
On Cache-Aware Task Partitioning for
Multicore Embedded Real-Time Systems

Aaron Lindsay
CS Department
Virginia Tech

Blacksburg, VA 24061
Email: aaron@aclindsay.com

Binoy Ravindran
ECE Department

Virginia Tech
Blacksburg, VA 24061
Email: binoy@vt.edu

Abstract

One approach for real-time scheduling on multicore
platforms involves task partitioning, which statically
assigns tasks to cores, enabling subsequent core-
local scheduling. No past partitioning schemes explic-
itly consider cache effects. We present a partitioning
scheme called LWFG, which minimizes cache misses
by partitioning tasks that share memory onto the same
core and by evenly distributing the total working set
size across cores. Our implementation reveals that
LWFG improves execution efficiency and reduces mean
maximum tardiness over past works by as much as 15%
and 60%, respectively.

1. Introduction

Most multicore processors manufactured today use
a hierarchical cache scheme. Cache misses have the
potential to be more costly as the memory hierarchy
deepens, and should be avoided if at all possible.
Furthermore, as the core counts increase and applica-
tions adapt to take advantage, the possibility of cross-
processor memory interference likewise increases. This
interference manifests itself when multiple processors
access and update the memory from the same re-
gion within a short period of time, causing cache-
invalidations and subsequent cache misses.

Hard real-time systems presume knowledge of
worst-case execution times (WCETs). Unfortunately,
calculating WCETs is difficult for modern multicore
hardware [1], largely due to the presence of shared
caches, as this prevents task execution behaviors from
being analyzed in isolation [2]. While WCET research
for multicores is actively progressing [3], for many
current non safety-critical real-time systems, a tight,

measurement-based execution time estimate is often
sufficient (e.g., [4]). Such an approach is cost-effective,
given the current lack of techniques and tools for deter-
mining WCETs for arbitrary program/processor pairs.
In these situations, decreasing cache misses can help
minimize the potential under- or over-estimation of the
execution time with respect to the actual execution
time, thereby improving task timeliness behavior (e.g.,
improved instructions per cycle, reduced tardiness).
Moreover, embedded real-time systems may also ben-
efit from fewer cache misses by exploiting the extra
slack in task schedules to reduce power consumption.

The real-time multiprocessor scheduling space can
be divided into: global, clustered, and partitioned. In
global scheduling, all tasks are scheduled at each
scheduling event, potentially migrating them across
processing cores. While there exist theoretically op-
timal global schedulers (e.g., [5]), studies have shown
their limited scalability [6].

In partitioned scheduling, tasks are statically divided
between cores, for subsequent core-local scheduling,
thereby converting a m-core scheduling problem into
m uniprocessor scheduling problems. The EDF algo-
rithm can feasibly schedule a taskset if the sum of task
densities is not greater than one. Therefore, the only
concern is whether or not a taskset can be feasibly
partitioned.

The partitioned approach is attractive due to its
relative simplicity compared to global scheduling and
the elimination of costly migrations. Unfortunately,
the task partitioning problem is analogous to the bin-
packing problem and is NP-hard [7]. If the sum of all
task densities in a taskset approaches the number of
cores, it becomes difficult to find a feasible partitioning
such that each core has tasks with a total density of
less than one (see Section 2 for the definition of task

density).
Finally, there are algorithms that compromise be-

tween global and partitioned scheduling. They range
from semi-partitioned [8], where most tasks are par-
titioned but a few are designated as ‘migratory’, to
clustered [9], where tasks are partitioned onto groups
of cores.

Partitioned, semi-partitioned, and clustered algo-
rithms may be considered somewhat cache-aware, as
they restrict task migrations. Restricting migrations
makes it more likely for a task’s working set to
reside at least partially in the cache when it resumes
execution, whereas a task migrating to a processor
that shares no caches with the source processor would
be forced to fetch its entire working set from main
memory. By limiting the maximum cache distance a
task is allowed to migrate, these approaches decrease
the potential for costly cache misses.

To our knowledge, no past work has attempted to
partition tasks with the goal of minimizing cache
misses and improving execution efficiency. The main
class of algorithms which consider the memory hierar-
chy are global algorithms that encourage or discourage
the co-scheduling of tasks which share memory [10],
[11]. The only work that we are aware of that deals
with cache-aware clustered real-time scheduling is
[12], which describes a clustered scheduling algorithm
for soft real-time applications. However, [12] is not
applicable to hard real-time systems; the paper does
not clearly describe the algorithm implementation, and
only presents a limited simulation experiment.

Our contributions are: (1) We characterize how a
partitioning strategy may affect the number of cache-
misses. (2) We design a cache-aware partitioning
scheme that seeks to minimize cache misses, while sat-
isfying hard real-time requirements. (3) We implement
our partitioning scheme in a real-time Linux kernel
and evaluate it on a 48-core hardware platform, and
show that it increases execution efficiency by as much
as 15% over cache-unaware partitioning algorithms.
Interestingly, mean maximum tardiness is also reduced
by up to 60%.

2. Task Model and Preliminaries

We assume [7]’s task model: each task τi has
a WCET ei, a minimum task-arrival separation pi,
and a deadline di. The density of a task τi, λi =
ei/min(pi, di). When di ≤ pi, τi’s density is equal
to its utilization, ui = ei/pi.

We assume that the maximum working set size
(WSS) for each task is known. This is a reasonable
assumption, because knowledge of a task’s WSS is

required for any accurate WCET calculation which
takes cache misses into account. The maximum WSS
for a task τi is denoted wi. Our partitioning scheme
relies upon the fact that a significant portion of a task’s
working set remains the same over a period of time
larger than the frequency of scheduling events and
context switches. (Exactly how long the WSS must
remain the same for our algorithm to have a positive
effect is future research.) Additionally, we rely on
knowing which tasks share memory and how much
(though for the sake of simplicity, we assume tasks
which share memory share their entire WSS).

We define the cache distance between two cores A
and B as the best-case memory access latency from B
to a word of memory that resides (and has not been
invalidated) in A’s L1 cache.

One problem with existing partitioning approaches
is that it is possible for the tasks with the largest
WSSes to be distributed unevenly among the available
processors. If the tasks partitioned on a particular core
have a WSS greater than the size of the largest cache
(the last level cache, or LLC), it is impossible for
their collective memory to be continuously housed in
the LLC over the lifetime of the application. As the
collective per-core WSS approaches and passes the
size of the LLC, the number of cache misses per task
execution is likely to increase.

Furthermore, it is advantageous to schedule tasks
that share memory with each other on either the same
core or on cores which are a small cache distance
apart, for two reasons. First, scheduling them on
‘cache-close’ cores increases the likelihood that the
previously-running task may share memory with the
current task, keeping the cache warmer and decreas-
ing the number of cache misses. Second, scheduling
memory-sharing tasks on different cores will result in
a cache-invalidation whenever they modify memory
which shares the same cache line as memory currently
residing in the other’s cache. Cache invalidations both
cause more traffic on the shared bus and force the core
whose cache line was invalidated to acquire a new
copy of that memory whenever it is accessed again.
Avoiding such contention is therefore also a priority.

3. Cache-Aware Partitioning

Building on our previous observations, we formulate
two goals for our cache-aware partitioning scheme
above those for traditional partitioning: (1) Evenly
distribute the collective WSS of a taskset over all cores
to decrease conflict and capacity-related cache misses.
(2) Partition tasks that share memory so that, the sum

of the cache distance between all such pairs of tasks
is minimized.

3.1. Existing Heuristics

Because bin-packing, and therefore partitioning, is
NP-hard, several polynomial-time heuristics have been
developed. The simplest algorithms include best-fit,
worst-fit, first-fit, and next-fit [13]. In the context of
partitioning, these heuristics consider tasks one-by-one
in some order, and place the task under consideration
onto a particular core based on that heuristic’s criteria.
When partitioning, we assume m bins, each with a
capacity of one, where the ‘size’ of a task is determined
by its density.

The best-fit heuristic places a task in the bin with the
smallest remaining capacity that can still accommodate
it. The worst-fit heuristic places a task in the bin with
the largest remaining capacity. The first-fit heuristic
places a task in the first bin it encounters with sufficient
capacity, starting with the first bin. Finally, the next-fit
heuristic places a task in the first bin it encounters with
sufficient capacity, starting with the bin immediately
following the bin in which the last task was placed.

For each of these heuristics, there are a myriad
of different orders in which they may consider the
tasks. There have been many variations, but the most
common are non-decreasing relative deadline order [7]
(i.e. ∀i ∈ [0, n) : di ≤ di+1) and non-increasing
utilization order [6] (∀i ∈ [0, n) : ui ≥ ui+1).

3.2. Largest WSS First Algorithm

To evenly distribute WSS across cores, we partition
tasks with a next-fit heuristic in non-increasing WSS
order (i.e. ∀i ∈ [0, n) : wi ≥ wi+1). This ensures that
each core has a task with one of the m largest WSSes
in the taskset before adding a second task to any core.

To schedule tasks which share memory on cache-
close cores, we modify our algorithm to group tasks
which share memory. Tasks are still considered in non-
increasing WSS order, but whenever we consider a
task, we also consider all tasks that share memory
with our current task that have not previously been
partitioned. The algorithm attempts to schedule this
group of tasks as a whole – the sum of their task
densities is considered when determining if a core has
sufficient remaining capacity to schedule the group. If
the next-fit heuristic fails to find a core with sufficient
capacity to partition the group, the task that shares
the least memory with the first task is removed from
the group, and partitioning is retried with the smaller
group. Pseudocode for this algorithm, called LWFG,

for ‘Largest WSS First, Grouping’, is given in Algo-
rithm 1.

Algorithm 1 LWFG Algorithm
sort decreasing wss(taskset)
last ← 0
for all task ∈ taskset do . Find group members which share
memory with task

group ← get memory sharers(taskset, task)
partitioned ← False
while partitioned == False do

for all cpu ∈ cpus start after last do . Loop through
cpus starting after last assigned

if capacity left(cpu) ≥ density(group) then
partition(group, cpu)
last ← cpu
partitioned ← True
break

end if
end for
if num tasks(group) > 1 then . Remove task from

group if possible
remove least shared(group)

else
return Partitioning Failed

end if
end while
taskset.remove(group)

end for
return Partitioning Succeeded

Complexity. With m processors and n tasks, LWFG’s
worst-case complexity is O(n2m). Though this is
costlier than the simple *-fit algorithms by a factor
of n, we were able to partition ≈50,000 tasksets using
a Python implementation in less than 5 minutes on a
1.6Ghz processor.

Feasibility. Uniprocessor EDF can schedule any
taskset T for which the sum of the task densities is
no greater than one:

∑
τi∈T λi ≤ 1. Let πj denote

processor j and P (πj) denote all tasks partitioned to
πj . If T can be partitioned using LWFG such that the
total task density on any one core is less than one (i.e.
∀j ∈ [0,m) :

∑
ti∈P (πj)

λi ≤ 1), T is schedulable on
uniprocessor EDF using LWFG.

We do not attempt to establish a feasibility test
for LWFG. Instead, we suggest that systems which
require hard real-time schedulability ‘fall back’ to
other partitioning algorithms (or perhaps even a global
algorithm, if necessary) if LWFG fails to partition a
taskset. This approach will improve performance when
possible using LWFG, while still making schedulabil-
ity guarantees.

4. Experimental Evaluation

We compared LWFG with the three most widely
studied partitioning schemes: worst-fit in non-
increasing task utilization order (WFD) [6], first-fit in

Table 1. Taskset Distribution Parameter Bounds

Taskset Tasks/MTT Utilization ui is per- Period (ms) pi is per- WSS (kB)
MLU [1, 4] [0.01, 0.1] MTT [24, 240] MTT ei/3 ∗ 128
MMU [1, 4] [0.1, 0.4] MTT [24, 240] MTT ei/3 ∗ 128
MWL [1, 8] [0.1, 0.4] MTT [10, 250] MTT [64, 512]
MWH [1, 8] [0.1, 0.4] MTT [10, 250] MTT [4096, 8192]
MWLP [1, 8] [0.1, 0.4] task [10, 250] MTT [64, 512]
MWHP [1, 8] [0.1, 0.4] task [10, 250] MTT [4096, 8192]
MWLU [1, 8] [0.1, 0.4] MTT [10, 250] task [64, 512]
MWHU [1, 8] [0.1, 0.4] MTT [10, 250] task [4096, 8192]

non-increasing task utilization order (FFD) [14], and
Baruah and Fisher’s first-fit in non-decreasing relative
deadline order (BF) [7].

4.1. Methodology

We implemented and tested LWFG on ChronOS
Linux [15], a real-time Linux kernel. The code for our
kernel, userspace utilities, and testing infrastructure is
available online at chronoslinux.org. Similarly
to the approach in [16], [10], we randomly generated
synthetic tasksets based on certain allowable parameter
ranges. All tasksets were first partitioned offline before
being scheduled with one instance of uniprocessor
EDF per core. We used the Linux perf tool to
measure information from the performance monitoring
units (PMUs) of the target machine, including the
number of LLC loads and misses, the number of
instructions executed, and the number of cycles that
execution took.

4.1.1. Workload. In our evaluation, each task accesses
its memory in a sequential pattern, implemented by
incrementing elements in an array in strides equal to
the cache line size (64 bytes on our platform). We
believe this memory access pattern is generic enough to
be representative of other memory-intensive real-time
applications. For example, the FFT algorithm largely
accesses an array in-order, doing computation on each
element in varying strides, depending on which pass
of the algorithm it is on. Many other DSP applications
also have largely in-order memory access patterns,
including multimedia encoding and decoding.

4.1.2. Taskset Distributions. All our randomly-
generated tasksets were generated using the multi-
threaded task (MTT) model of [10]. Each MTT con-
sists of several individual tasks that share memory with
each other. Tasks within an MTT share the entirety of
their WSS with one another, and no tasks not in the
same MTT share memory (with the exception of the
application and shared library text, which is minimal).

To generate each MTT, the number of threads the
MTT will contain is first chosen randomly within the
specified bounds. Next, the period and utilization for
the MTT are randomly generated, from which the
execution time is calculated. Finally, the WSS is either
randomly generated or calculated based off of the
execution time for the MTT, depending on the taskset
distribution. Note that for those tasksets that allow
periods or utilizations to be different between tasks in
the same MTT, the previous steps are per-task rather
than per-MTT.

Table 1 describes the distributions used. The first
two taskset distributions are slightly modified from
[10], while the remaining are of our own design. For
these, we aim to test conditions not covered by previ-
ous taskset distributions – namely WSSes which vary
independently of execution times, and MTTs which
share memory but do not necessarily share periods or
utilizations.

We exclude taskset distributions which contain tasks
with large utilizations. As the average task utilization
in a taskset approaches and exceeds 1

2 , the LWFG’s
benefits will diminish. This is because, if all task
utilizations are greater than 1

2 , no two tasks can fea-
sibly be placed on the same core, which results in a
much smaller degree of cache-sharing than is possible
if more than one memory-sharing task reside on the
same core. We do not present results with tasksets that
contain tasks with utilizations greater than 1

2 because
LWFG will deteriorate to other algorithms under these
conditions.

4.2. Hardware Platform

Our platform is a machine with 4×12-core AMD
Opteron processors (see Table 2). We tested tasksets
with total utilization caps up to 48 (max number of
cores).

Table 2. 12-core AMD OpteronTM 6164 HE
Memory Hierarchy

Level Shared Between Size Associativity
L1-I 1 core 64 Kb 2-way
L1-D 1 core 64 Kb 2-way
L2 1 core 512 Kb 16-way
L3 6 cores 5118 Kb 48-way
NUMA Node 12 cores 4 Gb n/a
Main Memory 48 cores 16 Gb n/a

5. Results

Figures 1 and 2 show the instructions per cycle
(IPC) of each taskset distribution at each load. An
improvement in IPC shows that a partitioning scheme
not only decreases the total number of cache misses,
but that this decrease causes more efficient execution
overall.

Observation 1 LWFG more than doubles the IPC of
WFD in some cases. WFD is widely studied (e.g., [6])
and is shown to be effective on evenly distributing the
total taskset utilization among all available cores [14].
LWFG outperforms WFD for all distributions and all
loads, and rarely shows an IPC improvement of less
than 20%.

Observation 2 LWFG’s IPC is more consistent than
other algorithms. Although LWFG does not obtain
significantly higher IPC than all competitors in all
cases, it never performs significantly worse than the
best algorithm for any distribution at any load. This
shows that while competitors perform on par with
LWFG for some taskset distributions, they are not as
consistent as LWFG is.

For example, both FFD and BF perform nearly as
well as LWFG for the MWL and MWH distributions.
In these distributions, both periods and utilizations are
the same for all tasks within an MTT. Because FFD
and BF consider tasks in the order of task utiliza-
tions or periods when partitioning, they ‘accidentally’
partition most tasks in an MTT to the same core,
similarly to LWFG. The performance gains by LWFG
over the other algorithms are due to the fact that LWFG
more evenly distributes the working set over available
cores and is intentional about grouping the tasks with
the largest WSSes together first. In contrast to the
MWL and MWH results, we see that FFD does not
perform nearly as well on the MWHP and MWLP
taskset distributions. This is because, tasks within an
MTT in one of these distributions do not share the
same utilizations. Therefore, partitioning tasks in the
order of decreasing utilization is much less likely to
‘accidentally’ result in a cache-aware partitioning.

Observation 3 LWFG does not out-perform FFD

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 10 15 20 25 30 35 40 45

In
st

ru
ct

io
n
s

Pe
r

C
y
cl

e
 (

IP
C

)

Utilization Cap

EDF_WFD EDF_FFD EDF_BF EDF_LWFG

(a) IPC for MLU Distribution

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 10 15 20 25 30 35 40 45

In
st

ru
ct

io
n
s

Pe
r

C
y
cl

e
 (

IP
C

)

Utilization Cap

EDF_WFD EDF_FFD EDF_BF EDF_LWFG

(b) IPC for MMU Distribution

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 10 15 20 25 30 35 40 45

In
st

ru
ct

io
n
s

Pe
r

C
y
cl

e
 (

IP
C

)

Utilization Cap

EDF_WFD EDF_FFD EDF_BF EDF_LWFG

(c) IPC for MWL Distribution

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 10 15 20 25 30 35 40 45

In
st

ru
ct

io
n
s

Pe
r

C
y
cl

e
 (

IP
C

)

Utilization Cap

EDF_WFD EDF_FFD EDF_BF EDF_LWFG

(d) IPC for MWH Distribution

Figure 1. Instructions Per Cycle Results: MLU,
MMU, MWL, and MWH Distributions.

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 10 15 20 25 30 35 40 45

In
st

ru
ct

io
n
s

Pe
r

C
y
cl

e
 (

IP
C

)

Utilization Cap

EDF_WFD EDF_FFD EDF_BF EDF_LWFG

(a) IPC for MWLP Distribution

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 10 15 20 25 30 35 40 45

In
st

ru
ct

io
n
s

Pe
r

C
y
cl

e
 (

IP
C

)

Utilization Cap

EDF_WFD EDF_FFD EDF_BF EDF_LWFG

(b) IPC for MWHP Distribution

 0.52

 0.54

 0.56

 0.58

 0.6

 0.62

 0.64

 0.66

 0.68

 0.7

 10 15 20 25 30 35 40 45

In
st

ru
ct

io
n
s

Pe
r

C
y
cl

e
 (

IP
C

)

Utilization Cap

EDF_WFD EDF_FFD EDF_BF EDF_LWFG

(c) IPC for MWLU Distribution

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 10 15 20 25 30 35 40 45

In
st

ru
ct

io
n
s

Pe
r

C
y
cl

e
 (

IP
C

)

Utilization Cap

EDF_WFD EDF_FFD EDF_BF EDF_LWFG

(d) IPC for MWHU Distribution

Figure 2. Instructions Per Cycle Results: MWLP,
MWHP, MWLU, and MWHU Distributions.

and BF in all cases. We note that for those taskset
distributions where the periods of tasks in a MTT are
not all the same, but are randomly-generated on an
individual basis (MWLU, MWHU), LWFG’s perfor-
mance drops somewhat relative to the competitors, and
the IPC of LWFG is even less than that of FFD and
BF on some loads. This decrease in IPC improvement
is at least partially due to the timing of the task
periods and deadlines. Two tasks which share the
same period and are partitioned on the same core will
tend to be scheduled immediately after one another
in uniprocessor EDF (assuming no task with an earlier
deadline arrives in the meantime). The same two tasks,
if partitioned to different cores, will tend to execute at
the same time if the other tasks partitioned to their
processors have similar periods and deadlines relative
to their own. This means that, tasksets where tasks
in MTTs share periods demonstrate worst-case behav-
ior for partitioning algorithms which do not group
memory-sharing tasks. This is because, the timing of
these tasks’ executions will tend to maximize cache
invalidations.

Relaxing the restriction that all tasks in an MTT
must have the same period means that, tasks in an
MTT will not tend to execute at the same time as
frequently. The cache effects due to cache invalidations
in this case will not be as severe as they would be if
all periods remained the same in an MTT. The dif-
ference between the collective partitioning algorithms’
performance for the MWHP (periods equal in MTT)
and MWHU (periods randomized) distributions can
be seen in Figures 2(b) and 2(d), respectively. WFD
performs ≈15% better at low loads when periods are
randomized, and that the IPC of all algorithms is
clumped much closer together in this case.

LWFG’s lack of improvement therefore is due to the
naturally-better performance of the other algorithms
rather than a fault of its own. Regardless, it is important
to note that LWFG does not improve IPC in all cases.

Observation 4 IPC performance in general is un-
predictable on MWLP and MWHP distributions. The
error bars on the plots represent the standard deviation
of all the tasksets at that point for that algorithm. It
is obvious that the MWLP and MWHP distributions
have much higher variation than others, particularly
for those algorithms that partition tasks in order of
decreasing utilization (FFD and BF). We attribute this
to the fact that the utilizations of tasks in each MTT
are not the same for these two distributions. Therefore,
the efficacy of these algorithms is based on the random
chance of two tasks in the same MTT receiving the
same (or different) utilizations, rather than performing
universally good or bad because all tasks in an MTT

shared the same utilization.
Figure 3 shows the deadline satisfaction ratio (DSR).

DSR is calculated as the total number of deadlines met
over the total number of task instances. These plots
are included to demonstrate that we do not sacrifice
meeting deadlines for increased efficiency and IPC.
The maximum value for DSR is therefore 1.0. We omit
the DSR plots for the MWLP, MWLU, MWHP, and
MWHU distributions because they do not show any
trends not evident on those of the MWL and MWH
distributions.

Observation 5 LWFG’s DSR is generally compara-
ble to the others. While LWFG’s DSR dips below 1.0
at high loads, it is never considerably worse than the
others. This is due to infeasibly-partitioned tasksets. If
a ‘fall-back’ partitioning approach were taken, where
another scheme were used if LWFG failed to feasible
partition a taskset, these deadline misses would likely
be minimized.

Observation 6 BF’s DSR outperforms all algo-
rithms for tasksets with large amounts of memory.
LWFG’s DSR is consistently higher than that of WFD,
and is generally comparable to that of FFD. However,
BF appears to be the best. While LWFG’s improvement
in execution efficiency helps it avoid some missed
deadlines, it is not enough to overcome its higher
number of infeasible tasksets. Again, this leads us to
suggest using LWFG as a primary partitioning scheme,
and using a ‘fallback’ scheme when LWFG fails to
feasibly partition a taskset.

Though Figures 1 and 2 show that LWFG improves
IPC, they do not reveal the impact on task timeliness
because majority of the tasksets are feasible. To un-
derstand the impact on task timeliness, we varied the
ratio of the actual WCET to the WCET reported to the
scheduling algorithm from 1.0 to 2.0, and measured the
deadline satisfaction ratio (DSR) and maximum per-
taskset task tardiness. (DSR is the fraction of deadlines
met.) Unlike before, the maximum taskset utilization
is fixed at 95% of the theoretical bound. For brevity,
we focus on the MWL distribution.

Figure 4 shows the results. While BF manages to
obtain slightly higher DSR, LWFG does a much better
job of bounding tardiness (up to 60% reduction over
BF in Figure 4(b)). This is because, LWFG misses
deadlines by smaller time magnitudes than BF. Figure
4(c) demonstrates the higher frequency of tasks with
low-maximum-tardiness with LWFG than with BF.

6. Conclusions

We have presented the rationale behind, and the
design of, a new cache-aware, real-time task partition-

 0.99965

 0.9997

 0.99975

 0.9998

 0.99985

 0.9999

 0.99995

 1

 1.00005

 10 15 20 25 30 35 40 45

D
e
a
d
lin

e
 S

a
ti

sf
a
ct

io
n
 R

a
ti

o
 (

D
S
R

)

Utilization Cap

EDF_WFD EDF_FFD EDF_BF EDF_LWFG

(a) DSR for MLU Distribution

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 10 15 20 25 30 35 40 45

D
e
a
d
lin

e
 S

a
ti

sf
a
ct

io
n
 R

a
ti

o
 (

D
S
R

)

Utilization Cap

EDF_WFD EDF_FFD EDF_BF EDF_LWFG

(b) DSR for MMU Distribution

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 1.02

 10 15 20 25 30 35 40 45

D
e
a
d
lin

e
 S

a
ti

sf
a
ct

io
n
 R

a
ti

o
 (

D
S
R

)

Utilization Cap

EDF_WFD EDF_FFD EDF_BF EDF_LWFG

(c) DSR for MWL Distribution

 0.91

 0.92

 0.93

 0.94

 0.95

 0.96

 0.97

 0.98

 0.99

 1

 1.01

 10 15 20 25 30 35 40 45

D
e
a
d
lin

e
 S

a
ti

sf
a
ct

io
n
 R

a
ti

o
 (

D
S
R

)

Utilization Cap

EDF_WFD EDF_FFD EDF_BF EDF_LWFG

(d) DSR for MWH Distribution

Figure 3. Deadline Satisfaction Ratio Results.

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1 1.2 1.4 1.6 1.8 2

D
e
a
d
lin

e
 S

a
ti

sf
a
ct

io
n
 R

a
ti

o
 (

D
S
R

)

Actual/Reported WCET Ratio

EDF_WFD EDF_FFD EDF_BF EDF_LWFG

(a) DSR for MWL Distribution

-1e+06

 0

 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

 6e+06

 1 1.2 1.4 1.6 1.8 2

M
a
x
im

u
m

 T
a
sk

 T
a
rd

in
e
ss

 (
u
s)

Actual/Reported WCET Ratio

EDF_WFD EDF_FFD EDF_BF EDF_LWFG

(b) Tardiness for MWL Distribution

 0

 500

 1000

 1500

 2000

 0 500000 1e+06 1.5e+06 2e+06 2.5e+06 3e+06 3.5e+06 4e+06 4.5e+06

Fr
e
q
u
e
n
cy

Maximum Task Tardiness

EDF_BF EDF_LWFG

(c) Tardiness Histogram for MWL Distribution

Figure 4. Deadline Satisfactions and Task Tardi-
ness Results

ing scheme, called LWFG. Our empirical evaluation
reveals that, LWFG is effective at minimizing cache
misses. It is particularly effective at improving execu-
tion efficiency in some cases (i.e., where all periods
are the same within an MTT), and increases IPC by as
much as 15%. It also reduces mean maximum tardiness
by as much as 60%. However, there are also a few
distributions for which LWFG does not significantly
improve performance.

Acknowledgments

This work was sponsored by US NSWC Dahlgren
under grants N00178-09-D-3017-0018/0022.

References

[1] D. Dasari, V. Nelis, and B. Andersson, “WCET analysis
considering contention on memory bus in COTS-based
multicores,” in ETFA, 2011, pp. 1 –4.

[2] N. Guan et al., “Cache-aware scheduling and analysis
for multicores,” in EMSOFT, 2009, pp. 245–254.

[3] ——, “WCET analysis with MRU cache: Challenging
LRU for predictability,” in RTAS, 2012.

[4] W. Yuan and K. Nahrstedt, “Energy-efficient CPU
scheduling for multimedia applications,” ACM TOCS,
vol. 24, no. 3, pp. 292–331, 2006.

[5] H. Cho et al., “An optimal real-time scheduling algo-
rithm for multiprocessors,” in RTSS, 2006, pp. 101–110.

[6] A. Bastoni et al., “An empirical comparison of global,
partitioned, and clustered multiprocessor EDF sched-
ulers,” in RTSS, 2010, pp. 14 –24.

[7] S. Baruah and N. Fisher, “The partitioned multipro-
cessor scheduling of sporadic task systems,” in RTSS,
2005, pp. 321–329.

[8] S. Kato et al., “Semi-partitioned scheduling of sporadic
task systems on multiprocessors,” in ECRTS, 2009, pp.
249 –258.

[9] J. Calandrino, J. Anderson, and D. Baumberger, “A
hybrid real-time scheduling approach for large-scale
multicore platforms,” in ECRTS, 2007, pp. 247 –258.

[10] J. M. Calandrino and J. H. Anderson, “On the design
and implementation of a cache-aware multicore real-
time scheduler,” in ECRTS, 2009, pp. 194–204.

[11] J. H. Anderson et al., “Real-time scheduling on multi-
core platforms,” in RTAS, 2006, pp. 179–190.

[12] Y. Wang et al., “A shared cache-aware hybrid real-
time scheduling on multicore platform with hierarchical
cache,” in PAAP, 2011, pp. 208 –212.

[13] E. G. Coffman, Jr. et al., “Approximation algorithms for
bin packing: A survey,” in Approximation Algorithms
for NP-Hard Problems. PWS Publishing, 1997.

[14] H. Aydin and Q. Yang, “Energy-aware partitioning for
multiprocessor real-time systems,” in IPDPS, 2003, p.
9 pp.

[15] M. Dellinger, P. Garyali, and B. Ravindran, “ChronOS
Linux: A best-effort real-time multiprocessor Linux
kernel,” in DAC, June 2011, pp. 474–479.

[16] T. Baker, “A comparison of global and partitioned EDF
schedulability tests for multiprocessors.” Florida State
University, Tech. Rep. TR-051101, 2005.

