the pages actively instead of on-
demand, but this additional process does introduce new over-
head, which still leads to longer downtime than pre-copy
mechanism.

50

150

250

350

450

550

650

128 256 512 1024

Ti
m
e
(m

s)

Memory size (MB)

Pre‐copy Post‐copy post‐copy‐i Self‐migration HSG‐LM‐ns HSG‐LM

(a) Read intensive workload

200

400

600

800

1000

1200

1400

128 256 512 1024

Ti
m
e
(m

s)

Memory size (MB)

Pre‐copy Post‐copy post‐copy‐i Self‐migration HSG‐LM‐ns HSG‐LM

(b) Write intensive workload

Figure 4: Downtime comparison under different types of workloads.

Second, the downtime results under the HSG-LM design
(including HSG-LM-ns) are very similar to those under pre-
copy mechanisms. Sysbench-read is a memory read inten-
sive workload. Thus, the guest VM memory is updated at
a low frequency. Because we apply a hybrid strategy in the
HSG-LM design, it first runs a pre-copy round to transfer all
the memory pages and then follows the post-copy strategy to
resume the VM on the target host. Memory updates are rare
when running this workload, meaning that most memory
pages are already restored in the resumed VM after the first
round. Therefore, there would not be so many page faults in
the HSG-LM mechanism compared with the original post-
copy mechanism, and we do see a downtime reduction of
roughly 55%.

Finally, compared with our original design without spec-
ulation (HSG-LM-ns), HSG-LM incurs longer downtime.
As for both HSG-LM-ns and HSG-LM, the downtime de-
pends on the time that is used to handle the page faults
after the VM has been resumed on the target host. As the
Sysbench-read benchmark only generates minimal dirty
memory, page faults rarely occur, so spatial locality does
not hold in this case. However, the HSG-LM mechanism
will still perform speculative migration, finding neighboring
pages of the faulted page and transferring them. This migra-
tion is unnecessary and increases the transfer time. There-
fore, HSG-LM-ns incurs a smaller downtime than HSG-LM.

Figure 4b shows the downtime results in the same cases
as Figure 4a, except running a memory write intensive work-
load (Sysbench-write benchmark) which updates the guest
memory with high frequency. The findings are mostly sim-
ilar to the previous ones about Figure 4a, but there are two
contrary observations in Figure 4b:

The downtime results under the HSG-LM-ns design are
very similar to the post-copy mechanism results, meaning
that the downtime is not as good as that under the pre-

copy migration mechanisms. As the guest VM memory is
updated at high frequency, after the first pre-copy round in
our original design, most of the memory pages restored in
the resumed VM have been updated again, so there would
still be thousands of page faults and the pre-copy round
would not do anything to help.

Another observation is that HSG-LM incurs a shorter
downtime than HSG-LM-ns. Although in the HSG-LM
mechanism the memory pages restored in the resumed VM
need to be updated again after the pre-copy round, the hope
is that the speculative migration will transfer the bulk of the
required memory pages when one page fault occurs, reduc-
ing the frequency of network page faults as well as the total
time to make the transfer. From Figure 4b, we observe that
the HSG-LM mechanism achieves downtime performance
comparable to that of pre-copy migration mechanisms.

5.3 Total migration time
We also measured the total migration time, which is from
when the migration is triggered to when the resumed VM
is fully usable by users. Figure 5a shows the total migration
time results when running the Sysbench-read workload. We
firstly observe that the results of the pre-copy migration
mechanisms (including self-migration) are longest, while the
original post-copy migration mechanism incurs the shortest
downtime. All migration mechanisms need to migrate all
the memory pages at least once, either by pre-copying or
by page fault handling. However, the pre-copy migration
mechanism needs another two rounds, one to determine to
stop the pre-copy migration, followed by the final round
which transfers the updated memory (although rare) and
the necessary CPU and device states. On the other hand,
the post-copy migration only needs one round to fetch and
transfer all the memory pages based on the page faults, so it
achieves a better total migration time.

0

5

10

15

20

25

30

35

40

45

50

55

60

128 256 512 1024

Ti
m
e
(s
)

Memory size (MB)

Pre‐copy Post‐copy post‐copy‐i Self‐migration HSG‐LM‐ns HSG‐LM

(a) Read intensive workload

0

20

40

60

80

100

120

128 256 512 1024

Ti
m
e
(s
)

Memory size (MB)

Pre‐copy Post‐copy post‐copy‐i Self‐migration HSG‐LM‐ns HSG‐LM

(b) Write intensive workload

Figure 5: Total migration time comparison under different types of workloads.

Second, the total migration time using the HSG-LM de-
sign (including HSG-LM-ns) is between that of the pre-copy
and the post-copy mechanisms. Because we apply a hybrid
strategy in the HSG-LM design, it first runs a pre-copy round
to transfer all the memory pages and then follows the post-
copy strategy to resume the VM on the target host. With this
strategy, there are two migration-related rounds in total, and
compared to the pre-copy migration mechanisms, the total
migration time reduction is roughly 27%.

Finally, the comparison between HSG-LM and HSG-
LM-ns is similar to that when measuring the downtime. The
reason is also the same: since HSG-LM performs specula-
tive migration, it finds neighboring pages of the faulted page
and transfers them in bulk. This transfer is unnecessary and
incurs longer transfer time. Therefore, as for the total migra-
tion time when running memory read intensive workloads,
HSG-LM-ns performs better than HSG-LM.

Similarly, Figure 5b shows the total migration time re-
sults in the same case as Figure 5a, except running a mem-
ory write intensive workload (Sysbench-write benchmark)
that updates the guest memory with high frequency. An obvi-
ous observation is that the post-copy migration mechanisms
and our hybrid migration mechanisms perform much better
than the pre-copy migration mechanism. This is because all
the memory pages are only transferred once under post-copy
migration mechanism, or at most twice under our hybrid mi-
gration. However, under pre-copy migration, if one memory
page is frequently updated by the workload, it will be trans-
ferred in the corresponding round as long as it’s marked as
dirty. Therefore, a huge number of memory pages may be
transferred several times in the pre-copy migration, leading
to a long total migration time. Also, we could observe that
HSG-LM performs better than HSG-LM-ns when running a
memory write intensive workload, the same as when mea-
suring the downtime. This again verifies that our speculative

0

50

100

150

200

250

300

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

N
u
m
b
e
r
o
f
w
e
b
 r
e
sp
o
n
se
 p
e
r
se
co
n
d

Time (s)

Post‐copy Post‐copy‐i HSG‐LM Pre‐copy threshold

Figure 6: Performance degradation after VM resumes.

migration works well when the running application updates
the memory in some way, which is more like practical work-
loads.

5.4 Performance degradation after resumption
Figure 6 shows the performance degradation after the VM
starts. We configure the VM with 1GB RAM, and first run
the Apache web server [5] on it. We set a client on another
server that makes requests to load web pages, one immedi-
ately after another, simultaneously via a 1Gbps LAN, under
four mechanisms (Pre-copy, Post-copy, post-copy-i, HSG-
LM). Note that we did not include Self-migration evaluation
in Figure 6, which exhibits very similar results as Pre-copy
migration because it also follows the pre-copy approach dur-
ing migration. Note that we did not measure the resume time
directly because it’s hard to define the exact ending time.
As an alternative measurement, because the same load of
web requests are processed in this experiment, the measured
throughput (i.e., number of web responses received per sec-
ond) can be compared for evaluating the impact of page
faults on the VM performance during the initial period after

Sysbench 100%Read, 0%Write 75%R, 25%W 50%R, 50%W 25%R, 75%W 0%R, 100%W
Downtime (ms)

Pre-copy 179 331 564 765 866
Post-copy 522 604 789 979 1250

post-copy-i 313 444 647 891 1003
Self-migration 198 392 601 821 923

HSG-LM 184 360 591 808 919
Total migration time (s)

Pre-copy 47 62.1 71.7 94,8 103.9
Post-copy 30.7 31.1 32.3 34.3 35.5

post-copy-i 40 41.5 44 46.6 49.2
Self-migration 45.1 58 69.9 88 92.8

HSG-LM 34.5 34.8 35.4 36.1 37.2

Table 1: Downtime and total migration time comparison under Sysbench with mixed operations.

the VM resumes. We set a threshold that all the throughput
numbers under the threshold are recognized as performance
degradation.

We observe that under pre-copy migration mechanism,
the VM starts to work immediately after resuming, with
no obvious performance degradation. However, the trade-off
with the pre-copy migration mechanism is that it takes a long
total migration time (tens of seconds) to transfer the memory
page, which is especially bad when running memory write
intensive workload. On the other hand, with the post-copy
migration mechanism, the VM starts the fastest, but it suf-
fers performance degradation for a long time, i.e., it needs
to wait for 14 seconds to resume its normal activity. The im-
proved post-copy migration performs better, but it still suf-
fers degradation due to the page faults at the beginning pe-
riod. Compared with post-copy migration, under HSG-LM,
the VM endures performance degradation for only about 4.5
seconds, which reduces the VM’s unusable time by as much
as 68%.

5.5 Workload adaptive evaluation
Our final experiment evaluates the effectiveness of our work-
load adaptive migration in Table 1. Using Sysbench [4],
we set mixed transactions in the benchmark, e.g., 25% read
transactions and 75% write transactions and understand the
trends under different migration mechanisms. We still as-
sign 1GB RAM for the guest VM. The key in our workload
adaptive design is whether to trigger the speculation or not,
when dealing with different types of workloads. In this eval-
uation, there are two extreme cases regarding the workload,
one with totally read transactions and another with totally
write transactions. We observe that in the downtime evalu-
ation, the original pre-copy migration shows the best per-
formance since it’s designed to provide the minimal down-
time. Nevertheless, HSG-LM always has the second shortest
downtime in all cases, which means HSG-LM is an adaptive
approach for both memory read and write intensive work-

loads, as well as the workload with mixed read and write
transactions. We observe the similar result regarding the to-
tal migration downtime, i.e. the original post-copy migration
leads to the best performance while HSG-LM is the second
best in all cases.

6. Conclusion
We present a hybrid-copy live migration technique, HSG-
LM, implemented in the guest OS, without hypervisor in-
volvement in the migration. We evaluated the proposed mi-
gration technique with and without speculations on the pages
likely to be accessed in the future and we found that this is a
good compromise between the two pre- and post-copy mech-
anisms presented in previous works. Furthermore, HSG-LM
is the only technique that provides in the average case short
downtime and short total migration time. By speculating
on the pages likely to be requested in the future and mi-
grating them together in a single transfer, we improved our
original design. Our work opens future research paths on
how to adaptively select when to speculate and when not
to speculate, as well as selecting which kind of speculation
to use based on the application’s workloads. Furthermore we
see room for improvements by giving higher priority in the
transmission to page-faulted pages amongst the prefetched
pages.

A potential disadvantage of HSG-LM is the lack of legacy
support. The traditional hypervisor-based migration tech-
niques have the benefit that they automatically provide mi-
gration for unmodified guest OS. Our new migration mech-
anism must be provided as an OS kernel primitive, since it is
implemented as a new page fault handler inside the guest OS
kernel. However, we believe that this downside will not ob-
struct acceptance from the VM community, since we believe
— like suspend/resume — that HSG-LM could become a
commonly-supported OS kernel feature.

References
[1] Amazon elastic compute cloud (amazon ec2). http://aws.

amazon.com/ec2/.

[2] Google app engine - google code. http://code.google.

com/appengine/.

[3] Kvm: Kernel based virtual machine. www.redhat.com/f/

pdf/rhev/DOC-KVM.pdf.

[4] Sysbench benchmark. http://sysbench.sourceforge.

net.

[5] The Apache HTTP Server Project. http://httpd.apache.
org/.

[6] A. Barak and O. La’adan. The mosix multicomputer operat-
ing system for high performance cluster computing. Future
Gener. Comput. Syst., 13(4-5):361–372, Mar. 1998.

[7] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho,
R. Neugebauer, I. Pratt, and A. Warfield. Xen and the art of
virtualization. In Proceedings of the nineteenth ACM sympo-
sium on Operating systems principles, SOSP ’03, pages 164–
177, New York, NY, USA, 2003. ACM.

[8] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C. Limpach,
I. Pratt, and A. Warfield. Live migration of virtual ma-
chines. In Proceedings of the 2nd conference on Sympo-
sium on Networked Systems Design & Implementation - Vol-
ume 2, NSDI’05, pages 273–286, Berkeley, CA, USA, 2005.
USENIX Association.

[9] B. Cully, G. Lefebvre, D. Meyer, M. Feeley, N. Hutchinson,
and A. Warfield. Remus: high availability via asynchronous
virtual machine replication. In Proceedings of the 5th USENIX
Symposium on Networked Systems Design and Implementa-
tion, NSDI’08, pages 161–174, Berkeley, CA, USA, 2008.
USENIX Association.

[10] F. Douglis and J. Ousterhout. Mobility. chapter Transpar-
ent process migration: design alternatives and the sprite im-
plementation, pages 56–86. ACM Press/Addison-Wesley Pub-
lishing Co., New York, NY, USA, 1999.

[11] J. G. Hansen and E. Jul. Self-migration of operating systems.
In Proceedings of the 11th workshop on ACM SIGOPS Euro-
pean workshop, EW 11, New York, NY, USA, 2004. ACM.

[12] M. R. Hines and K. Gopalan. Post-copy based live virtual ma-
chine migration using adaptive pre-paging and dynamic self-
ballooning. In VEE ’09:Proceedings of the 2009 ACM SIG-
PLAN/SIGOPS international conference on Virtual execution
environments, VEE ’09, pages 51–60, New York, NY, USA,
2009. ACM.

[13] T. Hirofuchi, H. Nakada, S. Itoh, and S. Sekiguchi. Reac-
tive consolidation of virtual machines enabled by postcopy
live migration. In Proceedings of the 5th international work-
shop on Virtualization technologies in distributed computing,
VTDC ’11, pages 11–18, New York, NY, USA, 2011. ACM.

[14] E. Keller, J. Szefer, J. Rexford, and R. B. Lee. Nohype:
virtualized cloud infrastructure without the virtualization. In
Proceedings of the 37th annual international symposium on
Computer architecture, ISCA ’10, pages 350–361, New York,
NY, USA, 2010. ACM.

[15] I. Lyubashevskiy and V. Strumpen. Fault-tolerant file-i/o for
portable checkpointing systems. J. Supercomput., 16:69–92,
May 2000.

[16] M. Nelson, B. H. Lim, and G. Hutchins. Fast transparent mi-
gration for virtual machines. In ATEC ’05: Proceedings of the
annual conference on USENIX Annual Technical Conference,
pages 25–25, Berkeley, CA, USA, 2005. USENIX Associa-
tion.

[17] H. Ong, N. Saragol, K. Chanchio, and C. Leangsuksun.
VCCP: A transparent, coordinated checkpointing system for
virtualization-based cluster computing. In IEEE International
Conference on Cluster Computing and Workshops, pages 1–
10, 2009.

[18] S. Osman, D. Subhraveti, G. Su, and J. Nieh. The design and
implementation of Zap: a system for migrating computing en-
vironments. SIGOPS Oper. Syst. Rev., 36:361–376, December
2002.

[19] D. Pei. Modification operation buffering: A low-overhead
approach to checkpoint user files. In IEEE 29th Symposium
on Fault-Tolerant Computing, pages 36–38, 1999.

[20] A. F. R. Bradford, E. Kotsovinos and H. Schioeberg. Live
wide-area migration of virtual machines including local per-
sistent state. In VEE’07: Proceedings of the third Interna-
tional Conference on Virtual Execution Environments, pages
169–179, San Diego, CA, USA, 2007. ACM Press.

[21] C. R. Sapuntzakis, C. and B. Pfaff. Optimizing the migration
of virtual computers. In Proceedings of OSDI, New York, NY,
USA, 2002.

[22] M. Satyanarayanan and B. Gilbert. Pervasive personal com-
puting in an internet suspend/resume system. IEEE Internet
Computing, 11(2):16–25, 2007.

[23] B. K. Schmidt. Supporting ubiquitous computing with state-
less consoles and computation caches, 2000.

[24] J. Szefer, E. Keller, R. B. Lee, and J. Rexford. Eliminating
the hypervisor attack surface for a more secure cloud. In Pro-
ceedings of the 18th ACM conference on Computer and com-
munications security, CCS ’11, pages 401–412, New York,
NY, USA, 2011. ACM.

[25] C. A. Waldspurger. Memory resource management in vmware
esx server. SIGOPS Oper. Syst. Rev., 36:181–194, December
2002.

[26] M. Zhang, H. Jin, X. Shi, and S. Wu. Virtcft: A transparent
vm-level fault-tolerant system for virtual clusters. In Parallel
and Distributed Systems (ICPADS), 2010 IEEE 16th Interna-
tional Conference on, pages 147 –154, dec. 2010.

[27] M. Zhao and R. J. Figueiredo. Experimental study of vir-
tual machine migration in support of reservation of cluster re-
sources. In VTDC ’07:Proceedings of the 2nd international
workshop on Virtualization technology in distributed comput-
ing, pages 5:1–5:8, New York, NY, USA, 2007. ACM.

