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Junwhan Kim

(ABSTRACT)



Distributed transactional memory (DTM) is an emerging, alternative concurrency control model
that promises to alleviate the difficulties of lock-based distributed synchronization. In DTM,
transactional conflicts are traditionally resolved by a contention manager. A complimentary ap-
proach for handling conflicts is through a transactional scheduler, which orders transactional re-
quests to avoid or minimize conflicts. We present a suite of transactional schedulers: Bi-interval,
PTS, CTS, RTS, and DATS. The schedulers consider Herlihy and Sun’s dataflow execution
model, where transactions are immobile and objects are migrated to invoking transactions, relying
on directory-based cache-coherence protocols to locate and move objects. Within this execution
model, the proposed schedulers target different DTM models.

Bi-interval considers the single object copy DTM model, and categorizes concurrent requests into
read and write intervals to maximize the concurrency of read transactions. This allows an object to
be simultaneously sent to read transactions, improving transactional makespan. We show that Bi-
interval improves the makespan competitive ratio of DTM without such a scheduler to O(log(N))
for the worst-case and θ(log(N−k) for the average-case, forN nodes and k read transactions. Our
implementation reveals that Bi-interval enhances transactional throughput over the no-scheduler
case by as much as 1.71, on average.

PTS considers multi-versioned DTM. Traditional multi-versioned TM models use multiple object
versions to guarantee commits of read transactions, but limits concurrency of write transactions.
PTS detects conflicts of write transactions at an object level. Instead of aborting a transaction due
to an object-level conflict, PTS assigns backoff times for conflicting transactions. Our implementa-
tion reveals that PTS improves throughput over competitors including GenRSTM and DecentSTM
by as much as 3.4×, on average.

CTS considers replicated DTM: object replicas are distributed to clusters of nodes, where clusters
are determined based on inter-node distance, to maximize locality and fault-tolerance and to min-
imize memory usage and communication overhead. CTS enqueues and assigns backoff times for
aborted transactions due to early validation over clusters, reducing communication overhead. Im-
plementation reveals that CTS improves throughput over competitor replicated D-STM solutions
including GenRSTM and DecentSTM by as much as 1.64×, on average.

RTS and DATS consider transactional nesting in DTM, and respectively focuses on the closed and
open nesting models. RTS determines whether a conflicting outer transaction must be aborted
or enqueued according to the level of contention. If a transaction is enqueued, its closed-nested
transactions do not have to retrieve objects again, resulting in reduced communication delays.
DATS detects object dependencies between open-nested transactions and their outer transaction.
When conflicts occur, only the involved operations are restarted to avoid executing unnecessary
compensating actions and minimize inner transactions’ attempt for acquiring remote abstract locks.
Implementations reveal effectiveness: RTS and DATS improve throughput (over the no-scheduler
case), by as much as 88% and 98%, respectively.

Our major proposed post-preliminary research is to develop schedulers which satisfy consistency
criteria that are weaker than the opacity criteria targeted by the pre-preliminary schedulers, toward
improving concurrency. Example such criteria include update serializability (US) and strong even-
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tual consistency (SEC). While US guarantees commit for read-only transactions, SEC ensures that
object states will eventually converge, improving concurrency at the expense of weaker consis-
tency. Additional directions include evaluating the schedulers using industrial/production-strength
benchmarks (e.g., TPC-B, Berkeley DB, and Yahoo cloud serving benchmark).

This work is supported in part by NSF CNS 0915895, NSF CNS 1116190, and NSF CNS 1130180.
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Chapter 1

Introduction

1.1 Transactional Memory

Lock-based synchronization is inherently error-prone. For example, coarse-grained locking, in
which a large data structure is protected using a single lock is simple and easy to use, but permits
little concurrency. In contrast, with fine-grained locking, in which each component of a data struc-
ture (e.g., a hash table bucket) is protected by a lock, programmers must acquire only necessary
and sufficient locks to obtain maximum concurrency without compromising safety, and must avoid
deadlocks when acquiring multiple locks. Both these situations are highly prone to programmer
errors. The most serious problem with locks is that it is not easily composable—i.e., combining ex-
isting pieces of software to produce different functionality is not easy. This is because, lock-based
concurrency control is highly dependent on the order in which locks are acquired and released.
Thus, it would be necessary to expose the internal implementation of existing methods, while
combining them, in order to prevent possible deadlocks. This breaks encapsulation, and makes it
difficult to reuse software.

Transactional memory (TM) is an alternative synchronization model for shared in-memory data
objects that promises to alleviate the difficulties of lock-based synchronization (i.e., scalability,
programmability, and composability issues). With TM, code that read/write shared objects is or-
ganized as memory transactions, which speculatively execute, while logging changes made to ob-
jects. Two transactions conflict if they access the same object and one access is a write. When that
happens, a contention manager (CM) resolves the conflict by aborting one and allowing the other
to commit, yielding (the illusion of) atomicity. Aborted transactions are re-started, often imme-
diately, after rolling-back the changes. Sometimes, a transactional scheduler is also used, which
determines an ordering of concurrent transactions so that conflicts are either avoided altogether or
minimized.

In addition to a simple programming model, TM provides performance comparable to fine-grained
locking [65] and is composable. TM for multiprocessors has been proposed in hardware (HTM) [29,
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33, 46, 53, 57], in software (STM) [20, 32, 34, 45, 66], and in hardware/software combina-
tion [17, 42, 13, 72].

With a single copy for each object, i.e., single-version STM (SV-STM), when a read/write con-
flict occurs between two transactions, the contention manager resolves the conflict by aborting
one and allowing the other to commit, thereby maintaining the consistency of the (single) object
version. SV-STM is simple, but suffers from large number of aborts [56]. In contrast, with multi-
ple versions for each object, i.e., multi-versioning STM (MV-STM), unnecessary (or spare) aborts
of transactions that could have been committed without violating consistency are avoided [37].
Unless a conflict between operations to access a shared object occurs, MV-STM allows the corre-
sponding transactions to read the object’s old versions, enhancing concurrency. MV-STM has been
extensively studied for multiprocessors [55, 56, 22].

Many libraries or third-party software contain atomic code, and application developers often desire
to group such code, with user, other library, or third-party (atomic) code into larger atomic code
blocks. This can be accomplished by nesting all atomic code within their enclosing code, as
permitted by the inherent composability of TM. But doing so — i.e., flat nesting — results in large
monolithic transactions, which limits concurrency: when a large monolithic transaction is aborted,
all nested transactions are also aborted and rolled back, even if they don’t conflict with the outer
transaction.

Further, in many nested settings, programmers desire to respond to the failure of each nested action
with an action-specific response. This is particularly the case in distributed systems—e.g., if a
remote device is unreachable or unavailable, one would want to try an alternate remote device, all
as part of a top-level atomic action. Furthermore, inadequate performance of a nested third-party
or library code must often be circumvented (e.g., by trying another nested code block) to boost
overall application performance. In these cases, one would want to abort a nested action and try an
alternative, without aborting the work accomplished so far (i.e., aborting the top-level action).

Three types of nesting have been studied in TM: flat, closed, and open [49]. If an inner transaction
I is flat-nested inside its outer transaction A, A executes as if the code for I is inlined inside A.
Thus, if I aborts, it causes A to abort. If I is closed-nested inside A, the operations of I only
become part of A when I commits. Thus, an abort of I does not abort A, but I aborts when A
aborts. Finally, if I is open-nested inside A, then the operations of I are not considered as part of
A. Thus, an abort of I does not abort A, and vice versa.

Compared to open-nesting, the flat and closed nested models may limit concurrency: when a large
transaction is aborted, all its flat/closed-nested transactions are also aborted and rolled back, even
if they don’t conflict with any other transaction. (Of course, closed nesting potentially offers higher
concurrency than flat nesting.) In contrast, when an open-nested transaction commits, its modifi-
cations on objects become immediately visible to other transactions, allowing those transactions
to start using those objects without a conflict, increasing concurrency [51]. In contrast, if the inner
transaction were to be closed- or flat-nested, then those object changes are not made visible (i.e.,
the objects are not “released”) until the outer transaction commits, potentially causing conflicts to
other transactions who may want to use those objects. Thus, open-nesting potentially offers higher



Junwhan Kim Chapter 1. Introduction 3

concurrency than closed and flat nesting.

To achieve high concurrency in open nesting, inner transactions have to implement abstract serial-
izability [52]. If concurrent executions of transactions result in the consistency of shared objects at
an “abstract level”, then the executions are said to be abstractly serializable. If an inner transaction
I commits, I’s modifications are committed to memory and I’s read and write sets are discarded.
At this time, I’s outer transaction A does not have any conflict with I due to memory accessed by
I . Thus, programmers consider the internal memory operations of I to be at a “lower level” than
A. A does not consider the memory accessed by I when checking for conflicts, but I must acquire
an abstract lock and propagate this lock for A. Two non-commutative operations 1 would try to
acquire the same abstract lock, so open nesting performs concurrency control at an abstract level.

1.2 Distributed Transactional Memory

The challenges of lock-based concurrency control are exacerbated in distributed systems, due to the
additional complexity of multicomputer concurrency. Distributed TM (DTM) has been similarly
motivated as an alternative to distributed lock-based concurrency control. DTM can be classified
based on the system architecture: cache-coherent DTM (cc DTM) [35, 78, 63], in which a set of
nodes communicate with each other by message-passing links over a communication network, and
a cluster model (cluster DTM) [16, 60, 61], in which a group of linked computers works closely
together to form a single computer. The most important difference between the two is communi-
cation cost. cc DTM assumes a metric-space network (i.e., the communication cost between nodes
form a metric), whereas cluster DTM differentiates between local cluster memory and remote
memory at other clusters.

Most cc DTM works consider Herlihy and Sun’s dataflow execution model [35], in which trans-
actions are immobile and objects move from node to node to invoking transactions. cc DTM uses
a cache-coherence protocol, often directory-based [18, 35, 78], to locate and move objects in the
network, satisfying object consistency properties.

Similar to multiprocessor TM, DTM provides a simple distributed programming model (e.g., locks
are entirely precluded in the interface), and performance comparable or superior to distributed
lock-based concurrency control [16, 60, 61, 38, 63, 64].

1.3 Transactional Scheduling

As mentioned before, a complimentary approach for dealing with transactional conflicts is transac-
tional scheduling. Broadly, a transactional scheduler determines the ordering of concurrent trans-

1Two method invocations commute if applying them in either order leaves the object in the same state and returns
the same response.
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actions so that conflicts are either avoided altogether or minimized. Two kinds of transactional
schedulers have been studied in the past: reactive [20, 5] and proactive [77, 7]. When a conflict
occurs between two transactions, the contention manager determines which transaction wins or
loses, and then the loosing transaction aborts. Since aborted transactions might abort again in the
future, reactive schedulers enqueue aborted transactions, serializing their future execution [20, 5].
Proactive schedulers take a different strategy. Since it is desirable for aborted transactions to be
not aborted again when re-issued, proactive schedulers abort the loosing transaction with a backoff
time, which determines how long the transaction is stalled before it is re-started [77, 7]. Both re-
active and proactive transactional schedulers have been studied for multiprocessor TM. However,
they have not been studied for DTM, which is the focus of this dissertation.

We now motivate and overview the five different transactional schedulers that we have developed.
The schedulers target data-flow cc DTM and are called Bi-interval, PTS, CTS, RTS, and DATS.

Scheduling in single-version DTM. We first consider the the single object copy DTM model (i.e.,
SV-STM). A distributed transaction typically has a longer execution time than a multiprocessor
transaction, due to communication delays that are incurred in requesting and acquiring objects,
which increases the likelihood for conflicts and thus degraded performance [7]. We present a novel
transactional scheduler called Bi-interval [38] that optimizes the execution order of transactional
operations to minimize conflicts. Bi-interval focuses on read-only and read-dominated workloads
(i.e., those with only early-write operations), which are common transactional workloads [28].
Read transactions do not modify the object; thus transactions do not need exclusive object access.
Bi-interval categorizes concurrent requests for a shared object into read and write intervals to
maximize the parallelism of read transactions. This reduces conflicts between read transactions,
reducing transactional execution times. Further, it allows an object to be simultaneously sent to
nodes of read transactions, thereby reducing the total object traveling time.

Scheduling in multi-versioned DTM. We then consider multi-versioned DTM (i.e., MV-STM). Un-
less a conflict between operations to access a shared object occurs, MV-STM allows the corre-
sponding transactions to read the object’s old versions. Thus, MV can potentially enhance con-
currency in distributed TM. However, in data-flow cc DTM, where objects are migrated, object
versions may be “scattered” in the network. This causes difficulty in maintaining the consistency
of the versions, and may incur high communication delay for doing so. Even with MV-STM, when
conflict between two operations occurs, aborting an involved transaction is inevitable. Further-
more, a distributed transaction consumes longer execution time including communication delays
to request and acquire objects than a transaction on multiprocessors, so the probability for con-
flicts increases. In addition, since MV-STM cannot hold all possible versions of an object forever,
garbage collection (GC) is needed for removing obsolete versions. This raises difficulties on deter-
mining when and how the versions can be removed. Unless some versions are kept, the transactions
needing those versions will abort due to the limited number of versions.

To boost performance in (multi-version) DTM, a transactional scheduler is therefore compelling
to consider, as it effectively stalls contending transactions when conflicts occur. However, in MV
DTM, reactive and proactive transactional schedulers may not be effective. This is due to several



Junwhan Kim Chapter 1. Introduction 5

reasons.

First, MV-STM inherently guarantees commits of all read-only transactions [56]. Past transactional
schedulers [5, 38] abort loosing read-only transactions due to conflicts and simultaneously restart
the aborted read-only transactions to maximize their concurrency. However, conflicts with read-
only transactions do not occur in MV-STM due to multiple object versions. Thus, the concurrency
of read-only transactions cannot be exploited by traditional scheduling approaches in MV-STM.

Second, a transaction may request multiple objects. However, a conflict occurs and is only detected
on a single object [10]. Even though other objects used by the transaction may not be subject to a
conflict, the transaction is still aborted. Once a transaction is aborted, it will suffer from additional
communication delays to request and retrieve all its objects again in data-flow cc DTM. Due to
such delays, determining backoff times for aborted transactions (under proactive schedulers) or
serializing enqueued, aborted transactions (under reactive schedulers) is generally difficult.

We overcome these difficulties by designing a transactional scheduler, called progressive trans-
actional scheduler (or PTS). PTS considers an event-based cc DTM model: when transactions
request and acquire an object (version), events that track the object versions are recorded. The
events indicating which transaction reads or updates an object are used to detect which object is
subject to the conflict. After a conflict is detected, PTS assigns different backoff times for con-
flicting transactions. If a new object version is created and conflicting transactions needing it exist,
PTS sends the version to the requesting nodes.

Scheduling in replicated DTM. With a single object copy, node/link failures cannot be tolerated. If
a node fails, the objects held by the failed node will be simply lost and all following transactions
requesting such objects would never commit. Additionally, read concurrency cannot be effectively
exploited. Thus, an array of DTM works – all of which are cluster DTM – consider object repli-
cation. These works provide fault-tolerance properties by inheriting fault-tolerance protocols from
database replication schemes, which rely on broadcast primitives (e.g., atomic broadcast, uniform
reliable broadcast) [9, 40, 16, 14, 6]. Broadcasting transactional read/write sets or memory differ-
ences in metric-space networks is inherently non-scalable, as messages transmitted grow quadrat-
ically with the number of nodes [63]. Thus, directly applying cluster DTM replication solutions to
data-flow cc DTM may not yield similar performance.

We therefore consider a cluster-based object replication model for data-flow cc DTM. In this
model, nodes are grouped into clusters based on node-to-node distances: nodes which are closer
to each other are grouped into the same cluster; nodes which are farther apart are grouped into
different clusters. Objects are replicated such that each cluster contains at least one replica of each
object, and the memory of multiple nodes is used to reduce the possibility of object loss, thereby
avoiding expensive brute-force replication of all objects on all nodes. We develop a transactional
scheduler for this model, called cluster-based transactional scheduler (or CTS). CTS enqueues
and assigns backoff times for aborted transactions due to early validation over clusters, reducing
communication overhead. If an object is created and enqueued transactions needing it exist, CTS
sends the object to the enqueued transactions, reducing communication delays and increasing the
concurrency of read transactions.
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Scheduling nested transactions. We now turn our attention to scheduling nested transactions. In
the flat and closed nesting models, if an outer transaction, which has multiple nested transactions,
aborts due to a conflict, the outer and inner transactions will restart and request all objects regard-
less of which object caused the conflict. Even though the aborted transactions are enqueued to
avoid conflicts, the scheduler serializes the aborted transactions to reduce the contention on only
the object that caused the conflict. With nested transactions, this may lead to heavy contention
because all objects have to be retrieved again.

We first consider scheduling closed-nested transactions, which is more efficient than flat nesting
and guarantees serialization [3]. We present a transactional scheduler for closed-nested trans-
actions, called the reactive transactional scheduler (or RTS), which considers both aborting or
enqueuing a parent transaction including closed-nested transactions. RTS decides which transac-
tion is aborted or enqueued to protect its nested transactions according to a contention level, and
assigns the enqueued transaction a backoff time to boost throughput.

We then consider scheduling open-nested transactions. Unlike abstract serializability for open-
nested transactions [52], an outer transaction uses a different strategy to guarantee serializability.
An outer transaction commits multiple objects in a single step if there is no conflict, but its open-
nested transactions do multiple per-object commits. In DTM, abstract locking incurs communica-
tion delays to remotely acquire and release the locks. If multiple inner transactions commit, the
commit protocol for each open-nested transaction must acquire and release the locks, degrading
performance.

In the mean time, if an outer transaction (with open-nested inner transactions) aborts, all of its
(now committed) open-nested transactions must be aborted and their actions must be undone to
ensure transaction serializability. Thus, with the open nesting model, programmers must describe
a compensating action for each open-nested transaction [3]. When outer transactions increasingly
encounter conflicts after greater number of their open-nested transactions have committed, it will
increase executions of compensating actions, degrading overall performance. With closed nesting,
since closed-nested transactions are not committed until the outer transaction commits (nested
transactions’ changes are visible only to the outer), no undo is required. Thus, open nesting may
perform worse than closed nesting in high contention.

To boost the performance of open-nested transactions in DTM, we present a scheduler, called
the dependency-aware transactional scheduler (or DATS). The basic idea of DATS is to reduce
conflicts of outer transactions and the number of abstract locks of inner transactions, which in turn,
minimizes communication overheads and compensating actions. When an outer transaction aborts,
DATS identifies conflicting objects and executes compensating actions only for those involved in
the conflicts. If inner transactions acquire abstract locks regardless of the conflicted objects, their
locks (issued by the abstract lock mechanism) will be preserved to boost throughput.
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1.4 Summary of Current Research Contributions

We now summarize our contributions.

The design of Bi-interval shows that the idea of grouping concurrent requests into read and write
intervals to exploit concurrency of read transactions — originally developed in the BIMODAL
scheduler for multiprocessor TM [5] — can also be successfully exploited for DTM. Doing so
poses a fundamental trade-off, however, one between object moving times and concurrency of read
transactions. Bi-interval’s design shows how this trade-off can be exploited towards optimizing
throughput. We show that Bi-interval improves the makespan competitive ratio of DTM (without
such a scheduler) from O(N) to O(log(N)), for N nodes. Also, Bi-interval yields an average-
case makespan competitive ratio of Θ(log(N − k)), for k read transactions. We implemented
Bi-interval in the HyFlow Java DTM framework [63] and experimentally evaluated using micro
benchmarks (e.g., Red/Back Tree) and macro benchmarks (e.g., Bank, Loan, distributed versions of
Vacation from the STAMP benchmark suite [12]). Our evaluation shows that Bi-interval improves
throughput over the no-scheduler case by as much as 1.77∼ 1.65× speedup under low and high
contention, respectively.

PTS targets multi-version DTM. As mentioned before, when transactions request and acquire an
object version, events that track the object version are recorded to detect conflicts. Our key idea is
to detect which object version is subject to the conflict in event-based cc DTM and assign backoff
times to conflicting transactions to minimize communication overhead. We also show that PTS is
opaque and strongly progressive [26]. Our implementation and experimental evaluation using two
monetary applications (Bank and Loan) and two distributed data structures including Counter and
Red/Black Tree (RB-Tree) [12] as micro benchmarks shows that PTS enhances throughput over
replicated DTM solutions, GenRSTM [14] and DecentSTM [6], by as much as (average) 3.4× and
3.3× under low and high contention, respectively.

The key idea of CTS is to avoid brute force replication of all objects over all nodes to minimize
communication overhead. Instead, replicate objects across clusters of nodes, such that each cluster
has at least one replica of each object, where clusters are formed based on node-to-node distances.
For this model, CTS schedules concurrent requests needing a replicated object when a conflict
occurs at the object level, by assigning backoff times to enqueued aborted transactions. Our imple-
mentation and experimental evaluation shows that CTS enhances throughput over GenRSTM [14]
and DecentSTM [6], by as much as (average) 1.55× and 1.73× under low and high contention,
respectively.

In closed-nested DTM, RTS heuristically determines transactional contention level to decide whether
a live parent transaction aborts or enqueues, and a backoff time that determines how long a live
parent transaction waits. Our experimental evaluation validates our idea: RTS is shown to enhance
throughput (over the no-scheduler case) at high and low contention, by as much as 1.53 (53%) ∼
1.88 (88%) × speedup, respectively.

DATS’s design goal is to improve throughput of open-nested DTM . When open-nested transac-
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tions acquire and release abstract locks of objects, communication delays are incurred. If outer
transactions abort, compensating actions are executed. The key idea behind DATS is to avoid
compensating actions regardless of conflicted objects and minimize the number of abstract lock
requests, improving performance. Our implementation and experimental evaluation shows that
DATS enhances throughput for open-nested transactions (over the no-scheduler case), by as much
as 1.41× and 1.98× under low and high contention, respectively.

1.5 Proposed Post Preliminary-Exam Work

Based on these research results, we propose the following research directions for post preliminary
exam work:

• Design transactional schedulers that satisfy consistency criteria weaker than opacity such as
a) update serializability [31] and b) strong eventual consistency [71].
• Evaluate the performance of the pre- and post-preliminary transactional schedulers using

industrial-strength benchmarks including TPC-B, Berkeley DB, and Yahoo cloud serving
benchmark.

1.6 Proposal Outline

The rest of the proposal is organized as follows. We overview past and related work in Chapter 2.
We outline the basic preliminaries and system models in Chapter 3. Chapters 4, 5, 6, 7, and 8
describe the Bi-inteval, PTS, CTS, RTS, and DATS schedulers, respectively. Each chapter dis-
cusses motivation, designs the scheduler (informally), provides an illustrative example, presents
the corresponding algorithms, analyzes the scheduler properties, and evaluates performance. We
conclude and describe the proposed post-exam work in Chapter 9.



Chapter 2

Past and Related Work

2.1 Distributed Transactional Memory

Herlihy and Sun proposed distributed STM [35]. They present a dataflow model, where transac-
tions are immobile, and objects are dynamically migrated to invoking transactions. Object con-
flicts and object consistency are managed and ensured, respectively, by contention management
and cache coherence protocols. In [35], they present a cache-coherence protocol, called Ballistic.
Ballistic models the cache-coherence problem as a distributed queuing problem, due to the fun-
damental similarities between the two, and uses the Arrow queuing protocol [19] for managing
transactional contention. Ballistic’s hierarchical structure degrades its scalability—e.g., whenever
a node joins or departs the network, the structure has to be rebuilt. This drawback is overcome
in Zhang and Ravindran’s Relay cache-coherence protocol [78, 80], which improves scalability
by using a peer-to-peer structure. They also present a class of location-aware cache-coherence
(or LAC) protocols [79], which improve the makespan competitive ratio, with the optimal Greedy
contention manager [25].

While these efforts focused on distributed STM’s theoretical properties, other efforts developed
implementations. In [9], Bocchino et. al. decompose a set of existing cache-coherent TM designs
into a set of design choices, and select a combination of such choices to support TM for commodity
clusters. They show how remote communication can be aggregated with data communication to
obtain high scalability. In [44], Manassiev et. al. present a page-level distributed concurrency
control algorithm, which automatically detects and resolves conflicts caused by data races for
distributed transactions accessing shared data structures. Kotselidis et. al. present the DiSTM
distributed TM framework for easy prototyping of TM cache-coherence protocols.

Couceiro et. al. present the D2STM for distributed systems [16]. Here, an STM is replicated on
distributed system nodes, and strong transactional consistency is enforced at transaction commit
time by a non-blocking distributed certification scheme. Romano et. al. extend distributed TM for
Web services [60], and Cloud platforms [61]. In [60], they present a distributed TM architecture for

9
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Web services, where application’s state is replicated across distributed system nodes. Distributed
TM ensures atomicity and isolation of application state updates, and consistency of the replicated
state. In [61], they show how distributed TM can increase the programming ease and scalability of
large-scale parallel applications on Cloud platforms.

2.2 Multi-Version STM

MV-STM has been extensively studied for multiprocessors. MV increases concurrency by allow-
ing transactions to read older versions of shared data, thereby minimizing conflicts and aborts.
Ramadan et. al. present dependency-aware transactional memory (DATM) [58], where transaction
execution is interleaved, and show substantially more concurrency than two-phase locking. DATM
manages dependency of transactions between live transactions, resulting in concurrency increases
of up to 39% and reducing transaction restarts by up to 94%. Moore et. al. present Log-based
transactional memory (LogTM) that makes commits fast by storing old versions to a log. LogTM
provides fast conflict detection and commit, and is evaluated on 32 multiprocessors, resulting in
only 1-2% transaction aborts.

A single-version model supporting permissiveness was first introduced by Guerraoui et. al. [24].
An STM satisfies π-permissiveness for a correctness criterion π unless every history accepted by
that STM violates π. The notion of online-π-permissiveness, presented in [37], does not allow
transactions to abort unless live transactions violate π.

In [56], Perelman et. al. propose the concept of MV permissiveness, which ensures that read-
only transactions never abort in MV-STM. Maintaining all possible multiple versions that might
be needed wastes memory. Thus, they define a GC property called useless prefix that only keeps
multiple versions that some existing read-only transactions may need. In [37], Keidar and Perel-
man identify what kinds of spare aborts can or cannot be eliminated in MV, and present a Γ-
AbortAvoider algorithm that maintains a precedence graph (PG) for avoiding spare aborts. They
show that an STM with Γ-AbortAvoider satisfies Γ-opacity and online Γ-opacity permissiveness.

Transactional schedulers have been studied for SV-STM. Their purpose is fundamentally similar
to that of MV-STM, but the approach is functionally different. Since versions might be needed by
live transactions in the future, MV-STM keeps multiple versions of shared objects. Since aborted
transactions might be aborted again in the future, scheduling keeps aborted transactions.

2.3 Nested Transactions

Nested transactions (using closed nesting) originated in the database community and were thor-
oughly described by Moss in [48]. This work focused on the popular two-phase locking protocol
and extended it to support nesting. Also, it proposed algorithms for distributed transaction man-
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agement, object state restoration, and distributed deadlock detection.

Open nesting also originates in the database community [23], and was extensively analyzed in
the context of undo-log transactions [76]. In these works, open nesting is used to decompose
transactions into multiple levels of abstraction, and maintain serializability on a level-by-level
basis. One of the early works introducing nesting to Transactional Memory was done by Moss and
Hosking in [51]. They describe the semantics of transactional operations in terms of system states,
which are tuples that group together a transaction ID, a memory location, a read/write flag, and
the value read or written. They also provide sketches for several possible HTM implementations,
which work by extending existing cache coherence protocols. Moss further focuses on open nested
transactions in [50], explaining how using multiple levels of abstractions can help in differentiating
between fundamental and false conflicts and therefore improve concurrency.

Moravan et al. [47] implement closed and open nesting in their previously proposed LogTM HTM.
They implement the nesting models by maintaining a stack of log frames, similar to the run-time
activation stack, with one frame for each nesting level. Hardware support is limited to four nesting
levels, with any excess nested transactions flattened into the inner-most sub-transaction. In this
work, open nesting was only applicable to a few benchmarks, but it enabled speedups of up to 100

Agrawal et al. combine closed and open nesting by introducing the concept of transaction owner-
ship [2]. They propose the separation of TM systems into transactional modules (or Xmodules),
which own data. Thus, a sub-transaction would commit data owned by its own Xmodule directly
to memory using an open-nested model. However, for data owned by foreign Xmodules, it would
employ the closed nesting model and would not directly write to the memory.

2.4 Transactional Scheduling

Transactional scheduling has been explored in a number of multiprocessor STM efforts [43, 21, 4,
77, 20, 5]. In [21], Dragojević et. al. describe an approach that dynamically schedules transactions
based on their predicted read/write access sets. In [4], Ansari et. al. discuss the Steal-On-Abort
transaction scheduler, which queues an aborted transaction behind the non-aborted transaction, and
thereby prevents the two transactions from conflicting again.

Yoo and Lee present the Adaptive Transaction Scheduler (ATS) [77] that adaptively controls the
number of concurrent transactions based on the contention intensity: when the intensity is below
a threshold, the transaction begins normally; otherwise, the transaction stalls and does not begin
until dispatched by the scheduler. Dolev et. al. present the CAR-STM scheduling approach [20],
which uses per-core transaction queues and serializes conflicting transactions by aborting one and
queueing it on the other’s queue, preventing future conflicts. CAR-STM pre-assigns transactions
with high collision probability (application-described) to the same core, and thereby minimizes
conflicts.

Blake, Dreslinski, and Mudge propose the Proactive Transactional Scheduler in [7]. Their scheme
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detects hot spots of contention that can degrade performance, and proactively schedules affected
transactions around the hot spots. Evaluation on the STAMP benchmark suite [12] shows their
scheduler outperforming a backoff-based policy by an average of 85%.

Attiya and Milani present the BIMODAL scheduler [5], which targets read-dominated and bi-
modal (i.e., those with only early-write and read-only) workloads. BIMODAL alternates between
“writing epochs” and “reading epochs” during which writ and read transactions are given prior-
ity, respectively, ensuring greater concurrency for read transactions. Kim and Ravindran extend
the BIMODAL scheduler for cc DTM in [38]. Their scheduler, called Bi-interval, groups concur-
rent requests into read and write intervals, and exploits the tradeoff between object moving times
(incurred in dataflow cc DTM) and concurrency of read transactions, yielding high throughput.

Steal-On-Abort, CAR-STM, and BIMODAL enqueue aborted transactions to minimize future con-
flicts in SV-STM. In contrast, PTS only enqueues live transactions that conflict with other transac-
tions. The purpose of enqueuing is to prevent contending transactions from requesting all objects
again. Of course, enqueuing live transactions may lead to deadlock or livelock. Thus, PTS assigns
different backoff times for each enqueued live transaction.

ATS and Proactive Transactional Scheduler determine contention intensity and use it for contention
management. Unlike these schedulers which are designed for multiprocessors, predicting con-
tention intensity will incur communication delays in distributed systems. Thus, our proposed
schemes collect average running times – a history of how long transactions run – to compute a
backoff time. Unlike multiprocessor STM, two communication delays will be incurred to obtain
an object, one for requesting an object and the other for retrieving it. Enqueuing a live transaction
during the backoff time saves those communication delays.



Chapter 3

Preliminaries and System Model

We consider a distributed system which consists of a set of nodes N = {n1, n2, · · · } that commu-
nicate with each other by message-passing links over a communication network. Similar to [35],
we assume that the nodes are scattered in a metric space. The metric d(ni, nj) is the distance be-
tween nodes ni and nj , which determines the communication cost of sending a message from ni
to nj .

3.1 Distributed Transactions

A distributed transaction performs operations on a set of shared objects in a distributed system,
where nodes communicate by message-passing links. Let O = {o1, o2, . . .} denote the set of
shared objects. A transaction Ti is in one of three possible statuses: live, aborted, or committed. If
an aborted transaction retries, it preserves the original starting timestamp as its starting time.

We consider Herlihy and Sun’s dataflow distributed STM model [35], where transactions are im-
mobile, and objects move from node to node. In this model, each node has a TM proxy that
provides interfaces to its application and to proxies at other nodes. When a transaction Ti at node
ni requests object oj , the TM proxy of ni first checks whether oj is in its local cache. If the object
is not present, the proxy invokes a distributed cache coherence protocol (cc) to fetch oj in the net-
work. Node nk holding object oj checks whether the object is in use by a local transaction Tk when
it receives the request for oj from ni. If so, the proxy invokes a contention manager to mediate the
conflict between Ti and Tk for oj .

When a transaction Ti invokes an operation on object oj , the cc protocol is invoked by the local
TM proxy to locate the current cached copy of oj . We consider two properties of the DCC. First,
when the TM proxy of Ti requests oj , the cc is invoked to send Ti’s read/write request to a node
holding a valid copy of oj in a finite time period. A read (write) request indicates the request for Ti
to conduct a read (write) operation on oj . A valid object copy is defined as a valid version. Thus,

13
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a node holding versions of oj replies with the version corresponding to Ti’s request. Second, at
any given time, the cc must locate only one copy of oj in the network and only one transaction is
allowed to eventually write to oj .

3.2 Atomicity, Consistency, and Isolation

We use the Transactional Forwarding Algorithm (TFA) [63] to provide early validation of remote
objects, guarantee a consistent view of shared objects between distributed transactions, and ensure
atomicity for object operations in the presence of asynchronous clocks. TFA is responsible for
caching local copies of remote objects and changing object ownership. Without loss of generality,
objects export only read and write methods (or operations).

Figure 3.1: An Example of TFA

For completeness, we illustrate TFA with an example. In Figure 3.1, a transaction updates object
o1 at time t1 (i.e., local clock (LC) is 14) and four transactions (i.e., T1, T2, T3, and T4) request
o1 from the object holder. Assume that T2 validates o1 at time t2 and updates o1 with LC=30 at
time t3. A validation in distributed systems includes global registration of object ownership. Any
read or write transaction (e.g., T4), which has requested o1 between t2 and t3 aborts. When write
transactions T1 and T3 validate at times t1 and t2, respectively, transactions T1 and T3 that have
acquired o1 with LC=14 before t2 will abort, because LC is updated to 30.

Bi-interval, PTS, and CTS are associated with TFA. RTS is associated with nested TFA (N-
TFA) [73], that is an extension of TFA to implement closed nesting in DTM. DATS is associated
with TFA with Open Nesting (TFA-ON) [74], which extends the TFA algorithm [63], to manage
open-nested transactions. N-TFA and TFA-ON change the scope of object validations.

The behavior of open-nested transactions under TFA-ON is similar to the behavior of regular trans-
actions under TFA. TFA-ON manages the abstract locks and the execution of commit and compen-
sating actions [74]. To provide conflict detection at the abstract level, an abstract locking mecha-
nism is integrated into TFA-ON. Abstract locks are acquired only at commit time, once the inner
transaction is verified to be conflict free at the low level. The commit protocol requests the abstract
lock of an object from the object owner and the lock is released when its outer transaction commits.
To abort an outer transaction properly, a programmer provides an abstract compensating action for
each of its inner transaction to revert the data-structure to its original semantic state. TFA-ON is
the first ever implementation of a DTM system with support for open-nested transactions [74].



Chapter 4

The Bi-interval Scheduler

4.1 Motivation

Unlike multiprocessor transactions, data flow-based DTM incurs communication delays in request-
ing and acquiring objects. Figure 4.1 illustrates a scenario on data flow DTM consisting of five
nodes and an object. Figure 4.1(a) shows that nodes n2, n3, n4, and n5 invoke T2, T3, T4, T5,
respectively and request o1 from n1. In Figure 4.1(b), T5 validates o1 first and becomes the object
owner of o1. T2, T3, and T4 abort when they validate. Figure 4.1(c) indicates that T2, T3, and T4
request o1 from n5 again.

(a) Requesting o1 (b) Validating o1 (c) Re-requesting o1

Figure 4.1: A Scenario consisting Four Transactions on TFA

Contention managers deal with only conflicts, determining which transaction wins or not. Past
transactional schedulers (e.g., proactive and reactive schedulers) serialize aborted transactions but
do not consider moving objects in data flow DTM. In DTM, the aborted transactions request an
object again, increasing communication delays. Motivated by this observation, the transactions
requesting o1 are enqueued and the transactions immediately abort when one of these validate o1.

15
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As soon as o1 is updated, o1 is sent to the aborted transactions. The aborted transaction will receive
the updated o1 without any request, reducing communication delays. Meanwhile, we focus on
which order of the aborted transactions lead to improved performance. Read transaction defined
as read-dominated workloads will simultaneously receive o1 to maximize the parallelism of read
transactions. Write transactions including write operations will receive o1 according to the shortest
delay to minimize object moving time.

4.2 Scheduler Design

Bi-interval is similar to the BIMODAL scheduler [5] in that it categorizes requests into read and
write intervals. If a transaction aborts due to a conflict, it is moved to a scheduling queue and
assigned a backoff time. Bi-interval assigns two different backoff times defined as read and write
intervals to read and write transactions, respectively. Unless the aborted transaction receives the
requested object within an assigned backoff time, it will request the object again.

Bi-interval maintains a scheduling queue for read and write transactions for each object. If an
enqueued transaction is a read transaction, it is moved to the head of the scheduling queue. If it is
a write transaction, it is inserted into the scheduling queue according to the shortest path visiting
each node invoking enqueued transactions. When a write transaction commits, the new version
of an object is released. If read and write transactions have been aborted and enqueued for the
version, the version will be simultaneously sent to all the read transactions and then visit the write
transactions in the order of the scheduling queue. The basic idea of Bi-interval is to send a newly
updated object to the enqueued-aborted transactions as soon as validating the object completes.

There are two purposes for enqueuing aborted transactions. First, in order to restart an aborted
transaction, the CC protocol will be invoked to find the location of an object, incurring commu-
nication delays. An object owner holds a queue indicating the aborted transactions and sends the
object to the node invoking the aborted transactions. The aborted transactions may receive the
object without the help of the CC protocol, reducing communication delays. Second, Bi-interval
schedules the enqueued aborted transactions to minimize execution times and communication de-
lays. For reduced execution time, the object will be simultaneously sent to the enqueued read
transactions. In order to minimize communication delays, the object will be sent to each node
invoking the enqueued write transactions in order of the shortest path, so the total traveling time
for the object in the network decreases.

Bi-interval determines read and write intervals indicating when aborted read and write transactions
restart, respectively. This intends that an object will visit each node invoking aborted read and
write transactions within read and write intervals, respectively. As a backoff time, a read interval is
assigned to aborted read transactions and a write interval is assigned to aborted write transactions.
A read interval is defined as the local execution time τi of transaction Ti. All enqueued-aborted
read transactions will wait for τi and receive the object that Ti has updated. A write interval is
defined as the sum of the local execution times of enqueued write transactions and a read interval.
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The aborted write transaction may be serialized according to the order of the scheduling queue. If
any of these transactions do not receive the object, they will restart after a write interval.

4.3 Illustrative Example

(a) Requesting o1 (b) Validating o1 (c) Scheduling Transactions

Figure 4.2: A Scenario consisting of Four Transaction on Bi-interval

Figure 4.2 shows a scenario consisting of four transactions based on Bi-interval. Node n1 holds
o1 and write transactions T2, T3, T4, and T5 request object o1 from n1. n1 has a scheduling queue
holding requested transactions T2, T3, T4, and T5. If T5 validates o1 first as being illustrated by
Figure 4.2(b), T2, T3, and T4 abort. If n2 is closest to n5, o1 updated by T5 is sent to n2, and two
backoff times are sent to T3 and T4, respectively. Figure 4.2(c) shows one write interval.

While T5 validates o1, let us assume that other read transactions request o1. The read transactions
will be enqueued and simultaneously receive o1 after T5 completes its validation. Thus, once
the scheduling queue holds read and write transactions, a read interval will start first. The write
transactions will be serialized according to the shortest object traveling time.

4.4 Algorithms

The data structures depicted in Algorithm 1 are used in Algorithms 2. The data structure of
Requester consists of the address and the transaction identifier of a requester. Requester List
maintains a linked list for Requester and BackoffT ime. removeDuplicate() checks and re-
moves a duplicated transaction in Requester List. scheduling List is a hash table that holds a
Requester List including requesters for an object with Object ID.

Algorithm 2 describes Retrieve Request, which is invoked when an object owner receives a re-
quest. If the corresponding object is being used, Retrieve Request has to decide whether the
requester is aborted or enqueued on elapsed time. Unless BackoffT ime corresponding to the
object exceeds elapsed time, the requester is added to scheduling List. local exectuion time
of the the requester is an expected total running time. Thus, local exectuion time - elapsed time
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Algorithm 1: Structure of Scheduling Queue
1 Class Requester {
2 Address address;
3 Transaction ID txid;
4 }
5 Class Requester List {
6 List<Requester> Requesters = new LinkedList<Requester>();
7 Integer BackoffTime;
8 void addRequester(backoff time, Requester);
9 void removeDuplicate(Address);

10 }
11 Map<Object ID, Requester List> scheduling List = new ConcurrentHashMap<Object ID, Requester List>();

is the remained time that the requesting transaction will run in advance. As soon as validating the
object completes, it is sent to the first element of scheduling List.

Algorithm 2: Algorithm of Retrieve Request
1 Procedure Retrieve Request
2 Input: oid. txid, local exectuion time, elapsed time
3 object = get Object(oid);
4 address = get Requester Address();
5 Integer backoff = 0;
6 if object is not null and in use then
7 Requester List reqlist = scheduling List.get(oid);
8 if reqlist is null then
9 reqlist = new Requester List();

10 else
11 reqlist.removeDuplicate(address);

12 if reqlist.BackoffT ime < elapsed time then
13 backoff = reqlist.BackoffT ime;
14 reqlist.addRequest(local exectuion time-elapsed time, new Requester(address, txid));
15 scheduling List.put(oid, reqlist);

16 Send object and backoff to address;

Algorithm 3 shows the bi interval scheduler that is invoked after the object indicated by oid was
validated. The owner of oid is transferred to the node that has validated the object last. The
node has a responsibility to send the object to the first element of scheduling List after invok-
ing bi interval. The Distance function returns a communication delay between the object owner
and the requesting node indicated by Requester.Address. readRequesters as an instance of
Requester List holds all requesters for read transactions. After execution Algorithm 3, the ob-
ject is simultaneously sent to all addresses of readRequesters if readRequesters is not empty.
NextNode indicates the nearest nodes’s address.
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Algorithm 3: Algorithm of the bi interval function
1 Procedure bi interval
2 Input: scheduling List, oid
3 Output: Address
4 reqlist = scheduling List(oid);
5 NextNode = null;dist=∞
6 if reqlist is not null then
7 foreach Requester ∈ reqlist do
8 if Requester is for write transaction then
9 if dist > Distance(Requester.Address) then

10 dist = Distance(Requester.Address);
11 NextNode = Requester.Address;

12 else
13 readRequesters.addRequester(Requester);

14 return NextNode;

4.5 Analysis

Definition 1. Given a scheduler A, makespani(A) is the time that A needs to complete all the
transactions in TjN which require accesses to an object oj .

Definition 2. The competitive ratio (CR) of a scheduler A for TjN is makespanj(A)

makespanj(OPT )
, where OPT is

the optimal scheduler.

The execution time of a transaction is defined as the interval from its beginning to the commit.
In distributed systems, the execution time consists of both communication delays to request and
acquire a shared object and the time duration to conduct an operation on a processor, so we define
two types of makespans: (1) traveling makespan, which is the total communication delay to move
an object; and (2) execution makespan(or, local execution time γ), which is the time duration of
transactions’ executions including all aborted transactions, but not communication delays.

Definition 3. In a given graph G, the object moving cost ηAG(u, V ) is the total communication
delay for visiting each node from node u holding an object to all nodes in V , under scheduler A.

Theorem 4.5.1. Bi-interval’s execution makespan competitive ratio is 1+ Ir
N−k+1

for N transac-
tions including k read transactions, where Ir is the number of read intervals.

Proof. The optimal off-line algorithm concurrently executes all read transactions. So, Bi-interval’s
optimal execution for N transactions including k read transactions is

∑N−k+1
m=1 γm.

CRγ
Biinterval ≤

γω · Ir +
∑N−k+1

m=1 γm∑N−k+1
m=1 γm

≈ Ir +N − k + 1

N − k + 1

, where γω is γ of a read transaction. The theorem follows.
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Theorem 4.5.2. Bi-interval’s traveling makespan competitive ratio is log(N + Ir − k − 1).

Proof. Bi-interval follows the nearest neighbor path to visit each node in the scheduling list. We
define the stretch of a transactional scheduler as the maximum ratio of the moving time to the com-

munication delay—i.e., Stretchη(vT , V Ri
TN−1

) = max
ηG(vT ,V

Ri
TN−1

)

dG(vT ,V
Ri
TN−1

)
≤ 1

2
log(N − 1) + 1

2
from [62].

Hence, CRd
Biinterval ≤ log(N + Ir − k − 1). The theorem follows.

Theorem 4.5.3. The total worst-case competitive ratio CRWorst
Biinterval of Bi-interval for multiple

objects is O(log(N)).

Proof. In the worst-case, Ir = k. This means that there are no consecutive read intervals. Thus,
makespanOPT and makespanBiinterval satisfy the following, respectively:

makespanOPT =
N−k+1∑
m=1

γm + min dG(vT , V
Ri
TN−k+1

) (4.1)

makespanBiinterval =
N−1∑
m=1

γm + log(N − 1) max dG(vT , V
Ri
TN−1

) (4.2)

Hence, CRWorst
Biinterval ≤ log(N − 1). The theorem follows.

We now focus on the case Ir < k.

Theorem 4.5.4. When Ir < k, Bi-interval improves the traveling makespan (makespand
i (Biinterval))

as much as O(| log(1− (k−Ir
N−1 )|).

Proof.

max
ηG(vT , V

Ri
TN+Ir−k−1

)

dG(vT , V
Ri
TN−1

)
(4.3)

= max
(ηG(vT , V

Ri
TN−1

)

dG(vT , V
Ri
TN−1

)
+

ε

dG(vT , VTN−1
)

)
≤ 1

2
log(N − k + Ir − 1) +

1

2

When Ir < k, a read interval has at least two read transactions. We are interested in the difference
between ηG(vT , V

Ri
TN−1

) and ηG(vT , V
Ri
TN+Ir−k−1

). Thus, we define ε as the difference between two
ηG values.

max
ε

dG(vT , VTN−1
)
≤ 1

2
log(

N − k + Ir − 1

N − 1
) (4.4)

In (4.4), due to Ir < k, N−k+Ir−1
N−1 < 1. Bi-interval is invoked after conflicts occur, so N 6= k.

Hence, ε is a negative value, improving the traveling makespan. The theorem follows.
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The average-case analysis (or, probabilistic analysis) is largely a way to avoid some of the pes-
simistic predictions of complexity theory. Bi-interval improves the competitive ratio when Ir < k.
This improvement depends on the size of Ir—i.e., how many read transactions are consecutively
arranged. We are interested in the size of Ir when there are k read transactions. We analyze the
expected size of Ir using probabilistic analysis. We assume that k read transactions are not con-
secutively arranged (i.e., k ≥ 2) when N requests are arranged according to the nearest neighbor
algorithm. We define a probability of actions taken for a given distance and execution time.

Theorem 4.5.5. The expected number of read intervals E(Ir) of Bi-interval is log(k).

Proof. The distribution used in the proof of Theorem 4.5.5 is an independent uniform distribution.
p denotes the probability for k read transactions to be consecutively arranged.

E(Ir) =

∫ 1

p=0

k∑
Ir=1

(
k

Ir

)
· pk(1− p)k−Irdp

=
k∑

Ir=1

( k!

Ir! · (k − Ir)!

∫ 1

p=0

pk(1− p)k−Irdp
)

≈
k∑

Ir=1

k!

Ir!
· k!

(2k − Ir + 1)!
≈ log(k) (4.5)

We derive Equation 4.5 using the beta integral. The theorem follows.

Theorem 4.5.6. Bi-interval’s total average-case competitive ratio (CRAverage
Biinterval) is Θ(log(n−k)).

Proof. We define CRm
Biinterval as the competitive ratio of node m. CRAverage

Biinterval is defined as the
sum of CRm

Biinterval of N + E(Ir)− k + 1 nodes.

CRAverage
Biinterval ≤

N+E(Ir)−k+1∑
m=1

CRm
Biinterval

≤ log(N + E(Ir)− k + 1) ≈ log(N − k)

Since E(Ir) is smaller than k, CRAverage
Biinterval = Θ(log(N − k)). The theorem follows.

4.6 Evaluation

We compared TFA with Bi-interval (referred to as TFA/Bi-interval) against competitors only TFA.
We measured the transactional throughput—i.e., the number of committed transactions per second
under increasing number of requesting nodes, for the different schemes.
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We developed a set of four distributed applications as benchmarks. These include distributed
versions of the Vacation benchmark of the Stanford STAMP (multiprocessor STM) benchmark
suite [12], two monetary applications (Bank and Loan). and Red/Black Tree (RB-Tree) [28] as mi-
crobenchmarks. We created 10 objects, distributed them equally over the 48-nodes, and executed
hundred transactions at each node. We used low and high contention levels, which are defined as
90% read transactions and 10 objects, and 10% read transactions and 5 objects, respectively.

A transaction’s execution time consists of inter-node communication delay, serialization time, and
execution time. Communication delay between nodes is limited to a number between 1ms and
10ms to create a static network. Serialization delay is the elapsed time to ensure correctness
of concurrent transactions. This delay also includes waiting time in a scheduling queue and Bi-
interval’s computational time.
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Figure 4.3: Throughput Under Four Benchmarks in Low and High Contention

In low contention, Bi-interval produces high concurrency due to the large number of read-only
transactions. In high contention, Bi-interval reduces object moving time. In both cases, Bi-interval
improve throughput, but concurrency of read-only transactions improves more throughput than re-
duced object moving time. Our experimental evaluation shows that Bi-interval enhances through-
put over TFA as much as 1.77∼ 1.65× speedup under low and high contention, respectively.



Chapter 5

The Progressive Transactional Scheduler

5.1 Motivation

Consider the scenario of an SV and MV-STM depicted in Figure 5.1. We use the same style in the
figure as that of [59]. The solid circles indicate write operations and the empty circles represent
read operations. Transactions are represented on horizontal lines with the circles. The horizontal
line corresponding to the status of each object describes the time domain. The letters C and A
indicate commit and abort events, respectively.

(a) T2 aborts under SV-STM (b) T2 commits under MV-STM

Figure 5.1: Single vs. Multiple Version Models

In Figure 5.1(a), transaction T2 reads o01 and transaction T3 updates objects o11 and o12. Under SV-
STM, T2 reads o12 updated by T3, which causes T2 to abort. However, in Figure 5.1(b), T2 reads o02
updated by T1, which results in the commit of T2.

In the scenario depicted in Figure 5.1(b), T3 and T4 consist of all write operations. Since T0 has
updated o01 and committed last, a node invoking T0 becomes the owner of o1. T3 and T4 request o1

23
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from the node, and then T3 validates and commits o1 first, aborting T4. MV-STM is particularly
useful for avoiding aborts of read transactions [55]. However, due to the communication delay
among nodes in a distributed system, write transactions (e.g., T4) may suffer from repeated aborts.
For example, when T3 commits, T4 aborts due to the conflict over only o1 and has to request all
its objects (i.e., o0 and o1) again. When that happens, we cannot guarantee that all objects are
accessible for T4 when it restarts. o0 may be validated by another transaction, so T4 may abort due
to a different conflict. Even if all objects are available for T4, it may suffer from communication
overhead to request and retrieve o0 and o1.

Existing transactional schedulers (reactive or proactive) serialize aborted transactions to avoid re-
peated aborts. Even though a backoff-based policy is typically used in proactive scheduling, pre-
dicting an exact backoff time is difficult due to the communication delays caused by the CC proto-
col. Also, a random backoff time may delay transactions, because T4 may restart after T3 commits,
or T4 may request other objects before o1 is requested (for example). Under a reactive scheduler,
when the conflict between T3 and T4 occurs, suppose that T4 is enqueued and o11 updated by T3
moves to T4. We cannot guarantee that T4 obtains o11. This may cause T4 to “starve” on o11, as a
large number of (write) transactions may be enqueued before T4 is enqueued.

Motivated by these observations, we identify which object version is subject to the conflict and
restart conflicting transactions instead of aborting them. This increases performance because of
the following: a transaction may conduct a sequence of operations on multiple objects. Each
operation may need one or more objects. Each object may be requested from different object
owners. Whenever a conflict is detected, only the corresponding object versions are discarded, and
the transaction is not aborted.

5.2 Scheduler Design

5.2.1 Distributed Event-based TM Model

We present an event-based model for detecting conflicts at an object level. The basic idea is to
write an event in an event queue whenever it happens. Let ni denote a node invoking a transaction
Ti. We define two types of events: (1) Request(Req(ni, oj)). This event represents the request of
object oj from node ni. (2) Acquisition(Acq(ni, oj)). This event indicates when node ni acquires
object oj . When the node that holds the versions of an object receives a request, it first determines
which requesting nodes must be sent the versions. Then the node locally records those requesting
nodes as having the object versions. After a node receives a version, a transaction (on the node)
conducts its read/write operation. We use the notation E | ni to denote the subsequence of events
E that contains only events performed by node ni.

Figure 5.2 shows an example execution scenario of the event model. Assume that transactions T0
and T1 invoked on nodes n0 and n1 commit after writing o01 and o02, respectively. Let transactions
T2 and T3 request objects o1 and o2 from nodes n0 and n1, respectively. Node n1 holds the list
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Figure 5.2: Example Scenario of Event-based DTM Model

of versions of o2. After T3 requests o1 from n1, T4 requests o1 from n1. Thus, n1 records the
events Acq(n3, o

0
2) and Acq(n4, o

0
2). When T4 validates o12 to commit, Acq(n4, o

0
2) is removed,

and T3 aborts, because Acq(n3, o
0
2) shows that T3 has not terminated yet. This means that T4

commits before T3 validates o2. However, in the proposed model, T3 does not abort and wait until
o12 generated by T3 is available, because o01 still is an up-to-date version. If T4 commits, node n4,
which invokes T4 receives the versions o02 and o12 of object o2. So, T2 requests o2 with the value
| t4 - t2 | from n4, and n4 sends o02 updated at time t1 to T2, because | t4 − t3 | < | t4 - t2 | <
| t4 − t1 |. Once a write transaction commits, the node invoking it becomes the object owner. The
last committed transaction’s node holds the list of committed versions.

Figure 5.3: Code of Transactions in Figure 5.2

Figure 5.3 shows the code example of transactions T2, T3, and T4 illustrated in Figure 5.2. When
T4 commits, T3 rolls-back object level 2 and restarts with o12 updated by T4 (instead of aborting).
The event model describes which transactions must be aborted on early validation. There are three
cases when a transaction must abort. First, due to limited memory, obsolete object versions are
reclaimed by an automatic garbage collection service. We consider a threshold-based garbage
collector [11] for this purpose (discussed in Section 5.6). Thus, transactions needing obsolete
versions must abort. Second, if a transaction Ti validates an object first, and there are Acq events
for that object, then the write transactions that have been involved in those events abort due to
early validation. In this case, the transactions may have requested multiple objects and may have
already conducted some operations on those objects. So they abort and restart. However, we record
events indicating which objects are acquired and requested. Thus, the transactions roll-back the
object and restart with a new version updated by Ti, instead of aborting. The third case is aborting
transactions that request a version while Ti validates that version. In this case, transactions that
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request a read or write operation restart with a new version updated by Ti, instead of aborting. In
the second and third cases, PTS is invoked.

There are two purposes for maintaining events. First, if a transaction Ti requesting multiple objects
aborts, Ti will invoke the CC protocol to find the location of the objects again, incurring communi-
cation delays. An object owner holds a list of events indicating which node acquired which object,
and sends a newly updated version to nodes involved in the events. As soon as the versions are
available, the transactions that have been involved in the events may receive the versions with-
out the help of the CC protocol, reducing communication delays. Second, if a transaction Ti has
conducted some operations on multiple objects and one of those objects has been validated by an-
other transaction, the events indicate the object on which the conflict occurs. So Ti rolls-back the
conflicting object. This implies that all operations that Ti has conducted do not need to abort.

5.2.2 Progressive Transactional Scheduling

The event model describes how to maintain events and detect which object version is subject to
the conflict. When conflicts are detected, PTS assigns different backoff times to the conflicting
transactions and simultaneously sends the requested object versions to nodes invoking those con-
flicting transactions. The backoff times indicate when the transactions are likely to receive the
versions. Thus, a transaction Ti that has validated an object version earlier has a responsibility to
simultaneously send that version to nodes requesting that object. This results in concurrency for
read transactions and validation of a write transaction with reduced execution time. Unless the
transactions receive the updated version before the backoff times, they will request it.

(a) T4 commits. T2, T3, and T5 are sched-
uled.

(b) T4 and T6 commit. T2, T3, and T5 are
scheduled.

Figure 5.4: Examples of Progressive Transactional Scheduling

In Figure 5.4, an arrow represents a time interval that starts when a transaction begins validation
to when it commits. A validation in distributed systems includes global registration of version
ownership. Figure 5.4 shows two examples illustrating PTS. Figure 5.4(a) indicates a conflict
among write transactions T2, T3, T4, and T5. Transactions T2 and T3 request objects o1 and o2 from
node n0, respectively. Transaction T4 requests objects o2 and o3 from nodes n0 and n1, respectively.
Consequently, n0 records five events: Acq(n2, o

0
1), Acq(n2, o

0
2), Acq(n3, o

0
1), Acq(n3, o

0
2), Acq(
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n4, o
0
2). When T4 starts validation of o2 and o3, the event Acq(n4, o

0
2) is removed from the six

events of n0, and the two events Acq(n2, o
0
2) and Acq(n3, o

0
2) are moved to n4 invoking T4, because

the Acq events indicate that o02 is to be validated. While T4 validates o2 and o3, T5 requests o2 from
n0. Also, the request is moved to n4. Finally, when T4 ends validation (i.e., commits), n4 records
three events (i.e., Acq(n2, o

1
2), Acq(n3, o

1
2), and Acq(n5, o

1
2)) and sends o12 to nodes n2, n3, and n5.

In the same way, n1 holds three events (i.e., Acq(n4, o
0
3), Acq(n5, o

0
3), and Acq(n5, o

0
4)). When T4

commits, n4 records the event Acq(n5, o
1
3) and sends o13 to n5. In the meantime, transactions T2

and T3 still acquire up-to-date o01. Thus, T2 and T3 roll-back o2 and restart when o12 is received.

Figure 5.1(b) also shows two conflicts of o0 and o1. Let us assume that T4 validates o02 first. At this
time, T2 and T3 have completed some operations on objects o3 and o4. When T4 commits, o3 and
o4 may have a dependency with o2. Thus, objects o3 and o4 that have been requested after o2 must
be rolled-back. Therefore, T2 starts at the o2 level, and T3 aborts, because o2 is located at the first
object level. When T6 commits, T2 also aborts.

Figure 5.5: An Example of Assigning a Backoff Time

Figure 5.5 shows an example of assigning a backoff time over object o2 illustrated in Figure 5.1(a).
Before T4 starts validation at time t1, write transactions T2 and T3 acquire o1. After T2 starts
validation at t1, T4 sends backoff messages to nodes n2 and n3 for T2 and T3, respectively. The
backoff messages include | t2 − t1 |. T2 and T3 roll-back o2 and wait for | t2 − t1 | time units.
Transaction T5 that requests between times t1 and t2 receives a backoff message, which includes
| t2 – the requesting time of T5 | as the backoff time. T5 will now wait for the backoff time to
expire.

To compute a backoff time, we use a transaction stats table that stores the average historical val-
idation time of a transaction. Each table entry holds a bloom filter [8] representation of the most
current successful commit times of write transactions. Whenever a transaction starts, an expected
commit time is recorded in the table.

5.3 Illustrative Example

We show an example to implement a write transaction. Listing 5.1 shows a general write transac-
tion including two write operations of a bank benchmark. Each object indicates a bank account. A
write operation involves depositing an amount of money to the account. When the deposit function
generates an exception error, the transaction aborts.
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Listing 5.1: An Example of a Write Transaction on TFA
Atomic{

t r y {
d e p o s i t ( o b j e c t 1 , amount ) ;
d e p o s i t ( o b j e c t 2 , amount ) ;
v a l i d a t e ( o b j e c t 1 , o b j e c t 2 ) ;

} catch ( T r a n s a c t i o n E x c e p t i o n ex ){
commit = f a l s e ;

}
}

Listing 5.2 shows a write transaction performed as Listing 5.1. The write transaction conducts
two deposits. The deposit function accepts three parameters: object (i.e., account), amount, and
an object level for inputs. When the deposit function generates an exception error, PTS updates
object level, which is the object level described in the input. If a backoff message is received at
object level 2, the transaction waits for the backoff time. PTS assigns 2 to object level, and returns
an error deposit(object2, amount, 2). The transaction starts at case 2 of the switch statement.

Listing 5.2: An Example of a Write Transaction on PTS
sw i t ch ( o b j e c t l e v e l ){

case 1 : / / o b j e c t l e v e l 1
t r y {

d e p o s i t ( o b j e c t 1 , amount , 1 ) ;
} ca tch ( T r a n s a c t i o n E x c e p t i o n ex ){

commit = f a l s e ;
break ;

}
case 2 : / / o b j e c t l e v e l 2

t r y {
d e p o s i t ( o b j e c t 2 , amount , 2 ) ;
v a l i d a t e ( o b j e c t 1 , o b j e c t 2 ) ;

} ca tch ( T r a n s a c t i o n E x c e p t i o n ex ){
commit = f a l s e ;
c o n t in u e ;

}
}
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5.4 Algorithms

We now present the algorithms for PTS. There are four algorithms: Algorithm 4 for Open Object,
Algorithm 5 forRetrieve Request, Algorithm 6 forCommit, and Algorithm 7 forRetrieve Response.
The procedure, Open Object, is invoked whenever a new object needs to be requested. Open
Object returns the requested object if the object is received. The second procedure,Retrieve Request,
is invoked whenever an object holder receives a new request from Open Object. The Commit
procedure is invoked whenever a transaction successfully terminates. Finally, Retrieve Response
is invoked whenever the requester receives a response fromRetrieve Request. Open Object has
to wait for a response, and Retrieve Request notifies Open Object of the response.

Algorithm 4 describes the procedure of Open Object. After finding the owner of the object, the
requester sends type, oid, and txid to the owner. type represents a read or write transaction.
If the received object is null and the assigned backoff time is not 0, the requester waits for the
backoff time. This implies that the requester requests an object, which is being validated by another
transaction and does not need to roll back. If the backoff time expires, Open Object returns null.
Otherwise, the requester wakes up and receives the object. TransactionQueue is used to check
the status of live transactions.

Algorithm 4: Algorithm of Open Object
1 Procedure Open Object
2 Input: Transaction Type type, Transaction ID txid, Object ID oid
3 Output: null, object
4 owner = find Owner(oid);
5 Send type, oid, and txid to owner;
6 Wait until that Retrieve Response is invoked;
7 Read object and backoff from Retrieve Response;
8 if object is null then
9 if backoff is not 0 then

10 TransactionQueue.put(txid);
11 Wait for backoff ;
12 Read object and backoff from Retrieve Response;
13 if object is not null then
14 Record an Req event including owner;
15 return object;

16 else
17 TransactionQueue.remove(txid);

18 return null;

19 else
20 Record an Req event including owner; return object;

Algorithm 5 describes Retrieve Request, which is invoked when an object owner receives a re-
quest. get V ersion returns the version of oid corresponding to txid. If get V ersion returns null,
it is not the owner of oid. Thus, 0 is assigned as the backoff time, and the requester must retry to
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find a new owner. If the corresponding version is being validated, Retrieve Request has to cal-
culate a backoff time. expected commit time represents when the transaction that is validating
the version commits (approximately). current time represents when the object owner receives a
request. Thus, expected commit time - current time is determined as the backoff time and sent
to the requester.

Algorithm 5: Algorithm of Retrieve Request
1 Procedure Retrieve Request
2 Input: type, oid. txid
3 version = get Version(type, oid);
4 address = get Requester Address();
5 Integer backoff = 0;
6 if version is not null and type is write then
7 Record an Acq event including version and address;
8 if version is being validated then
9 backoff = expected commit time - current time; version=null;

10 Send version and backoff to address;

Algorithm 6 may have multiple objects to commit. After finding owners for each object in Req
event lists, Algorithm 6 sends a message to each owner. Owners find who has acquired the objects
from the Acq event lists and sends all addresses of nodes acquiring the objects to Algorithm 6. If
the addresses are received, an expected commit time is sent to the nodes as the backoff time. The
nodes let their transactions know which object has been conflicted. Changes to the ownership for
each object occur at validation.

Algorithm 6: Algorithm of Commit
1 Procedure Commit
2 Input: objects
3 foreach objects do
4 owner = find Owner(object) from the Req event list;
5 Send owner a message to obtain the addresses of the nodes acquiring object ;
6 if received addresses is not null then
7 Send expected commit time to addresses for a backoff;

8 Validate object;
9 if received addresses is not null then

10 Send object to addresses;

In Algorithm 7, Retrieve Response sends Open Object a signal to wake up if a transaction is
waiting for an object. If txid is found in TransactionQueue, the transaction corresponding to
txid waits for a backoff time. Otherwise, the object is given to the transaction.

Whenever an object is requested, PTS performs Algorithms 4, 5, and 7. We use a hash table to
maintainAcq andReq events. The time complexity isO(the number of events) to send an object
version.
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Algorithm 7: Algorithm of Retrieve Response
1 Procedure Retreive Response
2 Input: object, txid, backoff
3 if txid is found in TransactionQueue then
4 TransactionQueue.remove(txid);
5 Send a signal to wake up and give object and backoff ;

6 else
7 Give object to Open Object;

5.5 Properties

We now prove PTS’s correctness and progress properties. We consider the opacity correctness
criterion [27], which requires that 1) committed transactions must appear to execute sequentially
in real-time order, 2) no transaction observes modifications to shared state done by aborted or live
transactions, and 3) all transactions, including aborted and live ones, must observe a consistent
state.

Strong progressiveness was recently proposed as a progress property [26]. A TM system is strongly
progressive if 1) a transaction that encounters no conflict is guaranteed to commit, and 2) if a set
of transactions conflicts on a single transactional variable, then at least one of them is guaranteed
to commit. Strong progressiveness does not mean the strongest progress property. The strongest
progress property mandates that no transaction is ever forcefully aborted, which is impractical to
implement due to its high complexity and overhead [26].

Theorem 5.5.1. PTS ensures opacity.

Proof. We have to show that PTS satisfies opacity’s aforementioned three conditions. We start
with the real-time order condition. We say that a transaction Tj reads object o from transaction
Ti, if Ti updates o and then commits. Let us assume that the set of transactions T = {T1, T2, · · · }
successfully commits. If all transactions access a single object, TFA ensures real-time order. We
assume that all transactions access a set of objects O ={o1, o2, · · · }. Assume that T violates real-
time order. For this to happen, a transaction Ti ∈ T commits O and a transaction Tj ∈ T read
O must not abort. However, PTS aborts Tj . If Tj reads a subset of O, Tj rolls-back the subset,
resulting in real-time order, which yields a contradiction.

The second condition is guaranteed by the underlying TFA itself, which uses the write-buffer
mechanism. This mechanism exposes changes of objects only at commit time.

The last condition ensures consistent state for both live and aborted transactions. If a transaction
Ti commits the set of objects, all transactions that have acquired the objects roll-back to ensure
consistency. Theorem follows.

Theorem 5.5.2. PTS is strongly progressive.
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Proof. Assume, by way of contradiction, that PTS is not strongly progressive. We consider two
cases. First, assume that no transaction conflicts with another on an object. This means that none
of the transactions have successfully committed. Due to early validation, some transaction must
abort or roll-back. Then there must exist a conflicting object version, which yields a contradiction.

Second, assume that there are some conflicts and all transactions fail to commit. Conflicting trans-
actions abort or roll-back. When a new object version is created, conflicting transactions restart,
which yields a contradiction. Theorem follows.

5.6 Evaluation

We implemented PTS in the HyFlow DTM framework [63], and developed four benchmarks for
experimental studies. The benchmarks include two monetary applications (Bank and Loan), dis-
tributed versions of the Vacation of the STAMP benchmark suite [12], and three distributed data
structures including Counter, Red/Black Tree (RB-Tree) [28], and Distributed Hash Table (DHT).

We considered two competitor DTM implementations: GenRSTM [14] and DecentSTM [6]. GenRSTM
is a generic framework for replicated STMs and uses broadcasting to achieve transactional proper-
ties. DecentSTM implements a fully decentralized snapshot algorithm based on multi-version. We
compared PTS with just the basic event model (i.e., without PTS), GenRSTM, and DecentSTM.

To manage garbage collection, versions that are no longer accessible need to be identified. Un-
like multiprocessors, determining old versions for live transactions in distributed systems incurs
communication overheads. Thus, we consider a threshold-based garbage collector [11], which
checks the number of versions and disposes the oldest version if the number of versions exceeds a
pre-defined threshold. For example, threshold 2 means that at most 2 versions for each object can
be kept. We consider threshold 4 for measuring the basic event model’s throughput, because we
observed that, the speedup is relatively less increased after threshold 4.

Figures 5.6 and 5.7 show the throughput of four benchmarks for PTS, Event Model, GenRSTM,
and DecentSTM, under low and high contention, respectively. (Event Model is the basic event
model without PTS.) In these experiments, a random number of objects between 1 and 10 is ac-
cessed by each transaction. Due to the large number of messages, GenRSTM, and DecentSTM’s
performance degrades for more than 24 requesting nodes. We observe that PTS yields higher
throughput than GenRSTM and DecentSTM.

Figures 5.8 and 5.9 show the throughput of four benchmarks for PTS, Event Model, GenRSTM,
and DecentSTM, with 5 objects, under low and high contention, respectively. We observe that
PTS performs significantly better than Event Model in Figures 5.8 and 5.9, when compared to
Figures 5.6 and 5.7. This is because conflicts between transactions that use a small number of
objects and a large number of objects frequently occur. The resulting increase in the abort of large
transactions (i.e., those using large number of objects) degrades the performance of throughput.
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Figure 5.6: Throughput of 4 Benchmarks with 1-10 Random Objects under Low Contention.

Figures 5.10 and 5.11 show the throughput of four benchmarks for PTS, Event Model, GenRSTM,
and DecentSTM, with 10 objects, under low and high contention, respectively. A transaction
accessing 10 objects has a relatively long execution time. Aborting such transactions degrades
throughput. Thus, PTS performs better than GenRSTM and DecentSTM.

Table 5.1: Summary of Throughput Speedup with 5 Objects
Low Contention High Contention

GenRSTM DecentSTM GenRSTM DecentSTM

Bank 3.2798 2.13501 3.2061 2.6140
Loan 6.3244 3.7468 6.0103 2.5522

Counter 2.4659 2.2166 3.7931 1.9404
RB Tree 4.3471 3.2998 3.2032 1.6282

We computed the throughput speedup of PTS over Event Model, GenRSTM, and DecentSTM
– i.e., the ratio of PTS’s throughput to the throughput of the respective competitor. Tables 5.1,
and 5.2 summarize the speedup of five objects and ten objects, respectively. Our evaluations reveal
that PTS improves throughput over GenRSTM and DecentSTM by as much as (average) 3.4× and
3.3× under low and high contention, respectively. We also observe that PTS’s throughput on five
objects is higher than that on ten objects, but its throughput speedup on ten objects is higher than
that on five objects.
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Figure 5.7: Throughput of 4 Benchmarks with 1-10 Random Objects under High Contention.

Table 5.2: Summary of Throughput Speedup with 10 Objects
Low Contention High Contention

GenRSTM DecentSTM GenRSTM DecentSTM

Bank 3.8580 2.3435 2.884 2.4494
Loan 4.5778 3.3921 6.6436 2.3884

Counter 2.4480 3.6146 4.6852 2.4247
RB Tree 3.7258 3.1778 5.1670 2.2899
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Figure 5.8: Throughput of 4 Benchmarks with 5 Objects under Low Contention.
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Figure 5.9: Throughput of 4 Benchmarks with 5 Objects under High Contention.
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Figure 5.10: Throughput of 4 Benchmarks with 10 Objects under Low Contention.
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Figure 5.11: Throughput of 4 Benchmarks with 10 Objects under High Contention.



Chapter 6

The Cluster-based Transactional Scheduler

6.1 Motivation

There are two cases when transactions are aborted under TFA [63]. First, when a transaction starts
validation on an object, transactions that have requested the object but not validated yet are aborted
(due to early validation). Second, if transactions request an object while another transaction is
being validated on that object, the requesting transactions are aborted to ensure object consistency.

A distributed transaction consumes more execution time, which include the communication delays
that are incurred in requesting and acquiring objects than a transaction on multiprocessors. Thus,
the probability for conflicts and aborts is higher. In order to reduce the number of aborts, trans-
action execution time should be minimized. One way to do so is by decreasing communication
delays, which depends on object locality: remote access is several orders of magnitude slower than
local access.

Directory-based CC protocols (e.g., Arrow, Ballistic, Relay) [18, 35, 78] in the single-copy model
often keep track of the single writable copy. In practice, not all transactional requests are routed
efficiently; possible locality is often overlooked, resulting in high communication delays. Even
though objects can be replicated to increase locality (and also availability), each node has limited
memory. Thus, maintaining replicas of all objects at each node is costly. Increasing locality (and
availability) by brute-force replication while ensuring one-copy serializability can lead to high
memory and communication overhead.

Motivated by this, we consider a k-cluster-based replication model for cc DTM. In this model, mul-
tiple copies of each object are distributed to k selected nodes to maximize locality and availability
and to minimize memory usage and communication overhead. We develop the CTS scheduler for
this model. CTS assigns backoff times to enqueued aborted transactions. Due to the failure of

37
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nodes or links, objects may not be delivered to enqueued transactions. When nodes fail, transac-
tions that they have invoked also fail. When links fail, moving objects may be missing. A backoff
time indicates when the enqueued transactions abort and restart.

6.2 Scheduler Design

To select k nodes for distributing replicas of each object, we group nodes into clusters, such that
nodes in a cluster are closer to each other, while those between clusters are far apart. Recall that
the distance between a pair of nodes in a metric-space network determines the communication cost
of sending a message between them. We use a k-means clustering algorithm [36], to generate k
clusters with small intra-cluster distances — i.e., k nodes may hold the same objects.

When a transaction T1 at node n1 needs object o1 for an operation, it sends a request to the object
holder belonging to the cluster of n1. We consider two possible cases in terms of o1. The first case
is when another transaction is validating o1. In this case, T1 is enqueued and aborted. The second
case is when another transaction may have requested o1 but no transaction has validated o1. In this
case, the object holder has to determine whether to enqueue T1. If the operation is read, o1 is sent
to n1. If the operation is write, T1 is enqueued because it may be aborted, and o1 is sent to n1. If
another transaction starts validation of o1, T1 must abort. When the transaction ends validation of
o1 (e.g., commit), a new copy of o1 is sent to all the object holders of o1 in other clusters to ensure
one-copy serializability. Also o1 is sent to n1. When n1 receives o1, T1 immediately restarts. If T1
commits, n1 becomes a new object holder of o1 in the cluster belonging to n1.

Object owners for each cluster maintain their own scheduling queue. When T1 validates o1, the
object owner of a cluster belonging to T1 sends the list of enqueued aborted transactions to n1.
o1 updated by T1 is simultaneously sent to the enqueued aborted transactions. In the meantime,
object owners of o1 in other clusters may hold different enqueued aborted transactions. Once the
object owners receive o1 from n1, o1 is also simultaneously sent to the different enqueued aborted
transactions.

The main purpose of enqueuing aborted transactions is to decrease the execution time of a trans-
action. We consider two effects through the enqueuing strategy. First, if a transaction aborts, the
CC protocol will be invoked to find the location of the objects again, incurring communication
delays. An object owner holds a queue consisting of the enqueued aborted transactions, and sends
a newly updated object to the nodes invoking the transactions. As soon as validation of the object
completes, the enqueued aborted transactions may receive the object without the help of the CC
protocol, reducing communication delays.

Second, when validation of an object completes, the object is simultaneously sent to all enqueued
aborted transactions if they exist. This results in concurrency for read transactions and validation of
a write transaction with reduced execution time. If one of the enqueued aborted write transactions
starts validation first, the transaction will have the smallest execution time of the enqueued aborted
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write transactions in all clusters. Its intent is to give a transaction with the smallest execution time
a chance to be committed first, reducing the probability of conflicts.

In the meantime, CTS assigns different backoff times for transactions that will be enqueued. The
backoff times indicate when the enqueued aborted transactions receive an object. Due to potential
failures of nodes or links, moving objects may be missing or object owners may loose the enqueued
aborted transactions. Thus, the enqueued aborted transactions start unless they receive the object
until the assigned backoff times. Due to node failure, if a transaction does not receive any response,
it requests an object from another object holder in the closest neighbor cluster over a network.

6.3 Illustrative Example

Figure 6.1: An Example of 3-Clustering Algorithm

Figure 6.1 shows an example of 3-clustering algorithm on a six-node network. Each object may be
held by different nodes. For example, node 1 holds all objects because cluster 1 consists of only
node 1. The length of the link between nodes indicates the communication delay. To construct 3
clusters, the three smallest links indicated by the three thick lines have been removed.

Figure 6.2: An Example of Assigning a Backoff Time

Figure 6.2 illustrates an example of assigning a backoff time over object o1. Before T2 starts
validation at t1, write transactions T1 and T2 receive o1 and are enqueued. After T2 starts validation
at t1, T1 aborts, and the requesting transactions T5, T6, and T7 between t1 and t2 are aborted and
enqueued. All aborted transactions T1, T5, T6, and T7 should start at t2. Backoff times of | t2− t1 |
is assigned to T1, and | t2 - the aborted time of T5 | is assigned to T5. A validation in distributed
systems includes global registration of object ownership over all clusters. The commit time t2 can
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be predicted using average running times when validation starts at t1. We discuss how to expect t2
in Section 6.4.

(a) 2 Clusters with 9 Nodes and 7 Transactions (b) States of Scheduling Queues at Nodes n0, n1,
and n5

Figure 6.3: An Example of CTS

Figure 6.3 illustrates an example of CTS. Figure 6.3(a) shows the architecture of two clusters
consisting of 9 nodes. Assume that write transactions T1, T2, T3 and read transaction T4 request
object o1 from node n0, and read transactions T6 and T8 and write transaction T7 request o1 from
n5. While T1 validates o1, T4 and T8 request o1 from n0 and n5, respectively. So T4 and T8 abort.
Write transactions T3 and T7 abort due to the validation of T1.

Figure 6.3(b) shows the queue states of nodes n0, n1, and n5. If T1 commits, n1 becomes the
object holder of o1 in cluster 1 and n0 sends the enqueued aborted transactions for o1 to n1. Also,
n1 sends o1 updated by T1 to n5 in cluster 2. All enqueued aborted transactions receive o1 from n1

and n5. The enqueued read transactions T4 and T8 will be dequeued from the scheduling queues of
n1 and n5. The enqueued write transactions T3 and T7 will remain in the scheduling queues until
they commit.

6.4 Algorithms

We now present the algorithms for CTS. There are four algorithms: Algorithm 8 forOpen Object,
Algorithm 9 forRetrieve Request, Algorithm 10 forCommit, and Algorithm 11 forRetrieve Response.
The procedure, Open Object, is invoked whenever a new object needs to be requested. Open
Object returns the requested object if the object is received. The second procedure,Retrieve Request,
is invoked whenever an object holder receives a new request from Open Object. The Commit
procedure is invoked whenever a transaction successfully terminates. Finally, Retrieve Response
is invoked whenever the requester receives a response.
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Algorithm 8 describes the procedure of Open Object. Open Object is invoked when a transac-
tion needs an object. If the transaction restarts due to expired backoff timer, Open Object finds
the object owner of oid again. If the transaction restarts due to a wake-up signal from the object
owner, it simply reads the object from its local cache.

After finding the owner of oid in a requester’s cluster, the requester sends type, oid, and txid to the
owner. type represents a read or write transaction. If the received object is null and the assigned
backoff time is not 0, the requester saves the backoff time, so xid aborts and wait for the backoff
time. If it expires, Open Object is invoked again. Otherwise, the requester wakes up and receives
the object. Even If Open Object successfully receives an object, another transaction requesting
oid may validate the object first. Thus, the status of txid is checked before returning the object. If
the status is abort, Open Object returns null.

Algorithm 8: Algorithm of Open Object
1 Procedure Open Object
2 Input: Transaction Type type, Transaction ID txid, Object ID oid
3 Output: null, object
4 if there is object corresponding to oid then
5 return object;

6 owner = find Owner(oid);
7 Send type, oid, and txid to owner;
8 Wait until that Retrieve Response is invoked;
9 Read object and backoff from Retrieve Response;

10 if object is null and backoff is not 0 then
11 Set backoff ; return null;

12 else
13 if txid is already aborted then
14 return null;

15 else
16 return object;

The data structures depicted in Algorithm 1 are also used in Algorithms 9 and 11. Algorithm 9 de-
scribesRetrieve Request, which is invoked when an object owner receives a request. Retrieve Request
enqueues the request and sends the object to the requester. As soon as another transaction starts
validation of the object, an abort message with a backoff time is sent to all enqueued transactions.
If the object is being validated, the requester is enqueued, and a backoff time is assigned.

To compute a backoff time, we use a transaction stats table that stores the average historical valida-
tion time of a transaction. Each table entry holds a bloom filter [8] representation of the most cur-
rent successful commit times of write transactions. Whenever a transaction starts, an expected co-
mmit time is recorded in the table. If the requested object is being validated, a backoff time is
computed as expected com-mit time – requesting time (e.g, current time).

Anticipating an exact commit time is too optimistic. Transactions that have been enqueued may not
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receive any object due to node or link failures. Also, transactions may not obtain any objects within
their backoff times due to miss-prediction of commit times. In this case, transactions request the
objects again. Thus, the removeDuplicate(address) function removes redundant requests from
the scheduling queue.

Algorithm 9: Algorithm of Retrieve Request
1 Procedure Retrieve Request
2 Input: type, oid. txid
3 object = get Object(oid);
4 address = get Requester Address();
5 Integer backoff = 0;
6 if object is not null then
7 Requester List reqlist = scheduling List.get(oid);
8 if reqlist is null then
9 reqlist = new Requester List();

10 else
11 reqlist.removeDuplicate(address);

12 if object is being validated then
13 backoff = expected commit time - current time; object=null;

14 reqlist.addReqeuster(backoff , new Requester(address, txid));
15 scheduling List.put(oid, reqlist);

16 Send object and backoff to address;

Algorithm 10 accepts multiple objects as inputs. If another transaction starts validation first, status
of enqueued transactions will be updated to abort. Algorithm 10 checks status first and validates
each object. Since each cluster has an owner for each object, Algorithm 10 sends the objects to
each owner.

Algorithm 10: Algorithm of Commit
1 Procedure Commit
2 Input: objects
3 Output: rollback, or commit
4 if status == abort then
5 return rollback;

6 foreach objects do
7 owner = find Owner(object);
8 Request enqueued aborted transactions from owner;
9 Send an abort message with expected commit time to the enqueued aborted transactions;

10 Validate object;
11 Send object to all object owners of other clusters;
12 return commit;

In Algorithm 11, Retrieve Response is invoked when the object that Object Open has requested
is received. Object Open wakes up and reads object and backoff . Retrieve Response is also
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invoked if another transaction starts or ends the validation of object. When the transaction starts
validation, Retrieve Response receives an abort message with a backoff time. When the transac-
tion ends validation, Retrieve Response receives only object.

Algorithm 11: Algorithm of Retrieve Response
1 Procedure Retreive Response
2 Input: object, txid, backoff , scheduling List
3 if txid is waiting in Object Open then
4 Send a signal to wake up and give object and backoff ;

5 else if txid is ready to restart then
6 Send a signal to restart and give object;

7 else if txid is working then
8 Set backoff and abort txid;

Whenever an object is requested, Algorithms 8, 9, and 11 are invoked. We use a hash table for
objects and a linked list for transactions. The time complexity is O(1) to enqueue a transaction. To
check for duplicated transactions in all enqueued transactions, the time complexity for an object is
O(the number of enqueued transactions).

6.5 Analysis

We now show that CTS outperforms another scheduler in speed. Recall that CTS uses TFA to guar-
antee a consistent view of shared objects between distributed transactions, and ensure atomicity for
object operations. In [63], TFA is shown to exhibit opacity (i.e., its correctness property) [27] and
strong progressiveness (i.e., its progress property [26]). Each cluster maintains the same copy of
objects and guarantees TFA’s properties. Thus, CTS for each cluster ensures opacity and strong
progressiveness. For the purpose of analysis, we consider a symmetric network of N nodes scat-
tered in a metric space. We consider three different models: no replication (NR), partial replication
(PR), and full replication (FR) in cc DTM.

Definition 4. Given a schedulerA andN transactions in D-STM,makespanNA (Model) is the time
that A needs to complete N transactions on Model.

Definition 5. The relative competitive ratio (RCR) of schedulers A and B for N transactions on
Model in D-STM is makespanN

A (Model)

makespanN
B (Model)

. Also, the relative competitive ratio (RCR) of model 1 and 2

for N transactions on scheduler A in D-STM is makespanN
A (Model1)

makespanN
A (Model2)

.

Given schedulers A and B for N transactions, if RCR (i.e., makespanN
A (Model)

makespanB(Model)
) < 1, A outper-

forms B. Thus, RCR of A and B indicates a relative improvement between schedulers A and B
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if makespanNA (Model) < makespanNB (Model). In the worst case, N transactions are simulta-
neously invoked to update an object. Whenever a conflict occurs between two transactions, let
scheduler B abort one of these and enqueue the aborted transaction (to avoid repeated aborts) in
a distributed queue. The aborted transaction is dequeued and restarts after a backoff time. Let the
number of aborts of Ti be denoted as λi. We have the following lemmas.

Lemma 6.5.1. Given scheduler B and N transactions,
∑N

i=1 λi ≤ N − 1.

Proof. Given a set of transactions T = {T1, T2, · · ·TN}, let Ti abort. When Ti is enqueued, there
are ηi transactions in the queue. Ti can only commit after ηi transactions commit if ηi transactions
have been scheduled. Hence, if a transaction is enqueued, it does not abort. Thus, one of N
transactions does not abort. The lemma follows.

Lemma 6.5.2. Given schedulerB andN transactions,makespanNB (NR) ≤ 2(N−1)
∑N−1

i=1 d(ni, nj)+
ΓN .

Proof. Lemma 6.5.1 gives the total number of aborts on N transactions under scheduler B. If a
transaction Ti requests an object, the communication delay will be 2×d(ni, nj). Once Ti aborts,
this delay is incurred again. To complete N transactions using scheduler B, the total communica-
tion delay will be 2(N − 1)

∑N−1
i=1 d(ni, nj). The theorem follows.

Lemma 6.5.3. Given scheduler B, N transactions, k replications, makespanNB (PR) ≤ (N −
k)
∑N−k

i=1 d(ni, nj) + (N − k + 1)
∑N−1

i=1

∑k−1
j=1 d(ni, nj) + ΓN .

Proof. In PR, k transactions do not need to remotely request an object, because k nodes hold repli-
cated objects. Thus,

∑N−k
i=1 d(ni, nj) is the requesting time ofN transactions and

∑N−1
i=1

∑k−1
j=1 d(ni, nj)

is the validation time based on atomic multicasting for only k nodes of each cluster. The theorem
follows.

Lemma 6.5.4. Given schedulerB andN transactions,makespanNB (FR) ≤
∑N−1

i=1

∑N−1
j=1 d(ni, nj)+

ΓN .

Proof. Transactions request objects from their own nodes, so the requesting times for the objects
do not occur in FR. Even though the transactions abort, FR does not incur communication delays.
The basic idea of transactional schedulers is to minimize conflicts, reducing object requesting
times. In FR, the transactional schedulers do not affect makespan. Thus, when a transaction
commits, FR takes

∑N−1
i=1

∑N−1
j=1 d(ni, nj) for atomic broadcasting to support one-copy serializ-

ability.

Theorem 6.5.5. Given schedulerB andN transactions,makespanNB (FR) ≤ makespanNB (PR) ≤
makspanNB (NR).

Proof. Given k PR, limk→1makespan
N
B (PR) ≤ 2(N − 1)

∑N−1
i=1 d(ni, nj) + ΓN , and limk→N

makespanNB (PR) ≤
∑N−1

i=1

∑N−1
j=1 d(ni, nj) + ΓN . The theorem follows.
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Theorem 6.5.6. Given N transactions and M objects, the RCR of schedulers CTS on PR and FR
is less than 1, where N > 3.

Proof. Let
∑N−1

i=1 d(ni, nj) denote δN−1. To show that the RCR of schedulers CTS on PR and
FR is less than 1, makespanNCTS(PR) < makspanNB (FR). makespanNCTS(PR) ≤ 2δN−k +
(N − 1)δk−1 + ΓN , because CTS does not abort the aborted transactions again. 2δN−k + (N −
1)δk−1 ≤ (N − 1)δN−1, so that 2δN−k ≤ (N − 1)δN−k. Only when N ≥3, PR is feasible. Hence,
makespanNCTS(PR) < makspanNB (FR), where N > 3. The theorem follows.

Theorem 6.5.7. CTS ensures one-copy serializability.

Proof. Consider the set of transactions T={T1, T2, · · · TN} requesting the object o from the object
owners in each cluster at time t. We consider three cases. First, if any transaction Ti /∈ T validates
o before t, all transactions in T obtain the same copy of o updated by Ti. Second, if all transactions
in T except Tj start validation of o first after t, all transactions in T except Tj abort. Note that
if any transaction starts validation of o, the status of the object owners of o located in all clusters
will be updated, and all transactions that have requested o will abort. All transactions in T except
Tj restart and obtain the same copy of o after Tj commits. Finally, if Ti /∈ T validates o at t, all
transactions in T abort. All transactions in T restart and obtain the same copy of o updated by Ti.
The theorem follows.

6.6 Evaluation

We implemented CTS in the HyFlow DTM framework [63], and developed four benchmarks
for experimental studies. The benchmarks include two monetary applications (Bank and Loan)
and two distributed data structures including Counter and Red/Black Tree (RB-Tree) [28] as mi-
crobenchmarks. In the Bank benchmark, accounts are distributed over nodes (which represent bank
branches), and every node invokes concurrent transactions on either balance-checking or money
transfer operations. Loan is a simple money transfer application, in which a set of monetary asset
holders is distributed over nodes.

We considered two competitor (cluster) DTM implementations: GenRSTM [14] and DecentSTM [6].
GenRSTM is a generic framework for replicated STMs and uses broadcasting to achieve transac-
tional properties. DecentSTM implements a fully decentralized snapshot algorithm, minimizing
aborts. We compared CTS with GenRSTM and DecentSTM. We considered 30-CTS and 60-CTS,
meaning CTS over 30% and 60% object owners of the total nodes, respectively. For instance,
30-CTS under 10 nodes means CTS over 3-clustering algorithm.

Figure 6.4 shows the throughput of four benchmarks for 30-CTS, 60-CTS, GenRSTM, and De-
centSTM with 20% node failure under low and high contention, respectively. In these experiments,
20% of nodes randomly fail. GenRSTM and DecentSTM maintain replicated data for each node,
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Figure 6.4: Throughput of 4 Benchmarks with 20% Node Failure under Low and High Contention
(5 to 24 nodes).
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so their throughput decreases as the number of nodes increases. Due to the large number of mes-
sages, their performance degrades for more than 24 requesting nodes. We observe that CTS yields
higher throughput than GenRSTM and DecentSTM. In particular, 60% of nodes are entitled to
the ownership of an object based on 60-CTS. 60-CTS maintains smaller clusters than 30-CTS, so
the communication delays to request and retrieve objects decrease. Thus, even though the num-
ber of messages increases in 60-CTS, 60-CTS yields higher throughput than 30-CTS under low
contention. Under high contention, 60-CTS suffers from large number of messages, degrading its
throughput.

Figure 6.5 shows the throughput of four benchmarks for 60-CTS, GenRSTM, and DecentSTM with
50% node failure under low and high contention, respectively. GenRSTM’s and DecentSTM’s
throughput do not degrade as the number of failed nodes increases, because every node holds
replicated objects. However, in CTS, this causes communication delays to increase, degrading
throughput, because object owners may fail or scheduling lists may be lost. Over less than ten
nodes with 50% failed nodes, GenRSTM yields higher throughput than CTS, because the num-
ber of messages decreases. As the number of nodes increases, CTS outperforms GenRSTM and
DecentSTM in throughput.

We computed the throughput speedup of 60-CTS over GenR STM and DecentSTM – i.e., the ratio
of CTS’s throughput to the throughput of the respective competitor. Tables 6.6(a) and 6.6(b) sum-
marize the throughput speedup under 20% and 50% node failure, respectively. Our evaluations
reveal that 60-CTS improves throughput over GenRSTM by as much as 1.9533 (95%) ∼ 2.0968
(109%) × speedup in low and high contention, respectively, and over DecentSTM by as much
as 1.9622 (96%) ∼ 2.1683 (116%) × speedup in low and high contention, respectively. In other
words, CTS improves throughput over two existing replicated DTM solutions (GenRSTM and De-
centSTM) by as much as (average) 1.55× and 1.73× under low and high contention, respectively.
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Figure 6.5: Throughput of 4 Benchmarks with 50% Node Failure under Low and High Contention
(5 to 24 nodes).
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Chapter 7

The Reactive Transactional Scheduler

7.1 Motivation

Past transactional scheduler often causes only small number of aborts and reduces the total commu-
nication delay in DTM [38]. However, aborts may increase when scheduling nested transactions.
In the flat and closed nesting models, if an outer transaction, which has multiple nested transac-
tions, aborts due to a conflict, the outer and inner transactions will restart and request all objects
regardless of which object caused the conflict. Even though the aborted transactions are enqueued
to avoid conflicts, the scheduler serializes the aborted transactions to reduce the contention on only
the object that caused the conflict. With nested transactions, this may lead to heavy contention
because all objects have to be retrieved again.

Proactive schedulers abort the losing transaction with a backoff time, which determines how long
the transaction is stalled before it is re-started [77, 7]. Determining backoff times for aborted trans-
actions is generally difficult in DTM. For example, the winning transaction may commit before the
aborted transaction is restarted due to communication delays. This can cause the aborted transac-
tion to conflict with another transaction. If the aborted transaction is a nested transaction, this will
increase the total execution time of its parent transaction. Thus, the backoff strategy may not avoid
or reduce aborts in DTM.

Motivated by this, we propose the RTS scheduler for closed-nested DTM. RTS reduces the num-
ber of parent transactions’ aborts to prevent their committed nested transactions from the aborts.
RTS checks the length of the parent transaction’s execution time and determines whether losing
transaction is aborted or enqueued. If the parent transaction has a short execution time, it aborts.
Otherwise, it is enqueued to preserve its nested transactions. A backoff time used for the enqueued
parent transaction indicate when the transaction is likely to receive an object.

50
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7.2 Scheduler Design

We consider two kinds of aborts that can occur in closed-nested transactions when a conflict occurs:
aborts of nested transactions and aborts of parent transactions. Closed nesting allows a nested
transaction to abort without aborting its parent transaction. If a parent transaction aborts however,
all of its closed-nested transactions are aborted. Thus, RTS performs two actions for a losing parent
transaction. First, determining whether losing transaction is aborted or enqueued by the length of
its execution time. Second, the losing transaction is aborted if it is a parent transaction with a
“high” contention level. A parent transaction with a “low” contention level is enqueued with a
backoff time.

The contention level (CL) of an object oj can be determined in either a local or distributed manner.
A simple local detection scheme determines the local CL of oj by how many transactions have
requested oj during a given time period. A distributed detection scheme determines the remote CL
of oj by how many transactions have requested other objects before oj is requested. For example,
assume that a transaction Ti is validating oj , and Tk requests oj from the object owner of oj . The
local CL of oj is 1 because only Tk has requested oj . The remote CL of oj is the local CL of
objects that Tk have requested if any. Ti’s commit influences the remote CL because those other
transactions will wait until Tk completes validation of oj . If Tk aborts, the objects that Tk is using
will be released, and the other transactions will obtain the objects. We define the CL of an object
as the sum of its local and remote CLs. Thus, the CL indicates how many transactions want the
objects that a transaction is using.

If a parent transaction with a short execution time is enqueued instead of aborted, the queuing delay
may exceed its execution time. Thus, RTS aborts a parent transaction with a short execution time.
If a parent transaction with a high CL aborts, all closed-nested transactions will abort even if they
have committed with their parent and will have to request the objects again. This may waste more
time than a queuing delay. As long as their waiting time elapses, their CL may increase. Thus,
RTS enqueues a parent transaction with a low CL. We discuss how to determine backoff times and
CLs in Section 7.3.

7.3 Illustrative Example

RTS assigns different backoff times for each enqueued transaction. A backoff time is computed
as a percentage of estimated execution time. Figure 7.1 shows a example of RTS. Three write
transactions T1, T2, and T3 request o1 from the owner of o1, and T2 validates o1 first at t3. T1 and
T3 abort due to the early validation of T2. We consider two types of conflicts in RTS while T2
validates o1. First, a conflict between two write transactions can occur. Let us assume that write
transactions T4, T5, and T6 request o1 at t4, t5, and t6, respectively. T4 is enqueued because the
execution time | t4 − t1 | of T4 exceeds | t7 − t4 | of T2 — the expected commit time t7 of T2. At
this time, the local CL of o1 is 1 and the CL will be 2 (i.e., the CLs of o3 + o2 + o1), which is a low
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(a) Object-based Scenario (b) Transaction-based Scenario

Figure 7.1: A Reactive Transactional Scheduling Scenario

CL. Thus, | t7− t4 | is assigned to T4 as a backoff time. When T5 requests o1 at t5, even if | t5− t2 |
exceeds | t5 - expected commit time of T4 |, T5 is not enqueued because the CL is 4 (i.e., the local
CL of o1 is 2 and the CL of o4 is 2), which is a high CL. Due to the short execution time of T6, T6
aborts. Second, a conflict between read and write transactions can occur. Let us assume that read
transactions T4, T5, and T6 request o1. As backoff times, | t7 − t4 |, | t7 − t5 |, and | t7 − t6 | will
be assigned to T4, T5 and T6, respectively. o1 updated by T2 will simultaneously be sent to T4, T5
and T6, increasing the concurrency of the read transactions.

Given a fixed number of transactions and nodes, object contention will increase if these transactions
simultaneously try to access a small number of objects. The threshold of a low or high CL relies
on the number of nodes, transactions, and shared objects. Thus, the CL’s threshold is adaptively
determined. Assume that the CL’s threshold in Figure 7.1 is decided as 3. When T4 requests o1,
the CL for objects o1, o2, and o3 is 2, meaning that two transactions want the objects that T4 has
requested, so T4 is enqueued. On the other hand, when T5 requests o1, the CL of objects o1 and
o4 is 4, representing that four transactions (i.e., more than the CL’s threshold) want o1 or o4 that
T5 has requested, so T5 aborts. As long as the waiting time elapses, their CL may increase. Thus,
RTS enqueues a parent transaction with a low CL, which is defined as less than the CL’s threshold.

To compute a backoff time, we use a transaction stats table that stores the average historical val-
idation time of a transaction. Each table entry holds a bloom filter [8] representation of the most
current successful commit times of write transactions. Whenever a transaction starts, an expected
commit time is picked up from the table. The requesting message for each transaction includes
three timestamps: the starting, requesting, and expected commit time of a transaction. In Fig-
ure 7.1, if T5 is enqueued, its backoff time will be | t7 − t5 | + the expected execution time (i.e.,
the expected commit - requesting time) of T4.

If the backoff time expires before an object is received, the corresponding transaction will abort.
Two possible cases exist in this situation. First, the transaction requests the object and is enqueued
again as a new transaction. The duplicated transaction (i.e., the previously enqueued transaction)
will be removed from a queue. Second, the object may be received before the transaction restarts.
In this case, the object will be sent to the next enqueued transaction.
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7.4 Algorithms

We now present the algorithms for RTS. There are three algorithms: Algorithm 12 forOpen Object,
Algorithm 13 for Retrieve Request, and Algorithm 14 for Retrieve Response. The procedure
Open Object is invoked whenever a new object needs to be requested. Open Object returns the
requested object if the object is received. The second procedure, Retrieve Request, is invoked
whenever an object holder receives a new request fromOpen Object. Finally,Retrieve Response
is invoked whenever the requester receives a response from Retrieve Request. Open Object has
to wait for a response and Retrieve Request notifies Open Object of the response.

Algorithm 12 describes the procedure of Open Object. After finding the owner of the object, a
requester sends oid, txid, myCL, and ETS to the owner. myCL is set when an object is received.
myCL indicates the number of transactions needing the objects that the requester is using. The
structure of an execution time (ETS) consists of the start time s, the requesting time r, and the
expected commit time c of the requester. If the received object is null and the assigned backoff
time is not 0, the requester waits for the backoff time. If it expires, Open Object returns null and
corresponding transaction retries. Otherwise, the requester wakes up and receives the object. The
TransactionQueue holding live transactions is used to check the status of the transactions. If
a transaction aborts, it is removed from the TransactionQueue. In this case, even if an object
is received, there is no transaction that needs the object, and therefore it is forwarded to the next
transaction.

Algorithm 12: Algorithm of Open Object
1 Procedure Open Object
2 Input: Transaction ID txid, Object ID oid
3 Output: null, object
4 owner = Find owner(oid);
5 Send oid, txid, myCL, and ETS to owner;
6 Wait until that Retrieve Response is invoked;
7 Read object, backoff , and remoteCL from Retrieve Response;
8 if object is null then
9 if backoff is not 0 then

10 TransactionQueue.put(txid);
11 Wait for backoff ;
12 Read object and backoff from Retrieve Response;
13 if object is not null then
14 return object;

15 else
16 TransactionQueue.remove(txid);

17 return null;

18 else
19 return object;

The data structures depicted in Algorithm 1 is also used in Algorithms 13 and 14. Algorithm 13
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describes Retrieve Request, which is invoked when an object owner receives a request. If
get Object gives null, it is not the owner of oid. Thus, 0 is assigned as the backoff and the
requester must retry to find a new owner. If the corresponding object is locked, the object is being
validated, so Retrieve Request has to decide whether the requester is aborted or enqueued on
ETS and Contention Threshold. Static variables bks represent backoff times for each object.
An object owner holds as many bks as holding objects and updates corresponding bks whenever
a transaction is enqueued. Unless the contention level of the requester and the object owner ex-
ceeds Contention Threshold, the requester is added to scheduling List. As soon as the object
is unlocked, it is sent to the first element of scheduling List.

Algorithm 13: Algorithm of Retrieve Request
1 Procedure Retrieve Request
2 Input: oid. txid, Contention Level, ETS
3 object = get Object(oid);
4 address = get Requester Address();
5 Integer backoff = 0;
6 if object is not null and in use then
7 Requester List reqlist = scheduling List.get(oid);
8 if reqlist is null then
9 reqlist = new Requester List();

10 else
11 reqlist.removeDuplicate(address);

12 if bk < | ETS.r - ETS.s | then
13 Integer contention = reqlist.getContention()+Contention Level;
14 if contention < CL Threshold then
15 bk += | ETS.c - ETS.r |; backoff = bk;
16 reqlist.addReqeuster(contention, new Requester(address, txid));
17 scheduling List.put(oid, reqlist);

18 Send object and backoff to address;

In Algorithm 14, Retrieve Response sends Object Open a signal to wake up if a transaction
waits for an object. If any transaction needing the object is not located in TransactionQueue,
let the object’s owner send the object to the next element of scheduling List. If a transaction
completes the validation of objects (i.e., commit), the node invoking the transaction receives
Requster Lists of each committed object. The newly updated object will be sent to the first
element of scheduling List.

Whenever an object is requested, RTS performs Algorithms 12, 13, and 14. We use a hash table
for objects and a linked list for transactions. The transactions will be enqueued as many as CL
threshold. The time complexity is O(1) to enqueue a transaction. To check duplicated transac-
tions in all enqueued transactions, the time complexity is O(CL threshold). Thus, the total time
complexity of RTS is O(CL threshold).
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Algorithm 14: Algorithm of Retrieve Response
1 Procedure Retreive Response
2 Input: object, txid, and backoff
3 if txid is found in TransactionQueue then
4 TransactionQueue.remove(txid);
5 Send a signal to wake up and give object and backoff ;

6 else
7 Send a message to the object owner;

7.5 Analysis

We now show that RTS outperforms another scheduler in speed. Recall that RTS uses TFA to guar-
antee a consistent view of shared objects between distributed transactions, and ensure atomicity for
object operations. In [63], TFA is shown to exhibit opacity (i.e., its correctness property) [27] and
strong progressiveness (i.e., its progress property [26]). For the purpose of analysis, we consider
a symmetric network of N nodes scattered in a metric space. The metric d(ni, nj) is the distance
between nodes i and j. Transactions Ti and Tj are invoked at nodes ni and nj , respectively. The
local execution time of Ti is defined as γi.

Definition 6. Given a scheduler A and N transactions in D-STM, makespanA(N) is the time that
A needs to complete N transactions.

If only a transaction Ti exists and Ti requests ok from nj , it will commit without any contention.
Thus, makespanA(1) is 2×d(ni, nj)+γi under any scheduler A.

Definition 7. The relative competitive ratio (RCR) of schedulers A and B for N transactions in
D-STM is makespanA(N)

makespanB(N)
.

Given schedulers A and B for N transactions, if RCR (i.e., makespanA(N)
makespanB(N)

) < 1, A outperforms
B. Thus, RCR of A and B indicates a relative improvement between schedulers A and B if
makespanA(N) < makespanB(N). In the worst case,N transactions are simultaneously invoked
to update an object. Whenever a conflict occurs between two transactions, let scheduler B abort
one of these and enqueue the aborted transaction (to avoid repeated aborts) in a distributed queue.
The aborted transaction is dequeued and restarts after a backoff time. Let the number of aborts of
Ti be denoted as λi. We have the following lemma.

Lemma 7.5.1. Given scheduler B and N transactions,
∑N

i=1 λi ≤ N − 1.

Proof. Given a set of transactions T = {T1, T2, · · ·TN}, let Ti abort. When Ti is enqueued, there
are δi transactions in the queue. Ti can only commit after δi transactions commit if δi transactions
have been scheduled. Hence, if a transaction is enqueued, it does not abort. Thus, one of N
transactions does not abort. The lemma follows.
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Let node n0 hold an object. We have the following two lemmas.

Lemma 7.5.2. Given schedulerB andN transactions,makespanB(N) ≤ 2(N−1)
∑N

i=1 d(n0, ni)+∑N
i=1 γi.

Proof. Lemma 7.5.1 gives the total number of aborts on N transactions under scheduler B. If a
transaction Ti requests an object, the communication delay will be 2×d(n0, ni). Once Ti aborts,
this delay is incurred again. To complete N transactions using scheduler B, the total communica-
tion delay will be 2(N − 1)

∑N
i=1 d(n0, ni) and the total local execution time will be

∑N
i=1 γi.

Lemma 7.5.3. Given scheduler RTS and N transactions, makespanRTS(N) ≤
∑N

i=1 d(n0, ni) +∑N
i=1 d(ni−1, ni) +

∑N
i=1 γi.

Proof. Given a set of transactions T = {T1, T2, · · ·TN}, which is ordered in the queue of node
n0, if ∀Ti ∈ T requests an object, the communication delay of requesting an object will be∑N

i=1 d(n0, ni). The total communication delay to completeN transactions will be
∑N

i=1 d(n0, ni)+∑N
i=1 d(ni−1, ni) and the total local execution time will be

∑N
i=1 γi.

We have so far assumed that all N transactions share an object to study the worst-case contention.
We now consider contention of N transactions with M objects. We have the following theorem.

Theorem 7.5.4. Given N transactions and M objects, the RCR of schedulers RTS and B is less
than 1, where N ≥ 2.

Proof. Consider a transaction that includes multiple nested-transactions and accesses multiple
shared objects. In the worst case, the transaction has to update all shared objects. makespanRTS(N) <

makespanB(N) because
∑N

i=1 d(ni−1,ni)∑N
i=1 d(n0,ni)

< 2N − 3. The best case of scheduler B for aborted trans-
actions is that its communication delays for M objects to visit all nodes invoking N transactions is
incurred on shortest paths. Thus,

∑N
i=1 d(ni−1,ni)∑N
i=1 d(n0,ni)

< logN [62]. Hence,M× logN < M×(2N−3),
when N ≥ 2. The theorem follows.

7.6 Evaluation

We implemented RTS in the HyFlow DTM framework [63] for experimental studies. We devel-
oped a set of six distributed applications as benchmarks. These include distributed versions of the
Vacation benchmark of the STAMP benchmark suite [12], Bank as a monetary application [63], and
four distributed data structures including Linked-List (LL), Binary-Search Tree (BST), Red/Black
Tree (RB-Tree), and Distributed Hash Table (DHT) [28] as microbenchmarks. We used low and
high contention, which are defined as 90% and 10% read transactions of one thousand active con-
current transactions per node, respectively [20]. A read transaction includes only read operations,
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and a write transaction consists of both read and write operations. Five to ten shared objects are
used at each node. Communication delay between nodes is limited to a number between 1 and
50msec to create a static network.

Under long execution time and large CL’s threshold, Vacation and Bank benchmarks suffer from
high contention because their queueing delay is longer than that of the other benchmarks. In the
mean time, under long execution time and short CL’s threshold, the aborts of parent transactions
increase. At a certain point of the CL’s threshold, we observe a peak point of throughput. Thus, in
this experiment, the CL’s threshold corresponding to the peak point is determined.

We measured the throughput (i.e., the number of committed transactions per second) of RTS, TFA,
and TFA+Backoff. TFA means TFA without any transactional scheduler supporting closed-nested
transactions [73]. The purpose of measuring the throughput of TFA is to understand the overall
performance improvement of RTS. TFA+Backoff means TFA utilizing a transactional scheduler.
With the scheduler, a transaction aborts with a backoff time if a conflict occurs. The purpose of
measuring TFA+Backoff’s throughput is to understand the effectiveness of enqueuing live trans-
actions to prevent the abort of nested transactions.
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Figure 7.2: Transactional Throughput on Low Contention

Figure 7.2 shows the throughput at low contention (i.e., 90% read transactions) for each of the
six benchmarks, running on 10 to 80 nodes. From Figure 7.2, we observe that RTS outperforms
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TFA and TFA+Backoff. Generally, TFA’s throughput is better than TFA+Backoff’s. If a parent
transaction including multiple nested transactions aborts, it requests all the objects again under
TFA+Backoff. Even if the parent transaction waits for a backoff time, the additional requests incur
more contention, so the backoff time is not effective for nested transactions. Under TFA, an aborted
transaction also requests all objects without any backoff, also incurring more contention. From
Figures 7.2(a) and 7.2(b), we observe that Vacation and Bank benchmarks take longer execution
time than others. The improvement of their throughput is less pronounced.
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Figure 7.3: Transactional Throughput on High Contention

Figure 7.3 shows the throughput at high contention (i.e., 10% read transactions) for each of the six
benchmarks. We observe that the throughput is less than that at low contention, but RTS’s speedup
over others increases. High contention leads to many conflicts, causing nested transactions to
abort. Also, we observe that a long execution time caused by queuing live transactions incurs a
high probability of conflicts. In Figures 7.3(c), 7.3(d), 7.3(e), and 7.3(f), the throughput is better
than that of Bank and Vacation, because LL, RB Tree, BST, and DHT have relatively short local
execution times.

We computed the throughput speedup of RTS over TFA and TFA+Backoff – i.e., the ratio of
RTS’s throughput to that of the respective competitors. Figure 7.4 summarizes the speedup. Our
experimental evaluations reveal that RTS improves throughput over DTM without RTS by as much
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as 1.53 (53%) ∼ 1.88 (88%) × speedup in low and high contention, respectively.



Chapter 8

The Dependency-Aware Transactional
Scheduler

8.1 Motivation

(a) Two Outer Transactions (b) Inner Transaction

Figure 8.1: Two scenarios with abstract locks and compensating actions.
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Figure 8.1 shows two examples of open-nested transactions with compensating actions and ab-
stract locks (Codes performing the actual insert, remove, and delete functions are not shown).
Figure 8.1(a) illustrates two outer transactions, T1 and T2 including an inner transaction indicated
in Figure 8.1(b). The inner transaction includes an insert operation. T1 has a remove operation,
which returns a removed value indicated by the key. The value is used as an input of the inner
transaction. Commit and compensating actions are registered when the inner transaction commits.
To acquire or release the lock, a message is sent to the owner of tree-1. When the inner transaction
commits, its modification becomes immediately visible for other transactions. T2 consists of a
delete operation and the inner transaction includes an insert operation.

Unlike closed or flat nesting, open nesting executes multiple commit operations. A commit of an
inner transaction involves acquiring and releasing the abstract lock, as illustrated in Figure 8.1(b).
In distributed systems, this involves communication overheads due to remotely acquiring and re-
leasing the lock. [74].

Meanwhile, when T1 aborts, its inner transaction must execute the abort procedure onAbort, be-
cause the value in T1 depends on its inner transaction. Although T2 does not depend on its inner
transaction, the inner transaction executes onAbort and acquires the abstract lock again when it
restarts. Whenever an outer transaction aborts, its inner transaction must execute a compensating
action (e.g., bst.delet(value, t)), regardless of object dependencies.

A distributed transaction typically has a longer execution time than a multiprocessor transaction,
due to communication delays that are incurred in requesting and acquiring objects [39]. Compen-
sating actions and attempts for acquiring abstract locks for distributed open-nested transactions will
take longer time due to the communication overhead, which increases the likelihood for conflicts,
degrading performance.

Motivated by these observations, we propose the DATS scheduler for open-nested DTM. We iden-
tify which object is subject to a conflict when an outer transaction validates. DATS determines
whether the conflicted object has dependency on nested transactions. If there is no dependency
between nested and outer transactions, only the conflicting outer transaction is restarted to pre-
serve the inner transactions’ abstract lock. Otherwise, the conflicting transaction aborts and other
transactions execute compensating actions only when the nested transactions have dependency on
the conflicted object.

8.2 Scheduler Design

When an outer transaction validates an object, the object owner lets the transactions that have
requested the object know that the object has been validated. Those transactions will then abort
and DATS determines whether compensating actions must be executed. When an outer transaction
aborts, DATS performs two actions: First, DATS detects which object is subject to the conflict.
While a transaction Ti validates an object oj , suppose that transaction Tk is designated to abort
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due to the early validation of Ti. DATS lets Tk know that oj is being validated by Ti. Before Tk
validates oj , Tk rolls-back only the operations that have been executed after requesting oj if only
oj has been conflicted.

Second, DATS detects which inner transactions depend on the conflicted object oj . If a nested
transaction Tk−1, which already has committed, has used oj , then Tk−1 must abort and its com-
pensating action must be executed. If Tk−1 does not have any dependency on oj , then Tk restarts,
except for Tk−1. If Tk has conflicted due to only oj , then only the operations involving oj in Tk
restart, increasing performance. If Tk−1 has acquired the abstract lock of an object, the abstract
lock will be preserved, reducing the number of acquiring the lock.

Additionally, DATS performs two actions to reduce the delays for open nested transactions. First,
when an outer transaction aborts due to a conflict, its committed inner transactions will be protected
from the abort if they do not depend on the conflicting outer transaction for any object. Second,
when an inner transaction has acquired the lock of an object that does not depend on its outer
transaction, the acquisition will be reserved. Thus, DATS increases performance by minimizing
the number of requests to acquire a lock and unnecessary compensating actions.

8.3 Illustrative Example

(a) TFA-ON (b) DATS on TFA-ON

Figure 8.2: A Scenario of DATS and TFA-ON

Figure 8.2 illustrates an example of TFA-ON and DATS with two transactions T1 and T3 invoked
on nodes n1 and n3, respectively. The circles indicate objects for write operations. Objects are
represented on horizontal lines with the circles. The horizontal line corresponding to the status of
each transaction describes the time domain.

Figure 8.2(a) shows an example of open nested transactions under TFA-ON. T1 does a write op-
eration on o1 and its inner transaction T1−1 requests o2. T1−1 acquires o2’s lock from the owner
of o2 (e.g., n2). T3 does a write transaction on o1 and its inner transaction T3−1 requests o2. T3−1
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acquires o2’s lock. When T3 validates o1, T3−1 releases the lock. When T1 validates o1, T1 aborts
and executes the compensating action of T1−1 due to the early validation of T3.

Figure 8.2(b) shows an example of DATS with TFA-ON. When T3 validates o1, the owner of o1
lets T3 know the address of n1 invoking T1. T3 sends an abort message with a backoff time to n1.
T1 restarts after the backoff time. DATS checks the dependency between T1−1 and o1. If there is no
dependency between them, T1 restarts only the operation on o1 and the abstract lock of o2 acquired
by T1−1 is preserved.

We now describe how to determine the backoff time and determine object dependencies in Sec-
tion 8.4.

8.4 Algorithms

We now present the algorithms for DATS. There are four algorithms: Request Object and
Retrieve Request (Algorithm 15), and Commit and Abort (Algorithm 16).

The procedure,Request Object, is invoked whenever a new object needs to be requested. Request
Object returns the requested object if the object is received. The second procedure,Retrieve Request,

is invoked whenever an object holder receives a new request from Request Object.

After finding the owner of the object in Request Object, the requester sends type, oid, and txid
to the owner. type represents a read or write transaction. If the received object is null and the
assigned backoff time is not 0, the requester waits for the backoff time to elapse. This implies
that the requester requests an object, which is being validated by another transaction and therefore
does not need to roll back. If the backoff time expires, Open Object returns null. Otherwise, the
requester wakes up and receives the object. TransactionQueue is used to check the status of live
transactions.

To compute a backoff time, we use a transaction stats table that stores the average historical val-
idation time of a transaction. Each table entry holds a bloom filter [8] representation of the most
current successful commit times of write transactions. Whenever a transaction starts, an expected
commit time is recorded in the table. A backoff time is computed as expected commit time -
current time (i.e., the time for validating an object).

Retrieve Request is invoked when an object owner receives a request. get Object returns the
object corresponding to oid. If get Object returns null, it is not the owner of oid. Thus, 0 is
assigned as the backoff time, and the requester must retry to find a new owner. If the corresponding
object is being validated, Retrieve Request has to calculate a backoff time.

Algorithm 16 shows the Commit and Abort procedures. Whenever a transaction commits, the
procedure, Commit is invoked and receives txid and objects to be committed as inputs. If
the transaction is an open-nested (or inner) transaction, LoadClass reads the application’s byte-
codes and CheckDependency analyzes the dependency of the nested transaction [41]. The list
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Algorithm 15: Algorithms of Request Object and Retrieve Request
1 Procedure Request Object
2 Input: Transaction Type type, Transaction ID txid, Object ID oid
3 Output: null, object
4 owner = find Owner(oid);
5 Send type, oid, and txid to owner;
6 Wait until object is received;
7 Receive object and backoff from Retrieve Request;
8 if object is null then
9 if backoff is not 0 then

10 TransactionQueue.put(txid);
11 Wait for backoff ;
12 Read object and backoff from Retrieve Request;
13 if object is not null then
14 return object;

15 else
16 TransactionQueue.remove(txid);

17 return null;

18 return object;
19 Procedure Retrieve Request
20 Input: type, oid. txid
21 object = get Object(type, oid);
22 address = get Requester Address();
23 Integer backoff = 0;
24 if object is not null and type is write then
25 if object is being validated then
26 backoff = expected commit time - current time;
27 object=null;

28 Send object and backoff to address;

DependentObjects thatCheckDependency returns includes all objects that the inner transactions
have used. The object to be committed by the inner transaction is removed fromDependentObjects.
If DependentObjects is not empty, txid is added to NestedTxs with the oids of the depen-
dent objects DependentObjects.oid. This means that the outer transaction has requested oids.
CommitNestedTx() invokes onComit, illustrated in Figure 8.1(b). If an outer transaction in-
vokesCommit, a backoff time is sent to the outer transactions requesting objects. Request Object
will be invoked after the backoff time elapses to minimize conflicts.

In the meanwhile, if a transaction aborts, the Abort procedure is invoked. If the transaction is
an outer transaction and its committed objects exist in NestedTxs, then the inner transactions
that use those objects abort. Only the aborts of the nested transactions lead to the execution of
compensating actions.

The time complexity is O(1) to enqueue a transaction. In Algorithm 16, a backoff message is sent
to all outer enqueued transactions for each object, so the time complexity is O(the number of
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Algorithm 16: Algorithms of Commit and Abort
1 Procedure Commit
2 Input: txid, objects
3 foreach objects do
4 if txid is open nesting then
5 LoadClass(application.java);
6 DependentObjects = CheckDependency(object);
7 Remove object form DependentObjects;
8 if DependentObjects is not null then
9 NestedTxs.put(DependentObjects.oid,txid); CommitNestedTx(); return;

10 owner = find Owner(object);
11 Send owner a message to obtain the addresses of the nodes requesting object;
12 if received addresses is not null then
13 Send expected commit time - current time to addresses for a backoff;

14 Validate object;
15 if received addresses is not null then
16 Send object to addresses;

17 Procedure Abort
18 Input: txid, objects
19 if txid is outer then
20 foreach objects do
21 nestedIds = NestedTxs.remove(object.id);
22 if nestedIds is not null then
23 foreach nestedIds do
24 AbortNestedTx(nestedId);

25 AbortOuterTx(txid);

enqueued outer transactions).

8.5 Evaluation

We implemented DATS in the HyFlow DTM framework [63, 73]. We developed four microbench-
marks for experimental studies. The benchmarks include distributed data structures including Hash
Table, Binary Search Tree (BST), and SkipList [28]. We compared DATS under TFA-ON (OPEN-
DATS) with only TFA-ON (OPEN) [74], closed nested transaction (CLOSED) [73], and flat nested
transaction (FLAT). We compare with CLOSED and FLAT to show that OPEN does not always
perform better than them, while OPEN-DATS consistently outperforms OPEN.

Figures 8.3 and 8.4 show the throughput of the three benchmarks with a different number of inner
transactions, under low and high contention. In high contention, the number of aborts increases.
Outer transactions frequently abort, and corresponding compensating actions are executed. DATS
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Figure 8.3: Throughput of 3 benchmarks with 4 inner transactions per outer transaction.

reduces the number of the compensating action executions. Also, the commit overheads of the
outer transaction with four inner transactions are less than that of the outer transaction with eight
inner transactions. Thus, the throughput of OPEN-DATS with eight inner transactions is improved
more than that with four inner transactions.

OPEN performs worse than others in low contention (e.g., read-dominated workloads). Also,
CLOSED and FLAT outperforms OPEN at small number of nodes. Under these conditions, object
updates are rare. FLAT and OPEN take advantage of concurrent read operations, but OPEN has
to validate the objects used for read operations. In this condition, OPEN-DATS less reduces the
number of abstract locks and compensating action executions. However, in high contention and
with large number of inner transactions, OPEN-DATS outperforms others.

We measured the throughput speedup of OPEN-DATS over OPEN – i.e., the ratio of OPEN-
DATS’s throughput to the throughput of OPEN. Figure 8.5 shows the throughput speedup of the
three benchmarks. We observe that OPEN-DATS improves throughput over OPEN by as much
as 1.41× and 1.98× under low and high contention, respectively. We also observe that OPEN-
DATS’s throughput speedup under four inner transactions is higher than that under eight inner
transactions, but its throughput speedup under eight inner transactions is higher than that under
four inner transactions. The speedup under eight inner transactions in high contention (e.g., 90%
write operations) is higher because of the large number of commits and compensating actions.
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Figure 8.4: Throughput of 3 benchmarks with 8 inner transactions per outer transaction.
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Figure 8.5: Throughput Speedup of Three Benchmarks against TFA-ON



Chapter 9

Summary, Conclusions, and Proposed Post
Preliminary-Exam Work

9.1 Summary

In this dissertation proposal, we studied five different schedulers to improve throughput in data-
flow cc DTM. First, Bi-interval categorizes requests into read and write intervals to exploit con-
currency of read transactions. The key idea is to minimize object moving times and maximize
concurrency of read transactions. Bi-interval enhances throughput by as much as 1.77∼ 1.65×
speedup under low and high contention, respectively.

Second, PTS has been designed for multi-version DTM. The key idea is to detect which object
version is subject to the conflict in the event-based cc DTM and assign backoff times to conflict-
ing transactions to minimize communication overhead. Our evaluation shows that PTS enhances
throughput over two state-of-the-art replicated DTM solutions, GenRSTM and DecentSTM, by as
much as (average) 3.4× and 3.3× under low and high contention, respectively.

Third, CTS focuses on the partial object replication model. The key idea of CTS is to avoid brute
force replication of all objects over all nodes to minimize communication overhead. Instead, repli-
cate objects across clusters of nodes, such that each cluster has at least one replica of each object,
where clusters are formed based on node-to-node distances. Our implementation and experimental
evaluation shows that CTS enhances throughput over GenRSTM and DecentSTM, by as much as
(average) 1.55× and 1.73× under low and high contention, respectively.

Fourth, RTS focuses on scheduling closed-nested transactions. The scheduler heuristically de-
termines transactional contention level to determine whether a live parent transaction aborts or
enqueues. RTS is shown to enhance throughput at high and low contention, by as much as 1.53

68
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(53%) ∼ 1.88 (88%) × speedup, respectively.

Finally, DATS schedules open-nested transactions. The key idea behind DATS is to avoid com-
pensating actions regardless of conflicted objects and minimize the number of requesting abstract
locks, improving performance. Our implementation and experimental evaluation shows that DATS
enhances throughput for open-nested transactions by as much as 1.41× and 1.98× under low and
high contention, respectively.

All five proposed transactional schedulers focus on data-flow cc DTM, but consider different as-
pects of the DTM problem space. Bi-interval focuses on single-version DTM. PTS focuses on
large monotonic write transactions in multi-version DTM. CTS considers replicated DTM, which
increases concurrency and availability. RTS and DATS have been proposed for scheduling closed
and open-nested transactions, respectively.

9.2 Conclusions

Bi-interval shows that the idea of grouping concurrent requests into read and write intervals to
exploit concurrency of read transactions — originally developed in BIMODAL for multiprocessor
TM — can also be successfully exploited for DTM. Doing so poses a fundamental trade-off, how-
ever, one between object moving times and concurrency of read transactions. Bi-interval’s design
shows how this trade-off can be effectively exploited towards optimizing throughput.

PTS focuses on how to reduce the aborts of only large write transactions, because MV-STM inher-
ently guarantees commits of all read transactions, and large write transactions are exposed to a high
probability of conflicts. PTS breaks down large write transactions to find the restart point at which
they have conflicted, preventing entire transactions from aborting. This results in throughput being
improved two times more than other schedulers.

CTS uses multiple clusters to support partial replication for fault-tolerance. The clusters are built
such that inter-node communication within each cluster is small. To reduce object requesting
times, CTS partitions object replicas into each cluster (one per cluster), and enqueues and assigns
backoff times for aborted transactions. CTS’s design shows that such an approach yields significant
throughput improvement.

With closed-nested transactions, when an outer transaction is aborted and re-issued, the inner trans-
actions will have to retrieve objects again, increasing communication delays. RTS reduces the
aborts of outer transactions, including their inner transactions.

When transactions with committed open-nested transactions conflict later and are re-issued, com-
pensating actions for the open-nested transactions can reduce throughput. DATS avoids this by
reducing unnecessary compensating actions, and minimizing inner transactions’ remote abstract
lock acquisitions through object dependency analysis. Our implementation and evaluation shows
that, this strategy is effective and increases throughput.
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To summarize, transactions may be aborted in DTM due to a number of reasons in different DTM
models (i.e., multi-version, replicated, nested), reducing throughput. At its core, our work shows
that, identifying the underlying causes (e.g., repeated abort of large write transactions, repeated
acquisition of remote objects/abstract locks) and eliminating them can yield significant throughput
improvement.

9.3 Proposed Post Preliminary-Exam Work

9.3.1 Satisfying Update Serializability

The update serializability (US) [30] consistency criterion, originally studied for databases, is
weaker than the opacity consistency criterion satisfied by the schedulers that we have developed
so far. With US, read-only transactions are guaranteed to never abort. This is achieved by ensuring
that a) they observe snapshots consistent with serializable executions, and b) concurrent read-only
transactions may observe different, but compatible snapshots consistent with serializable execu-
tions. This means that, read-only transactions may observe different ordering of logically indepen-
dent operations, which does not violate read-dominated workloads’ correctness.

US is achieved by multiversion concurrency control: read-only transactions concurrent to write
transactions always read the immediately previous update, ensuring guaranteed commit. The Gen-
uine Multi-version Update serializability protocol (GMU) in [54] is one of the first genuine partial
replication protocol guaranteeing that read-only transactions are never aborted, or forced to un-
dergo any additional remote validation phase. GMU determines which object versions have to be
returned by read operations of transactions to support US. For asynchronous distributed systems,
GMU ensures agreement (only) among the nodes replicating the object updated by a transaction.
However, GMU does not consider scheduling transactions to improve throughput.

CTS considers a partial replication model in an asynchronous distributed system, but uses non-
genuine multicasting and a single object version model. Our proposed approach is to enhance CTS
design to satisfy US. One way to do this is for object owners of each cluster to maintain object
versions. When a read transaction T1 requests an object o, the proposed scheduler can check the
dependency (e.g., read transaction needs o being updated by a write transaction) of all current
transactions that request o. If T1 depends on T2, then T1 cannot ignore the effects of T2 and all
write transactions that T2 depends upon. If there exists a dependency, T1 should be enqueued until
the commit of T2 and all write transactions that T2 depends upon, guaranteeing US.

9.3.2 Satisfying Strong Eventual Consistency

Eventual consistency (EC) and strong eventual consistency (SEC) [70] criteria, again, originally
studied for databases, are also weaker than the opacity consistency criterion satisfied by our sched-



Junwhan Kim Chapter 9. Summary, Conclusions, and Proposed Post Preliminary-Exam Work 71

ulers.

Eventual consistency promises better availability and performance [75]. A write transaction up-
dates some replica without synchronization, and then all write transactions take effect at all repli-
cas. An object satisfies SEC if two properties are satisfied [71]: a) eventual delivery, which means
that an update delivered to a replica is eventually delivered to all correct replicas, and b) strong
convergence, which means that, replicas delivered the same updates have equivalent states. SEC
can be achieved remarkably simply: an update to a replica is delivered to other replicas infinitely
often, resulting in those replicas eventually receiving it, and converging to equivalent states.

Note that the two properties for achieving SEC avoid global synchronization (i.e., system-wide
commit), maximizing scalability. We propose a new transactional scheduler to support SEC for
better availability and performance. The transactional scheduler maintains transactions to guar-
antee that objects are SEC. When a write transaction starts, its operation’s type is propagated to
determine whether it changes the state of the object or not. If the transaction’s result will change
the state, its update will be delivered for strong convergence. Otherwise, its update does not take
effect.

9.3.3 Leveraging Genuine Atomic Multicast

In distributed systems, object replication plays a fundamental role in both performance (e.g., read
concurrency) and fault-tolerance (e.g., data availability in spite of node/link failures). In partic-
ular, partial replication, which increases scalability, has been developed, leveraging two kinds of
multicast protocols: non-genuine and genuine multicast protocols. Non-genuine multicast pro-
tocol deliver multiple messages addressed to multiple groups, reducing scalability. Genuineness
maximizes scalability, delivering one message to support one-copy serializability. Non-genuine
protocols offer better performance than genuine protocols in all considered scenarios, except in
large and highly loaded systems [69]. In large-scale distributed systems, many works have studied
genuine partial replication to increase both performance and scalability [68, 67, 54].

CTS is based on atomic multicasting to ensure consistency. Atomic multicast allows messages to
be addressed to a subset of the members of the system. In the case of CTS, that subset is the set
of owners of each cluster. Our proposed approach is to design an enhanced CTS that leverages
genuine multicast. One way to do this is as follows. When a write transaction starts validating an
object, a message is sent to the owner subset. The object owners involved in the set may update the
object’s status to “validating”. When the write transaction ends validating the object, its local clock
(LC) is updated to the up-to-date clock, and the object status is changed to “ready”. Like GMU,
an agreement procedure is needed because genuine multicast is not reliable. If some of the object
owners did not update the object status or LC, another transaction may request the old object,
and will abort, because the LC is old. Meanwhile, some of the object owners may not change
“validating” to “ready”, aborting requested transactions. To avoid this, the proposed scheduler
could maintain a scheduling queue of aborted transactions. This queue will be joined to the object
owner holding up-to-date objects, ensuring one-copy serializability and reducing object requesting
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time.

9.3.4 Evaluation using Industrial-strength Benchmarks

Our current evaluations of the schedulers were done using academic benchmarks including dis-
tributed versions of the STAMP benchmark [12] and STMBench7 [28]. This only constitutes a
first-order evaluation. A more rigorous evaluation using industrial strength benchmarks such as
TPC-B [1], BDB, and YCSB [54] is therefore highly desirable.

The transaction processing performance council benchmark (TPC-B) [1] consists of update trans-
actions for database management systems, in both stand-alone and client-server contexts. Berke-
ley DB (BDB) is a software library that provides a high-performance embedded database for
key and value data. BDB supports thousands of simultaneous threads of control or concurrent
processes manipulating a database, which is suitable for DTM. Yahoo cloud serving benchmark
(YCSB) [15, 54] is a framework specifically aimed at benchmarking NoSQL key-value data grids
and cloud stores for performance comparison.

We propose to evaluate the proposed schedulers using these benchmarks.
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